Plant Functional Traits and Soil Nutrients Drive Divergent Symbiotic Fungal Strategies in Three Urban Street Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Plots and Sampling
2.2. Sample Testing
2.3. Data Processing and Analysis
3. Results
3.1. Atmospheric and Plant Effects on Symbiotic Fungi
3.2. Effect of Soil on Symbiotic Fungi
3.3. Structural Equation Modeling
4. Discussion
4.1. Patterns of Atmosphere–Plant Interactions of Symbiotic Fungi of Sophora Japonica
4.2. Ginkgo Biloba Symbiotic Fungi of Soil Nutrient Mutualism Patterns
4.3. Soil–Plant Co-Impact Model of Symbiotic Fungi of Populus Tomentosa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GAM | Generalized additive model |
SEM | Structural equation modeling |
SLA | Specific leaf area |
IWUE | Intrinsic water-use efficiency |
LD | Leaf density |
References
- Fang, J.; Li, S.; Wang, M.; Zhao, N.; Xu, X.; Li, B.; Lu, S. Ability of typical greening tree species to purify NO2 under different environmental factors. Atmos. Pollut. Res. 2025, 16, 102357. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, H.; Liu, M.; Kang, L.; Yu, J.; Yang, R. Relationship between PM2. 5 adsorption and leaf surface morphology in ten urban tree species in Shenyang, China. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1029–1039. [Google Scholar]
- Weyens, N.; Thijs, S.; Popek, R.; Witters, N.; Przybysz, A.; Espenshade, J.; Gawronski, S.W. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int. J. Mol. Sci. 2015, 16, 25576–25604. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Baek, S.G.; Kwon, M.Y.; Je, S.M.; Woo, S.Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 2018, 14, 97–104. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, A.; Zhao, S. Carbon storage and sequestration of urban street trees in Beijing, China. Front. Ecol. Evol. 2016, 4, 53. [Google Scholar]
- Kim, J.Y.; Jo, H.K. Estimating carbon budget from growth and management of urban street trees in South Korea. Sustainability 2022, 14, 4439. [Google Scholar] [CrossRef]
- Chen, Y.C. Evaluation of greenhouse gas emissions and energy recovery from planting street trees. Greenh. Gases Sci. Technol. 2020, 10, 604–612. [Google Scholar] [CrossRef]
- Ji, R.; Cui, P.Y.; Huang, Y.D.; Luo, Y.; Jiang, C.J.; Zhai, C.Y. Influence of tree planting pattern coupled with wall thermal effect on pollution dispersion within urban street canyon. Appl. Therm. Eng. 2024, 248, 123206. [Google Scholar] [CrossRef]
- Petrus, M.; Popa, C.; Bratu, A.M. Urban Air Pollution by Laser Photoacoustic Spectroscopy and Simplified Numerical Modeling of Gas Pollution in Urban Canyon. WSEAS Trans. Int. J. Environ. Eng. Dev. 2024, 2, 99–105. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Zhang, X.; Yu, Y.; Zhou, X.; Shen, Z. Nitrogen transport and sources in urban stormwater with different rainfall characteristics. Sci. Total Environ. 2022, 837, 155902. [Google Scholar] [CrossRef]
- Lusk, M.G.; Garzon, P.S.; Muni-Morgan, A. Nitrogen forms and dissolved organic matter optical properties in bulk rainfall, canopy throughfall, and stormwater in a subtropical urban catchment. Sci. Total Environ. 2023, 896, 165243. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.M.; Gupta, A.; Kumar, P. Urbanization and biodiversity of arbuscular mycorrhizal fungi: The case study of Delhi, India. Rev. Biol. Trop. 2018, 66, 1547–1558. [Google Scholar] [CrossRef]
- Gréau, L.; Blaudez, D.; Heintz, D.; Zumsteg, J.; Billet, D.; Cébron, A. Response of poplar and associated fungal endophytic communities to a PAH contamination gradient. Int. J. Mol. Sci. 2022, 23, 5909. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, J.; Meng, Y.; Zheng, Y.; Lu, B.; Zhang, J.; Zhou, Y. Enhancing drought resistance in Pinus tabuliformis seedlings through root symbiotic fungi inoculation. Front. Plant Sci. 2024, 15, 1446437. [Google Scholar] [CrossRef]
- Duan, S.; Feng, G.; Limpens, E.; Bonfante, P.; Xie, X.; Zhang, L. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat. Rev. Microbiol. 2024, 22, 773–790. [Google Scholar] [CrossRef]
- Zhao, J.; Davies, C.; Veal, C.; Xu, C.; Zhang, X.; Yu, F. Review on the application of nature-based solutions in urban forest planning and sustainable management. Forests 2024, 15, 727. [Google Scholar] [CrossRef]
- Rui, W.; Mao, Z.; Li, Z. The roles of phosphorus and nitrogen nutrient transporters in the arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 2022, 23, 11027. [Google Scholar] [CrossRef]
- Song, W. Ectomycorrhizal fungi: Potential guardians of terrestrial ecosystems. mLife 2024, 3, 387–390. [Google Scholar] [CrossRef]
- Elkaee, S.; Shirvany, A.; Moeinaddini, M.; Sabbagh, F. Assessment of particulate matter, heavy metals, and carbon deposition capacities of urban tree species in Tehran, Iran. Forests 2024, 15, 273. [Google Scholar] [CrossRef]
- Liu, R.; Wang, M.; Chen, W.; Peng, C. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ. Pollut. 2016, 210, 174–181. [Google Scholar] [CrossRef]
- Wang, M.; Markert, B.; Chen, W.; Peng, C.; Ouyang, Z. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China. Environ. Monit. Assess. 2012, 184, 5889–5897. [Google Scholar] [CrossRef] [PubMed]
- Mohtadi, A.; Hatami-Manesh, M. Assessment of resistance and biochemical responses of tree species as a biomonitor of heavy metals pollution in an urban-industrial setting (Yasouj, Iran). Chemosphere 2025, 378, 144402. [Google Scholar] [CrossRef] [PubMed]
- Giráldez, P.; Varela, Z.; Di Guardo, A.; Terzaghi, E.; Celeiro, M.; García-Jares, C.; Aboal, J.R. Relationship between foliar polycyclic aromatic hydrocarbons (PAHs) concentrations and plant traits: Intracanopy variability for a broadleaf species in an urban environment. Sci. Total Environ. 2024, 940, 173698. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Gong, Y.; Ma, J.; Wei, H.; Liu, Q.; Liu, L.; Chen, Y. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China. Environ. Pollut. 2020, 260, 114016. [Google Scholar] [CrossRef]
- Liu, Q.; Hintelmann, H.; Jiang, G. Natural stable isotopes: New tracers in environmental health studies. Natl. Sci. Rev. 2016, 3, 410. [Google Scholar] [CrossRef]
- Douglas, P.; Anees-Hill, S.; Macchiarulo, S.; Symon, F.A.; Satchwell, J.; Hansell, A.L.; Marczylo, E.L. Assessing population exposure to airborne fungi in the UK over one year using high-throughput sequencing (HTS) metabarcoding methods. Environ. Res. 2025, 274, 121227. [Google Scholar] [CrossRef]
- Beijing Municipal Ecology and Environment Bureau. 2022 Report on the State of the Ecology and Environment in Beijing; Beijing Municipal People’s Government: Beijing, China, 2023.
- Beijing Municipal Commission of Urban Planning. Beijing Urban Master Plan (2016–2035); China Architecture & Building Press: Beijing, China, 2016. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, B.; Yang, L.; Song, W. Functional trait responses of three street tree taxa in Beijing to vehicular emissions of CO2 and NOx. Ecol. Front. 2025, 45, 740–748. [Google Scholar] [CrossRef]
- Tu, J.; Qiao, J.; Zhu, Z.; Li, P.; Wu, L. Soil bacterial community responses to long-term fertilizer treatments in Paulownia plantations in subtropical China. Appl. Soil Ecol. 2018, 124, 317–326. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; McGinnis, S.; Madden, T.L. BLAST: Improvements for better sequence analysis. Nucleic Acids Res. 2006, 34, W6–W9. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Kõljalg, U. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Kakouridis, A.; Yuan, M.; Nuccio, E.E.; Hagen, J.A.; Fossum, C.A.; Moore, M.L.; Firestone, M.K. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. New Phytol. 2024, 242, 1661–1675. [Google Scholar] [CrossRef]
- Merckx, V.S.; Gomes, S.I.; Wang, D.; Verbeek, C.; Jacquemyn, H.; Zahn, F.E.; Bidartondo, M.I. Mycoheterotrophy in the wood-wide web. Nat. Plants 2024, 10, 710–718. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Cui, B.; He, G.; Wei, M.; Zhang, Z.; Ouyang, Z. Estimating NOx removal capacity of urban trees using stable isotope method: A case study of Beijing, China. Environ. Pollut. 2021, 290, 118004. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Su, Y.; Ouyang, Z. Estimating the nitrogen source apportionment of Sophora japonica in roadside green spaces using stable isotope. Sci. Total Environ. 2019, 689, 1348–1357. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Cescatti, A.; Sardans, J.; Peñuelas, J. Response to Comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 2021, 373, eabg7484. [Google Scholar] [CrossRef]
- Yan, X.; Li, P.; Wu, X.; Wang, J.; Wang, Z.; Xu, J.; Du, E. Variations in the leaf economics spectrum, anatomical, ultrastructural, and stomatal traits of five tree species in the urban-rural air pollution environment. J. Environ. Sci. 2025, 155, 177–192. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, J.; Huang, D. The utilization and roles of nitrogen in plants. Forests 2024, 15, 1191. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, H.; Wu, W.; Li, W. Molecular Mechanisms of Nitrogen Absorption, Transport, and Assimilation in Plants. Fujian J. Agric. Sci. 2022, 37, 547–554. [Google Scholar]
- Yao, X.; Ma, X. Research Progress on Effect of Nitrogen Form on Plant Growth. J. Agric. Sci. Technol. 2015, 17, 109–117. [Google Scholar]
- Lekberg, Y.; Arnillas, C.A.; Borer, E.T.; Bullington, L.S.; Fierer, N.; Kennedy, P.G.; Henning, J.A. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 2021, 12, 3484. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Reis, S.; Wang, C.; Wang, S.; He, P.; Gu, B. Nitrogen cycles in global croplands altered by elevated CO2. Nat. Sustain. 2023, 6, 1166–1176. [Google Scholar] [CrossRef]
- Scher, M.A.; Barclay, R.S.; Baczynski, A.A.; Smith, B.A.; Sappington, J.; Bennett, L.A.; Wing, S.L. The effect of CO2 concentration on carbon isotope discrimination during photosynthesis in Ginkgo biloba: Implications for reconstructing atmospheric CO2 levels in the geologic past. Geochim. Cosmochim. Acta 2022, 337, 82–94. [Google Scholar] [CrossRef]
- Renu Pandey, R.P.; Gaurav Zinta, G.Z.; Hamada AbdElgawad, H.A.; Altaf Ahmad, A.A.; Vanita Jain, V.J.; Janssens, I.A. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol. Adv. 2015, 33, 303–316. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Liu, X.; Chen, Y.; Zhang, Q.; Wang, L.; Li, W. Analysis of Ginkgo biloba Root Exudates and Inhibition of Soil Fungi by Flavonoids and Terpene Lactones. Plants 2024, 13, 2122. [Google Scholar] [CrossRef]
- Ao, G.; Feng, J.; Han, M.; Wang, X.; Tang, M.; Ma, S.; Zhu, B. Responses of root and soil phosphatase activity to nutrient addition differ between primary and secondary tropical montane forests. Rhizosphere 2022, 24, 100610. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, P.; Liu, P.; Song, Y.; Zhang, D. Genetic effects and expression patterns of the nitrate transporter (NRT) gene family in Populus tomentosa. Front. Plant Sci. 2021, 12, 661635. [Google Scholar] [CrossRef]
- Ramirez, J.A.; Craven, D.; Herrera, D.; Posada, J.M.; Reu, B.; Sierra, C.A.; Messier, C. Non-structural carbohydrate concentrations in tree organs vary across biomes and leaf habits, but are independent of the fast-slow plant economic spectrum. Front. Plant Sci. 2024, 15, 1375958. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Wang, Y.; Shi, J.; Wei, J.; Wang, Q.; Song, W. Plant Functional Traits and Soil Nutrients Drive Divergent Symbiotic Fungal Strategies in Three Urban Street Tree Species. J. Fungi 2025, 11, 454. https://doi.org/10.3390/jof11060454
Xue Y, Wang Y, Shi J, Wei J, Wang Q, Song W. Plant Functional Traits and Soil Nutrients Drive Divergent Symbiotic Fungal Strategies in Three Urban Street Tree Species. Journal of Fungi. 2025; 11(6):454. https://doi.org/10.3390/jof11060454
Chicago/Turabian StyleXue, Yifan, Yao Wang, Jiang Shi, Jingyao Wei, Qiong Wang, and Wenchen Song. 2025. "Plant Functional Traits and Soil Nutrients Drive Divergent Symbiotic Fungal Strategies in Three Urban Street Tree Species" Journal of Fungi 11, no. 6: 454. https://doi.org/10.3390/jof11060454
APA StyleXue, Y., Wang, Y., Shi, J., Wei, J., Wang, Q., & Song, W. (2025). Plant Functional Traits and Soil Nutrients Drive Divergent Symbiotic Fungal Strategies in Three Urban Street Tree Species. Journal of Fungi, 11(6), 454. https://doi.org/10.3390/jof11060454