Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review
Abstract
:1. Introduction
2. Bioactive Compounds and Beneficial Medicinal Properties of Russula
2.1. Bioactive Compounds
2.1.1. Polysaccharides
Russula alatoreticula
Russula albonigra
Russula alutacea
Russula griseocarnosa
Russula pseudocyanoxantha
Russula virescens
Russula vinosa
Russula adusta, R. aurea, R. delica, R. emetica, and R. senecis
2.1.2. Terpenes
Russula amarissima, R. brevipes, and R. cyanoxantha
R. delica, R. foetens, and R. japonica
Russula lepida, R. nobilis, and R. queletii
Russula rosacea, R. sanguinaria, R. virescens, and R. vinosa
2.2. Other Bioactive Compounds and Beneficial Medicinal Properties of Russula
2.2.1. Russula aeruginea, R. albonigra, R. alnetorum, R. brevipes, R. fragrantissima, R. nobilis, and R. ochroleuca
2.2.2. Russula alboareolata
2.2.3. Russula alatoreticula
2.2.4. Russula alveolata, Russula aruea, Russula aurora, Russula alveolata, Russula cf. Compressa, Russula flavobrunnea var. aurantioflava, and Russula ochrocephala
2.2.5. Russula brevipes
2.2.6. Russula chloroides, Russula cf. foetentoides, and Russula foetens
2.2.7. Russula cutefracta (=R. cyanoxantha) and Russula cyanoxantha
2.2.8. Russula delica
2.2.9. Russula densifolia, Russula emetica (M12), and Russula fellea
2.2.10. Russula fragilis, R. fragrantissima, and R. gnathangensis
2.2.11. Russula griseocarnosa
2.2.12. Russula helios, Russula integra, Russula kivuensis, and Russula laurocerasi
2.2.13. Russula lepida
2.2.14. Russula luteotacta, Russula mairei (=R. nobilis), and Russula medullata
2.2.15. Russula mustelina
2.2.16. Russula nigricans, Russula nobilis, Russula ochroleuca, Russula ochrocephala, and Russula paludosa
2.2.17. Russula pseudocyanoxantha
2.2.18. Russula rosea and Russula rosacea
2.2.19. Russula senecis
2.2.20. Russula subnigricans
2.2.21. Russula vesca
2.2.22. Russula vinosa and Russula violeipes
2.2.23. Russula virescens and Russula viscida
2.2.24. Russula xerampelina
3. Biotechnological Applications
4. Toxicity
5. Cultivation Challenges of Russula: Current Knowledge and Limitations
6. Future Works and Drawbacks
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lotsy, J.P. Vorträge über botanische Stammesgeschichte; Gustav Fischer: Jena, Germany, 1907; Volume 708. [Google Scholar] [CrossRef]
- Miller, S.L.; McClean, T.M.; Walker, J.F.; Buyck, B. A molecular phylogeny of the Russulales including agaricoid, gasteroid and pleurotoid taxa. Mycologia 2001, 93, 344–354. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CABI International: Oxon, UK, 2008; pp. 608–609. [Google Scholar]
- Buyck, B.; Zoller, S.; Hofstetter, V. Walking the thin line… ten years later: The dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Divers. 2018, 89, 267–292. [Google Scholar] [CrossRef]
- Buyck, B.; Horak, E.; Cooper, J.; Wang, X. Introducing Russula subgen. Cremeo-ochraceae, a new and very small lineage sharing with Multifurca (Russulaceae) an identical, largely circum-Pacific distribution pattern. Fungal Syst. Evol. 2024, 14, 109–126. [Google Scholar] [CrossRef]
- Roy, N.; Beypih, J.; Tanti, B.; Dutta, A.K. Russula brunneoaurantiaca, a novel taxon of Russula subg. Crassotunicata from West Bengal, India, with morpho-molecular analysis and scanning electron microscopy. Microsc. Res. Tech. 2024, 87, 740–746. [Google Scholar] [CrossRef]
- Niu, C.; Liu, T.; Zhao, S.; Ren, J.; Zhao, Y.; Kang, X.; Qin, W.; Xie, X.; Zhang, X.; Wei, T.; et al. Multi-gene analysis of the Russula crown clade (Russulales, Basidiomycota) revealed six new species and Alboflavinae subsect. nov. from Fagaceae forests in China. Front. Plant Sci. 2024, 15, 1454035. [Google Scholar] [CrossRef]
- Buyck, B.; Hofstetter, V.; Eberhardt, U.; Verbeken, A.; Kauff, F. Walking the thin line between Russula and Lactarius: The dilemma of Russula subsect. Ochricompactae. Fungal Divers. 2008, 28, 15–40. [Google Scholar]
- Looney, B.P.; Meidl, P.; Piatek, M.J.; Miettinen, O.; Martin, F.M.; Matheny, P.B.; Labbé, J.L. Russulaceae: A new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytol. 2018, 218, 54–65. [Google Scholar] [CrossRef]
- Thachunglura, V.L.; Chawngthu, Z.; Zothanzama, J.; Lallawmkima, B.; Lalbiakmawia, B.; Khumlianlal, J.; Rai, P.K. Russulaceae of Ailawng forest with an emphasis on Russula purpureoverrucosa (Russulaceae): A first report for India. Sci. Vis. 2023, 23, 41–47. [Google Scholar]
- He, M.-Q.; Zhao, R.-L.; Hyde, K.D.; Begerow, D.; Kemler, M.; Yurkov, A.; McKenzie, E.H.C.; Raspé, O.; Kakishima, M.; Sánchez-Ramírez, S.; et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019, 99, 105–367. [Google Scholar] [CrossRef]
- Chen, B.; Liang, J.; Yu, F. Morphological studies and phylogenetic analyses unveil two notable new species of Russula Subg. Heterophyllinae from China. Diversity 2024, 16, 727. [Google Scholar] [CrossRef]
- Li, G.J.; Zhao, Q.; Zhao, D.; Yue, S.F.; Li, S.F.; Wen, H.A.; Liu, X.Z. Russula atroaeruginea and R. sichuanensis spp. nov. from southwest China. Mycotaxon 2013, 124, 173–188. [Google Scholar] [CrossRef]
- Song, J.; Li, H.; Wu, S.; Chen, Q.; Yang, G.; Zhang, J.; Liang, J.; Chen, B. Morphological and Molecular Evidence for Two New Species within Russula Subgenus Brevipes from China. Diversity 2022, 14, 112. [Google Scholar] [CrossRef]
- Paloi, S.; Kumla, J.; Karunarathna, S.C.; Lumyong, S.; Suwannarach, N. Taxonomic and phylogenetic evidence reveal two new Russula species (Russulaceae, Russulales) from northern Thailand. Mycol. Prog. 2023, 22, 72. [Google Scholar] [CrossRef]
- Chuchała, P.; Mikołajczyk, A.; Mleczko, P.; Karpowicz, F. The genus Russula Pers. (Russulales) in the Pieniny Mts.: Diversity and distribution. Pienin. Przyr. I Człowiek 2024, 16, 49–93. [Google Scholar]
- Hessler, L.R. A study of Russula types. Mem. Torrey Bot. Club 1960, 21, 1–59. [Google Scholar] [CrossRef]
- Romagnesi, H. Les Russules d’Europe et d’Afrique du Nord; Bordas: Paris, France, 1967. [Google Scholar]
- Singer, R. The Agaricales in Modern Taxonomy, 4th ed.; Koeltz Scientific Books: Koenigstein, Germany, 1986. [Google Scholar]
- Härkönen, M.; Buyck, B.; Saarimäki, T.; Mwasumbi, L. Tanzanian mushrooms and their uses 1. Russula. Karstenia 1993, 33, 11–50. [Google Scholar] [CrossRef]
- Miller, S.L.; Buyck, B. Molecular phylogeny of the genus Russula in Europe with a comparison of modern infrageneric classifications. Mycol. Res. 2002, 106, 259–276. [Google Scholar] [CrossRef]
- Bau, T.; Li, Y.; Irina, A.G.; Eugenia, M.B.; Wasiliy, A.S. Common wild edible mushroom resource of Russia. Edible Fungi China 2008, 27, 9–13. [Google Scholar]
- Das, K.; Atri, N.; Buyck, B. Three new species of Russula (Russulales) from India. Mycosphere 2013, 4, 722–732. [Google Scholar] [CrossRef]
- Buyck, B.; Jančovičová, S.; Adamčík, S. The Study of Russula in the Western United States. Cryptogam. Mycol. 2015, 36, 193–211. [Google Scholar] [CrossRef]
- Buyck, B.; Henkel, T.; Manz, C.; Cao, S.; Amalfi, M.; Wang, X.H. A revision of the African Russula radicans and allies in subgen. Heterophyllidiae provides an example of a clade that exhibits recent diversification and extensive phenotypic plasticity. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wisitrassameewong, K.; Park, M.S.; Lee, H.; Ghosh, A.; Das, K.; Buyck, B.; Looney, B.P.; Caboň, M.; Adamčík, S.; Kim, C.; et al. Taxonomic revision of Russula subsection Amoeninae from South Korea. MycoKeys 2020, 75, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Wisitrassameewong, K.; Manz, C.; Hampe, F.; Looney, B.P.; Boonpratuang, T.; Verbeken, A.; Thummarukcharoen, T.; Apichitnaranon, T.; Pobkwamsuk, M.; Caboň, M.; et al. Two new Russula species (fungi) from dry dipterocarp forest in Thailand suggest niche specialization to this habitat type. Sci. Rep. 2022, 12, 2826. [Google Scholar] [CrossRef] [PubMed]
- Shimono, Y.; Kasuya, T.; Hosaka, K. Russula ryukokuensis sp. nov., an outstanding species of the genus Russula (Russulaceae) having minute basidiomata from Japan. Bull. Natl. Mus. Nat. Sci. Ser. B Bot. 2021, 47, 1–2. [Google Scholar]
- Vera, M.; Adamčík, S.; Adamčíková, K.; Hampe, F.; Caboň, M.; Manz, C.; Ovrebo, C.; Piepenbring, M.; Corrales, A. Morphological and genetic diversification of Russula floriformis, sp. nov., along the Isthmus of Panama. Mycologia 2021, 113, 807–827. [Google Scholar] [CrossRef]
- Bastos, C.; Liberal, Â.; Moldão, M.; Catarino, L.; Barros, L. Ethnomycological prospect of wild edible and medicinal mushrooms from Central and Southern Africa—A review. Food Front. 2023, 4, 549–575. [Google Scholar] [CrossRef]
- Ashfaq, A.; Razzaq, A.; Naseer, A.; Khalid, A.N. Morphological and molecular evidence for a new species of Russula subgen. Compactae from Pakistan. Nord. J. Bot. 2024, 2025, e04411. [Google Scholar] [CrossRef]
- Canales, M.P.; Velay, J.M. El género Russula en Valdeinferno: Base para la realización de un catálogo de especies. Almoraima: Rev. Estud. Campogibraltareños 2024, 61, 201–210. (In Spanish) [Google Scholar]
- Gupta, A.; Dimri, R.; Mishra, S.; Kumar, S. Russula rosea: A wild edible mushroom of India. Edible Med. Mushrooms India 2024, 1, 38–46. [Google Scholar]
- Mahadevakumar, S.; Santhosh, C.R.; Nuthan, B.R.; Sridhar, K.R.; Satish, S.; Amruthesh, K.N. Ethnomedicinal Applications of 100 Wild Mushrooms of the Indian Subcontinent. In Ethnic Knowledge and Perspectives of Medicinal Plants; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 545–576. [Google Scholar]
- Miller, S.L.; Aime, M.C.; Henkel, T.W. Russulaceae of the Pakaraima Mountains of Guyana 5. Two newly described diminutive species in a novel lineage of the crown clade of Russula (Russulaceae). Phytotaxa 2024, 668, 117–129. [Google Scholar] [CrossRef]
- Naveed, M.; Jabeen, S.; Ijaz, H.; Azeem, M.; Khan, M.; Ullah, S. Russula iqbalii sp. nov., Identified in R. Subsect. Maculatinae from Pakistan, Based on Morphology, Microscopy, and Phylogeny. Microsc. Res. Tech. 2024, 88, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Li, G.-J.; Phurbu, D.; He, M.-Q.; Zhang, M.-Z.; Zhu, X.-Y.; Li, J.-X.; Zhao, R.-L.; Cao, B. Four new species of Russula from the Xizang Autonomous Region and other provinces of China. Mycology 2024, 15, 210–237. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R. Ectomycorrhizal Mushrooms: Their Diversity, Ecology and Practical Applications. In Mycorrhiza—Function, Diversity, State of the Art; Varma, A., Prasad, R., Tuteja, N., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Yu, W.Y.; Peng, M.H.; Wang, J.J.; Ye, W.Y.; Wang, Z.H.; Lu, G.D.; Bao, J.D. Micro-community associated with ectomycorrhizal Russula symbiosis and sporocarp-producing Russula in Fagaceae dominant nature areas in southern China. bioRxiv 2020. [Google Scholar] [CrossRef]
- Manz, C.; Adamčík, S.; Looney, B.P.; Corrales, A.; Ovrebo, C.; Adamčíková, K.; Hofmann, T.A.; Hampe, F.; Piepenbring, M. Four new species of Russula subsection Roseinae from tropical montane forests in western Panama. PLoS ONE 2021, 16, e0257616. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, J.; Han, Y.-X.; Xue, R.; Su, L.-J.; Yu, T.-J.; Tang, L.-P. Russula rubrosquamosa (Russulaceae, Russulales), a new species from southwestern China. Mycoscience 2024, 65, 162–172. [Google Scholar] [CrossRef]
- Laurent-Webb, L.; Rech, P.; Bourceret, A.; Chaumeton, C.; Deveau, A.; Genola, L.; Januario, M.; Petrolli, R.; Selosse, M.A. Endophytic and ectomycorrhizal, an overlooked dual ecological niche? Insights from natural environments and Russula species. bioRxiv 2024. [Google Scholar] [CrossRef]
- Hughes, K.W.; Franklin, J.A.; Schweitzer, J.; Kivlin, S.N.; Case, A.; Aldrovandi, M.; Matheny, P.B.; Miller, A.N. Post-fire Quercus mycorrhizal associations are dominated by Russulaceae, Thelephoraceae, and Laccaria in the southern Appalachian Mountains. Mycol. Prog. 2025, 24, 16. [Google Scholar] [CrossRef]
- Adamčík, S.; Carteret, X.; Buyck, B. Type Studies on Some Russula Species Described by CH Peck. Cryptogam. Mycol. 2013, 34, 367–391. [Google Scholar] [CrossRef]
- Looney, B.P. Molecular annotation of type specimens of Russula species described by W.A. Murrill from the southeast United States. Mycotaxon 2015, 129, 255–268. [Google Scholar] [CrossRef]
- Xie, X.-C.; Buyck, B.; Song, Y. Species of Russula subgenera Archaeae, Compactae and Brevipedum (Russulaceae, Basidiomycota) from Dinghushan Biosphere Reserve. Eur. J. Taxon. 2023, 864, 28–63. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.-Y.; Yu, J.-L.; Yuan, R.; Li, F. Phylogenetic and morphological evidence for four new species of Russula (Russulaceae, Basidiomycota) from northwestern China. Eur. J. Taxon. 2024, 958, 48–76. [Google Scholar] [CrossRef]
- Adamčík, S.; Looney, B.; Caboň, M.; Jančovičová, S.; Adamčíková, K.; Avis, P.G.; Barajas, M.; Bhatt, R.P.; Corrales, A.; Das, K.; et al. The quest for a globally comprehensible Russula language. Fungal Divers. 2019, 99, 369–449. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, G.-Q.; Wang, Q.-T.; Guo, M.-J.; Zhuo, L.; Yan, H.-F.; Li, G.-J.; Hou, C.-L. Morphological Characteristics and Phylogeny Reveal Six New Species in Russula Subgenus Russula (Russulaceae, Russulales) from Yanshan Mountains, North China. J. Fungi 2022, 8, 1283. [Google Scholar] [CrossRef] [PubMed]
- Melera, S.; Ostellari, C.; Roemer, N.; Avis, P.G.; Tonolla, M.; Barja, F.; Narduzzi-Wicht, B. Analysis of morphological, ecological and molecular characters of Russula pectinatoides Peck and Russula praetervisa Sarnari, with a description of the new taxon Russula recondita Melera & Ostellari. Mycol. Prog. 2017, 16, 117–134. [Google Scholar] [CrossRef]
- Roy, N.; Chattopadhyay, P.; Dutta, A.K. A new species of Russula subg. Brevipes (Russulaceae) from the lateritic regions of West Bengal, India. N. Z. J. Bot. 2024, 63, 331–341. [Google Scholar] [CrossRef]
- Buyck, B.; Horak, E.; Cooper, J.A.; Song, Y. Russula (Basidiomycota, Russulales, Russulaceae) Subsection Roseinae “Down Under”. Cryptogam. Mycol. 2024, 45, 101–126. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Mi, F.; Tang, X.; He, X.; Cao, Y.; Liu, C.; Yang, D.; Dong, J.; Zhang, K.; et al. Recent advances in population genetics of ectomycorrhizal mushrooms Russula spp. Mycology 2015, 6, 110–120. [Google Scholar] [CrossRef]
- Caboň, M.; Eberhardt, U.; Looney, B.; Hampe, F.; Kolařík, M.; Jančovičová, S.; Verbeken, A.; Adamčík, S. New insights in Russula subsect. Rubrinae: Phylogeny and the quest for synapomorphic characters. Mycol. Prog. 2017, 16, 877–892. [Google Scholar] [CrossRef]
- Elliott, T.; Trappe, J. A worldwide nomenclature revision of sequestrate Russula species. Fungal Syst. Evol. 2018, 1, 229–242. [Google Scholar] [CrossRef]
- De Lange, R.; Adamčík, S.; Adamčíkova, K.; Asselman, P.; Borovička, J.; Delgat, L.; Hampe, F.; Verbeken, A. Enlightening the black and white: Species delimitation and UNITE species hypothesis testing in the Russula albonigra species complex. IMA Fungus 2021, 12, 20. [Google Scholar] [CrossRef]
- Looney, B.P.; Manz, C.; Matheny, P.B.; Adamčík, S. Systematic revision of the Roseinae clade of Russula, with a focus on eastern North American taxa. Mycologia 2022, 114, 270–302. [Google Scholar] [CrossRef] [PubMed]
- Nurhayat, O.D.; Putra, I.P.; Riffiani, R.; Taridala, S.A.A.; Arif, Z. Scrutinize the Taxonomical Identity of Green Edible Russula from Sulawesi (Indonesia). HAYATI J. Biosci. 2025, 32, 436–444. [Google Scholar] [CrossRef]
- Wang, X.H.; Yang, Z.L.; Li, Y.C.; Knudsen, H.; Liu, P.G. Russula griseocarnosa sp. nov. (Russulaceae, Russulales), a commercially important edible mushroom in tropical China: Mycorrhiza, phylogenetic position, and taxonomy. Nova Hedwig. 2009, 88, 269–282. [Google Scholar] [CrossRef]
- Li, G.J.; Liu, T.Z.; Li, S.M.; Zhao, S.Y.; Niu, C.Y.; Liu, Z.Z.; Xie, X.J.; Zhang, X.; Shi, L.Y.; Guo, Y.B.; et al. Four new species of Russula subsection Sardoninae from China. J. Fungi 2023, 9, 199. [Google Scholar] [CrossRef]
- Anh, C.N.; Chi, N.M.; Dell, B. Nutritional value of edible Russula griseocarnosa in Vietnam. Asian J. Agric. Rural. Dev. 2024, 14, 87–94. [Google Scholar] [CrossRef]
- Anh, C.N.; Chi, N.M.; Kiet, T.T.; Ha, N.T.N.; Dell, B. Harvest and trade of wild edible Russula griseocarnosa in North Vietnam. Asian J. Agric. Rural. Dev. 2024, 14, 128–139. [Google Scholar] [CrossRef]
- Cao, B.; Li, G.; Zhao, R. Species diversity and geographic components of Russula from the Greater and Lesser Khinggan Mountains. Biodivers. Sci. 2019, 27, 854. [Google Scholar]
- Haro-Luna, M.X.; Ruan-Soto, F.; Guzmán-Dávalos, L. Traditional knowledge, uses, and perceptions of mushrooms among the Wixaritari and mestizos of Villa Guerrero, Jalisco, Mexico. IMA Fungus 2019, 10, 16. [Google Scholar] [CrossRef]
- Pérez-Moreno, J.; Guerin-Laguette, A.; Rinaldi, A.C.; Yu, F.; Verbeken, A.; Hernández-Santiago, F.; Martínez-Reyes, M. Edible mycorrhizal fungi of the world: What is their role in forest sustainability, food security, biocultural conservation and climate change? Plants People Planet 2021, 3, 471–490. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Daba, G.M. Bioactive potential of some fascinating edible mushrooms Macrolepiota, Russula, Amanita, Vovariella and Grifola as a treasure of multipurpose therapeutic natural product. J. Mycol. 2022, 5, 1–8. [Google Scholar]
- On-Nom, N.; Suttisansanee, U.; Chathiran, W.; Charoenkiatkul, S.; Thiyajai, P.; Srichamnong, W. Nutritional Security: Carbohydrate Profile and Folk Remedies of Rare Edible Mushrooms to Diversifying Food and Diet: Thailand Case Study. Sustainability 2023, 15, 14034. [Google Scholar] [CrossRef]
- Li, G.J.; Li, S.F.; Wen, H.A. The Russula species resource and its economic values of China. Acta Edulis Fungi 2010, 17, 155–160. [Google Scholar]
- Li, F.; Deng, Q.-L. Three new species of Russula from South China. Mycol. Prog. 2018, 17, 1305–1321. [Google Scholar] [CrossRef]
- Kostić, M.; Ivanov, M.; Fernandes, Â.; Pinela, J.; Calhelha, R.C.; Glamočlija, J.; Barros, L.; Ferreira, I.C.F.R.; Soković, M.; Ćirić, A. Antioxidant Extracts of Three Russula Genus Species Express Diverse Biological Activity. Molecules 2020, 25, 4336. [Google Scholar] [CrossRef]
- Li, G.-J.; Li, S.-M.; Buyck, B.; Zhao, S.-Y.; Xie, X.-J.; Shi, L.-Y.; Deng, C.-Y.; Meng, Q.-F.; Sun, Q.-B.; Yan, J.-Q.; et al. Three new Russula species in sect. Ingratae (Russulales, Basidiomycota) from southern China. MycoKeys 2021, 84, 103–139. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, M.; Keyhani, N.O.; Wu, Z.; Lv, H.; Heng, Z.; Chen, R.; Dang, Y.; Yang, C.; Chen, J.; et al. Three New Species of Russulaceae (Russulales, Basidiomycota) from Southern China. J. Fungi 2024, 10, 70. [Google Scholar] [CrossRef]
- Khatua, S.; Dutta, A.K.; Acharya, K. Prospecting Russula senecis: A delicacy among the tribes of West Bengal. PeerJ 2015, 3, e810. [Google Scholar] [CrossRef]
- Khatua, S.; Acharya, K. Crude polysaccharides from two Russuloid myco-food potentiates murine macrophage by tuning TLR/NF-κB pathway. In Biotechnology and Biological Sciences; CRC Press: Boca Raton, FL, USA, 2019; pp. 281–286. [Google Scholar]
- Atri, N.S.; Mridu, M. Mushrooms—Some ethnomycological and sociobiological aspects. Kavaka 2018, 51, 11–19. [Google Scholar]
- Renthlei, L.; Lalhlenmawia, H.; Mishra, B.P.; Zothanzama, J. Proximate composition and micro-nutritional value of three Russula species from Mizoram, India. Sci. Vis. 2024, 24, 24–30. [Google Scholar] [CrossRef]
- Balkrishna, A.A.; Sharma, N.; Srivastava, D.; Chaudhary, P.; Arya, V. Medicinal Marvels: A Comprehensive Study at the Nutritional and Therapeutic Potential of Russula Mushrooms. Curr. Res. Environ. Appl. Mycol. J. Fungal Biol. 2024, 14, 71–88. [Google Scholar] [CrossRef]
- Arya, A. Beauty, Diversity, and Utility of Mushrooms on Postage Stamps. In Biology, Cultivation and Applications of Mushrooms; Springer: Singapore, 2022; pp. 403–432. [Google Scholar]
- Cheng, Y.; Gan, J.; Yan, B.; Wang, P.; Wu, H.; Huang, C. Polysaccharides from Russula: A review on extraction, purification, and bioactivities. Front. Nutr. 2024, 11, 1406817. [Google Scholar] [CrossRef] [PubMed]
- Sanmeea, R.; Dellb, B.; Lumyongc, P.; Izumorid, K.; Lumyong, S. Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem. 2003, 82, 527–532. [Google Scholar] [CrossRef]
- Mallick, S.; Dutta, A.; Dey, S.; Ghosh, J.; Mukherjee, D.; Sultana, S.S.; Mandal, S.; Paloi, S.; Khatua, S.; Acharya, K.; et al. Selective inhibition of Leishmania donovani by active extracts of wild mushrooms used by the tribal population of India: An in vitro exploration for new leads against parasitic protozoans. Exp. Parasitol. 2014, 138, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Niazi, A.R.; Shafique, M.; Imran, M.; Khalid, A.N. Evaluation of Mycochemical Analysis and In Vitro Biological Activities of Some Russula Species (Agaricomycetes) from Pakistan. Int. J. Med. Mushrooms 2021, 23, 35–43. [Google Scholar] [CrossRef]
- Manassila, M.; Sooksa-Nguan, T.; Boonkerd, N.; Rodtong, S.; Teaumroong, N. Phylogenetic diversity of wild edible Russula from northeastern Thailand on the basis of internal transcribed spacer sequence. Sci. Asia 2005, 31, 323–328. [Google Scholar] [CrossRef]
- Quiñónez-Martínez, M.; Ruan-Soto, F.; Aguilar-Moreno, I.E.; Garza-Ocañas, F.; Lebgue-Keleng, T.; Lavín-Murcio, P.A.; Enríquez-Anchondo, I.D. Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. J. Ethnobiol. Ethnomedicine 2014, 10, 67. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chu, Q.; Jia, R.; Chen, W.; Wang, Y.; Yu, X.; Zheng, X. Russula alutacea Fr. polysaccharide ameliorates inflammation in both RAW264.7 and zebrafish (Danio rerio) larvae. Int. J. Biol. Macromol. 2020, 145, 740–749. [Google Scholar] [CrossRef]
- Khatua, S.; Sen Gupta, S.; Ghosh, M.; Tripathi, S.; Acharya, K. Exploration of nutritional, antioxidative, antibacterial and anticancer status of Russula alatoreticula: Towards valorization of a traditionally preferred unique myco-food. J. Food Sci. Technol. 2021, 58, 2133–2147. [Google Scholar] [CrossRef]
- Khatua, S.; Acharya, K. Alkali treated antioxidative crude polysaccharide from Russula alatoreticula potentiates murine macrophages by tunning TLR/NF-κB pathway. Sci. Rep. 2019, 9, 1713. [Google Scholar] [CrossRef]
- Nandi, A.K.; Samanta, S.; Sen, I.K.; Devi, K.S.P.; Maiti, T.K.; Acharya, K.; Islam, S.S. Structural elucidation of an immunoenhancing heteroglycan isolated from Russula albonigra (Krombh.) Fr. Carbohydr. Polym. 2013, 94, 918–926. [Google Scholar] [CrossRef]
- Nandi, A.K.; Samanta, S.; Maity, S.; Sen, I.K.; Khatua, S.; Devi, K.S.P.; Acharya, K.; Maiti, T.K.; Islam, S.S. Antioxidant and immunostimulant β-glucan from edible mushroom Russula albonigra (Krombh.) Fr. Carbohydr. Polym. 2013, 99, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Tapwal, A.; Pandey, S.; Rishi, R.; Mishra, G.; Giri, K. Six unrecorded species of Russula (Russulales) from Nagaland, India and their nutrient composition. Nusant. Biosci. 2014, 6, 33–38. [Google Scholar] [CrossRef]
- Clericuzio, M.; Cassino, C.; Corana, F.; Vidari, G. Terpenoids from Russula lepida and R. amarissima (Basidiomycota, Russulaceae). Phytochemistry 2012, 84, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; He, Y.; Liang, Z.; Zhou, W.; Niu, T. Sulfation of (1→3)-β-d-glucan from the fruiting bodies of Russula virescens and antitumor activities of the modifiers. Carbohydr. Polym. 2009, 77, 628–633. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Liu, J.-C.; Yang, X.-D.; Kennedy, J.F. Purification, structural analysis and hydroxyl radical-scavenging capacity of a polysaccharide from the fruiting bodies of Russula virescens. Process. Biochem. 2010, 45, 874–879. [Google Scholar] [CrossRef]
- Ohtsuka, S.; Ueno, S.; Yoshikumi, C.; Hirose, F.; Ohmura, Y.; Wada, T.; Fujii, T.; Takahashi, E. Polysaccharides Having an Anticarcinogenic Effect and a Method of Producing Them from Species of Basidiomycetes. UK Patent 1331513, 26 September 1973. [Google Scholar]
- Li, Y.-M.; Zhong, R.-F.; Chen, J.; Luo, Z.-G. Structural characterization, anticancer, hypoglycemia and immune activities of polysaccharides from Russula virescens. Int. J. Biol. Macromol. 2021, 184, 380–392. [Google Scholar] [CrossRef]
- Çayan, F.; Deveci, E.; Tel-Çayan, G.; Duru, M.E. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J. Food Meas. Charact. 2020, 14, 1690–1698. [Google Scholar] [CrossRef]
- Suri, O.P.; Shah, R.; Satti, N.K.; Suri, K.A. Russulactarorufin, a lactarane skeleton sesquiterpene from Russula brevipes. Phytochemistry 1997, 45, 1453–1455. [Google Scholar] [CrossRef]
- Shomali, N.; Onar, O.; Alkan, T.; Demirtaş, N.; Akata, I.; Yildirim, Ö. Investigation of the polyphenol composition, biological activities, and detoxification properties of some medicinal mushrooms from Turkey. Turk. J. Pharm. Sci. 2019, 16, 155–160. [Google Scholar] [CrossRef]
- Sutachit, S.; Sutachit, M. Medicinal Mushrooms: Past, Presentand Future. Ukr. Bot. J 2002, 5, 499–524. [Google Scholar]
- Jaengklang, C.; Jarikasem, S.; Sithisarn, P.; Klungsupya, P. Determination on antioxidant capacity and TLC analysis of ten Thai Russula mushroom extracts. Isan J. Pharm. Sci. 2015, 10, 241–250. [Google Scholar]
- Lee, P.-T.; Wu, M.-L.; Tsai, W.-J.; Ger, J.; Deng, J.-F.; Chung, H.-M. Rhabdomyolysis: An unusual feature with mushroom poisoning. Am. J. Kidney Dis. 2001, 38, E17. [Google Scholar] [CrossRef] [PubMed]
- Sanon, E.; OuÃ, J.C.; Ilboudo, S.; Guissou, M.K.; Guissou, P.I.; Sankara, P. Phytochemical screening and amino acids analysis of mushrooms from Burkina Faso. Afr. J. Biotechnol. 2017, 16, 1338–1344. [Google Scholar]
- Niazi, A.R.; Shafique, M.; Imran, M.; Latif, S. Estimation of some trace metals, bioactive compounds, curative antimicrobial and antioxidant agents from Russula foetens and Russula cf. foetentoides. Pak. J. Pharm. Sci. 2022, 35, 1371–1378. [Google Scholar] [PubMed]
- Hearst, M.; Nelson, D.; McCollum, G.; Ballard, L.M.; Millar, B.C.; Moore, S.; McClean, S.; Moore, J.E.; Rao, J.R. Antimicrobial properties of protein extracts from wild mushroom fungi and native plant species against hospital pathogens. J. Pharmacogn. Phytother. 2010, 2, 103–107. [Google Scholar]
- Khatua, S.; Dutta, A.K.; Chandra, S.; Paloi, S.; Das, K.; Acharya, K. Introducing a novel mushroom from mycophagy community with emphasis on biomedical potency. PLoS ONE 2017, 12, e0178050. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kaneko, A.; Matsumoto, Y.; Hama, H.; Arihara, S. Russujaponols A− F, illudoid sesquiterpenes from the fruiting body of Russula japonica. J. Nat. Prod. 2006, 69, 1267–1270. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Matsumoto, Y.; Hama, H.; Tanaka, M.; Zhai, H.; Fukuyama, Y.; Arihara, S.; Hashimoto, T. Russujaponols G-L, illudoid sesquiterpenes, and their neurite outgrowth promoting activity from the fruit body of Russula japonica. Chem. Pharm. Bull. 2009, 57, 311–314. [Google Scholar] [CrossRef]
- Chelela, B.L.; Chacha, M.; Matemu, A. Chemical composition of ethanolic extracts of some wild mushrooms from Tanzania and their medicinal potentials. Int. J. Med. Mushrooms 2016, 18, 457–464. [Google Scholar] [CrossRef]
- Khatua, S.; Roy, T.; Acharya, K. Antioxidant and free radical scavenging capacity of phenolic extract from Russula laurocerasi. Asian J. Pharm. Clin. Res. 2013, 6, 156–160. [Google Scholar]
- Tan, J.W.; Dong, Z.J.; Du, Z.H.; Liu, J.K. Lepidolide, a novel seco-ring-A cucurbitane triterpenoid from Russula lepida (Basidiomycetes). Z. Naturforsch. C 2000, 57, 963–965. [Google Scholar] [CrossRef]
- Tan, J.; Dong, Z.; Hu, L.; Liu, J. Lepidamine, the first aristolane-type sesquiterpene alkaloid from the basidiomycete Russula lepida. Helvetica Chim. Acta 2003, 86, 307–309. [Google Scholar] [CrossRef]
- Maarisit, W.; Yamazaki, H.; Kanno, S.-I.; Tomizawa, A.; Lee, J.-S.; Namikoshi, M. Protein tyrosine phosphatase 1B inhibitory properties of seco-cucurbitane triterpenes obtained from fruiting bodies of Russula lepida. J. Nat. Med. 2017, 71, 334–337. [Google Scholar] [CrossRef]
- Appolinaire, K.K.; Hubert, K.K.; Eugène, K.J.; Ahipo, D.E.; Lucien, K.P. Proximate composition, minerals and amino acids profiles of selected wild edible Russula species from Côte d’Ivoire. Turk. J. Agric.-Food Sci. Technol. 2016, 4, 882–886. [Google Scholar] [CrossRef]
- Joshi, M.; Pathania, P.; Sagar, A. Phytochemical analysis and in vitro antibacterial activity of Russula lepida and Pleurotus ostreatus from North West Himalayas. India. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 1032–1034. [Google Scholar]
- Zhang, G.; Sun, J.; Wang, H.; Ng, T. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 2010, 17, 775–781. [Google Scholar] [CrossRef]
- Oscar, J.G.; Kouamé, A.K.; Kouassi, H.K.; Eugène, J.P. Proximate composition and nutritional value of three edible mushrooms ectomycorrhizal (Russula mustelina, Russula delica and Russula lepida) from Côte d’Ivoire according to the maturity stages. World J. Adv. Res. Rev. 2019, 2, 21–30. [Google Scholar]
- Sontag, B.; Rüth, M.; Spiteller, P.; Arnold, N.; Steglich, W.; Reichert, M.; Bringmann, G. Chromogenic meroterpenoids from the mushrooms Russula ochroleuca and R. viscida. Eur. J. Org. Chem. 2006, 2006, 1023–1033. [Google Scholar] [CrossRef]
- Drewnowska, M.; Sąpór, A.; Jarzyńska, G.; Nnorom, I.C.; Sajwan, K.S.; Falandysz, J. Mercury in Russula mushrooms: Bioconcentration by yellow-ocher brittle gills Russula ochroleuca. J. Environ. Sci. Health Part A 2012, 47, 1577–1591. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Ng, T. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 2007, 28, 560–565. [Google Scholar] [CrossRef]
- Khatua, S.; Acharya, K. Cold alkali-extractable antioxidative polysaccharide from Russula pseudocyanoxantha (Agaricomycetes), a novel mushroom, stimulates immune responses in RAW264. 7 cells by regulating the TLR/NF-κB pathway. Int. J. Med. Mushrooms 2024, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Khatua, S.; Basak, G.; Acharya, K. Evaluation of an antioxidative polysaccharide fraction from Russula pseudocyanoxantha, a novel mushroom, as a strategy to enhance innate immunity. Lett. Appl. NanoBioSci. 2024, 13, 157. [Google Scholar] [CrossRef]
- Sterner, O.; Bergman, R.; Franzén, C.; Wickberg, B. New sesquiterpenes in a proposed Russulaceae chemical defense system. Tetrahedron Lett. 1985, 26, 3163–3166. [Google Scholar] [CrossRef]
- Yaoita, Y.; Hirao, M.; Kikuchi, M.; Machida, K. Three new lactarane sesquiterpenoids from the mushroom Russula sanguinea. Nat. Prod. Commun. 2012, 7, 1133–1135. [Google Scholar] [CrossRef]
- Khatua, S.; Acharya, K. Water soluble antioxidative crude polysaccharide from Russula senecis elicits TLR modulated NF-κB signaling pathway and pro-inflammatory response in murine macrophages. Front. Pharmacol. 2018, 9, 985. [Google Scholar] [CrossRef]
- Khatua, S.; Acharya, K. Antioxidative and antibacterial ethanol extract from a neglected indigenous myco-food suppresses Hep3B proliferation by regulating ROS-driven intrinsic mitochondrial pathway. Biointerface Res. Appl. Chem. 2020, 11, 11202–11220. [Google Scholar] [CrossRef]
- Khatua, S.; Acharya, K. Isolation of crude polysaccharides from Russula senecis (Agaricomycetes): Characterization, antioxidant activity, and immune-enhancing properties. Int. J. Med. Mushrooms 2021, 23, 47–57. [Google Scholar] [CrossRef]
- Trakulsrichai, S.; Jeeratheepatanont, P.; Sriapha, C.; Tongpoo, A.; Wananukul, W. Myotoxic Mushroom Poisoning in Thailand: Clinical Characteristics and Outcomes. Int. J. Gen. Med. 2020, 13, 1139–1146. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem. 2010, 119, 1443–1450. [Google Scholar] [CrossRef]
- Hearn, M.T.W.; Jones, E.R.H.; Pellatt, M.G.; Thaller, V.; Turner, J.L. Natural acetylenes. Part XLII. Novel C7, C8, C9, and C10 polyacetylenes from fungal cultures. J. Chem. Soc. Perkin Trans. 1973, 1, 2785–2788. [Google Scholar] [CrossRef]
- Stojanova, M.; Ðukić, D.; Stojanova, M.T.; Lalević, B.; Nazari, S.H.; Bogevska, Z. Determination of polysaccharide content of Agaricus macrosporus and Russula vesca mushroom extracts. In Proceedings of the 4th International Symposium: Modern Trends in Agricultural Production, Rural Development, Agro-economy, Cooperatives and Environmental Protection, Vrnjačka Banja, Serbia, 29–30 June 2022; pp. 477–482. [Google Scholar] [CrossRef]
- Chen, J.; Shen, C.; He, T.; Yan, S.F. Anticancer and immunoregulation activities of a polysaccharide from Russula vinosa. Mod. Food Sci. Technol. 2016, 32, 16–21. (In Chinese) [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish wild mushrooms as beta-glucan sources. Int. J. Environ. Res. Public Health 2020, 17, 7299. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tian, G.; Yan, H.; Geng, X.; Cao, Q.; Wang, H.; Ng, T.B. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the wild edible mushroom Russula vinosa Lindblad. J. Agric. Food Chem. 2014, 62, 8858–8866. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kawagishi, H. Plant growth regulators from mushrooms. J. Antibiot. 2020, 73, 657–665. [Google Scholar] [CrossRef]
- Yan, B.; Wang, R.; Fu, C.; Huang, C.; Lai, C.; Yong, Q. Procuring the polysaccharides with anti-inflammatory bioactivity from Russula vinosa Lindblad by citric acid extraction. Food Biosci. 2024, 59, 104079. [Google Scholar] [CrossRef]
- Yan, B.; Wu, H.; Zeng, K.; Huang, C.; Lai, C.; Yong, Q. Structural characterization and immunomodulatory activities of polysaccharides from Russula vinosa Lindblad extracted using KOH. J. Bioresour. Bioprod. 2025, 10, 1–9. [Google Scholar] [CrossRef]
- Panda, M.K.; Das, S.K.; Mohapatra, S.; Debata, P.R.; Tayung, K.; Thatoi, H. Mycochemical composition, bioactivities, and phylogenetic placement of three wild edible Russula species from Northern Odisha, India. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2021, 155, 1041–1055. [Google Scholar] [CrossRef]
- Lovy, A.; Knowles, B.; Labbe, R.; Nolan, L. Activity of edible mushrooms against the growth of human T4 leukemic cancer cells, HeLa cervical cancer cells, and Plasmodium falciparum. J. Herbs Spices Med. Plants 2000, 6, 49–57. [Google Scholar] [CrossRef]
- Volcão, L.M.; Fernandes, C.L.F.; Ribeiro, A.C.; Brum, R.d.L.; Eslabão, C.F.; Badiale-Furlong, E.; Ramos, D.F.; Bernardi, E.; Júnior, F.M.R.d.S. Bioactive extracts of Russula xerampelina and Suillus granulatus in the in vitro control of Pseudomonas aeruginosa phytopathogenic. South Afr. J. Bot. 2021, 140, 218–225. [Google Scholar] [CrossRef]
- Wood, W.F.; Largent, D.L.; DeShazer, D.A. The cooked shellfish-odour of the mushroom Russula xerampelina. Biosyst. Ecol. 2024, 3, 1–3. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, Q.; Rong, C.; Wang, S.; Zhao, Z.; Liu, Y.; Xu, J. Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products. J. Fungi 2020, 6, 269. [Google Scholar] [CrossRef] [PubMed]
- Khatua, S.; Acharya, K. Exploring the Chemical Composition and Bioactivity of Ethanol Extract from Russula pseudocyanoxantha (Agaricomycetes), a Novel Mushroom of Tribal Preference in India. Int. J. Med. Mushrooms 2022, 24, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, H.; She, Z.; Lu, H.; Wen, M.; Wang, X.; Wei, Z.; Yang, S.; Guan, X.; Tong, Y.; et al. Phytochemical and medicinal profiling of Russula vinosa Lindbl (RVL) using multiomics techniques. LWT 2024, 192, 115723. [Google Scholar] [CrossRef]
- Hu, X.; Xu, B. Chemical compositions and health promoting effects of edible mushrooms from genus Russula. Phytomedicine Plus 2024, 6, 100677. [Google Scholar] [CrossRef]
- Chun, M.S.; Min, M.K.; Ryu, J.H.; Lee, D.S.; Lee, M.J.; Hyun, T.; Shon, S.W. Mortality Cases of Mushroom Poisoning with Russula subnigricans. Wilderness Environ. Med. 2023, 34, 372–376. [Google Scholar] [CrossRef]
- Parnmen, S.; Nooron, N.; Pringsulaka, O.; Binchai, S.; Rangsiruji, A. Discrimination of lethal Russula subnigricans from wild edible and morphologically similar mushrooms in the genus Russula using SCAR markers. Food Control. 2024, 158, 110239. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Akata, I.; Tepe, B. Metal concentration and health risk assessment of eight Russula mushrooms collected from Kizilcahamam-Ankara, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 15743–15754. [Google Scholar] [CrossRef]
- Zhang, G.; Geng, H.; Zhao, C.; Li, F.; Li, Z.-F.; Lun, B.; Wang, C.; Yu, H.; Bie, S.; Li, Z. Chemical Constituents with Inhibitory Activity of NO Production from a Wild Edible Mushroom, Russula vinosa Lindbl, May Be Its Nutritional Ingredients. Molecules 2019, 24, 1305. [Google Scholar] [CrossRef]
- Khatua, S.; Chandra, S.; Acharya, K. Hot alkali-extracted antioxidative crude polysaccharide from a novel mushroom enhances immune response via TLR-mediated NF-κB activation: A strategy for full utilization of a neglected tribal food. J. Food Biochem. 2021, 45, e13594. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, M.; Kong, L.; Wang, R.; Njateng, G.S.S.; Cheng, G. Phytochemical investigation on the fruiting body of Russula aruea Pers. Biochem. Syst. Ecol. 2019, 86, 103912. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.N.; Chen, T.; Tang, Q.Y.; Duan, Q.P.; Wang, B.J.; Yang, Q.S. Research on acetylation and antioxidant activity of Russula alutacea Fr. water-soluble polysaccharides. Bulg. Chem. Commun. 2017, 49, 59–63. [Google Scholar]
- Wang, B.; Yang, Q.; Chen, T.; Qin, X.; Tang, Q.; Xiao, Y.; Yang, Y.; Zhao, Y. Preparation and in vitro antioxidant activity of sulfated water-insoluble polysaccharides from Russula alutacea Fr. Southwest China J. Agric. Sci. 2017, 30, 2673–2679. [Google Scholar]
- Liu, Y.Z.; Gan, Y.K.; Chen, X.J.; Ming, T.H.; Zeng, X.Y. Comparison of Bacteriostatic Effects between Extracts from Russula and Cyclobalanopsis glauca. Food Sci. 2011, 32, 36–38. (In Chinese) [Google Scholar]
- Chatterjee, S.; Datta, R.; Dey, A.; Pradhan, P.; Acharya, K. In vivo hepatoprotective activity of ethanolic extract of Russula albonigra against carbon tetrachloride-induced hepatotoxicity in mice. Res. J. Pharm. Technol. 2012, 5, 1034–1038. [Google Scholar]
- He, T. Study on Structure and Bioactivity of Polysaccarides from Russula griseocarnosa. Master’s Thesis, South China University of Technology, Guangzhou, China, 2015. (In Chinese). [Google Scholar]
- Chen, Q.; Qi, C.; Peng, G.; Liu, Y.; Zhang, X.; Meng, Z. Immune-enhancing effects of a polysaccharide PRG1-1 from Russula griseocarnosa on RAW264.7 macrophage cells via the MAPK and NF-κB signalling pathways. Food Agric. Immunol. 2018, 29, 833–844. [Google Scholar] [CrossRef]
- Liu, Y.; Yong, T.; Cai, M.; Wu, X.; Guo, H.; Xie, Y.; Hu, H.; Wu, Q. Exploring the Potential of Russula griseocarnosa: A Molecular Ecology Perspective. Agriculture 2024, 14, 879. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Li, Y.; Li, L.; Zhang, Y.; Wang, C.; Wang, N.; Wang, D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr. Polym. 2024, 339, 122214. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Li, Y.; Li, L.; Zhang, Y.; Zhou, A.; Wang, D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int. J. Biol. Macromol. 2024, 263, 130355. [Google Scholar] [CrossRef]
- Chen, X.H.; Xia, L.X.; Zhou, H.B.; Qiu, G.Z. Chemical Composition and Antioxidant Activities of Russula griseocarnosa sp. nov. J. Agric. Food Chem. 2010, 58, 6966–6971. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.; Liu, M.; Chen, Q.; Jiao, Y.; Meng, Z. Optimization extraction and bioactivities of polysaccharide from wild Russula griseocarnosa. Saudi Pharm. J. 2017, 25, 523–530. [Google Scholar] [CrossRef]
- Sun, Y.; He, H.; Wang, Q.; Yang, X.; Jiang, S.; Wang, D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers 2022, 14, 4454. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Meng, Z. Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. Int. J. Biol. Macromol. 2018, 109, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Xiong, Q.; Yu, Y.; Peng, L. Sulfated modification, characterization, and potential bioactivities of polysaccharide from the fruiting bodies of Russula virescens. Int. J. Biol. Macromol. 2020, 154, 1438–1447. [Google Scholar] [CrossRef]
- Yu, G.; Liu, Y.; Gao, Y.; Jia, X.; Ma, R.; Li, T.; Feng, W.; Xu, C. Structure Characterization and Antioxidant Properties of a Triple Helix Galactoglucomannan from the Fruiting Bodies of Russula virescens (Agaricomycetes). Int. J. Med. Mushrooms 2025, 27, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.; Wang, L.; Walid, E.; Zhang, H. In Vitro Antioxidant and Anti-Proliferation Activities of Polysaccharides from Various Extracts of Different Mushrooms. Int. J. Mol. Sci. 2012, 13, 5801–5817. [Google Scholar] [CrossRef]
- Yimeng, L.I.; Wenzhi, L.I.; Ruifang, Z.H.; Ruihai, L.I.; Jian, C.H. Study on extraction process optimization, physicochemical properties, and antioxidant activity of polysaccharide from Russula adusta (Pers.) Fr. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2020, 41, 19–26. [Google Scholar]
- Alkan, S.; Uysal, A.; Kasik, G.; Vlaisavljevic, S.; Berežni, S.; Zengin, G. Chemical Characterization, Antioxidant, Enzyme Inhibition and Antimutagenic Properties of Eight Mushroom Species: A Comparative Study. J. Fungi 2020, 6, 166. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Choonpicharn, S.; Tanreuan, K.; Lumyong, S. Characterization of Polysaccharides from Wild Edible Mushrooms from Thailand and Their Antioxidant, Antidiabetic, and Antihypertensive Activities. Int. J. Med. Mushrooms 2020, 22, 221–233. [Google Scholar] [CrossRef]
- Okwulehie, I.C.; Ogoke, J.A. Bioactive, nutritional and heavy metal constituents of some edible mushrooms found in Abia State of Nigeria. Int. J. Appl. Microbiol. Biotechnol. Res. 2013, 1, 7–15. [Google Scholar]
- Gao, J.-M.; Dong, Z.-J.; Liu, J.-K. A new ceramide from the basidiomycete Russula cyanoxantha. Lipids 2001, 36, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Clericuzio, M.; Vizzini, A. Terpenoids of Russula (Basidiomycota), with Emphasis on Cucurbitane Triterpenes. In Advances in Macrofungi; CRC Press: Boca Raton, FL, USA, 2019; pp. 254–277. [Google Scholar]
- Yaoita, Y.; Ono, H.; Kikuchi, M. A New Norsesquiterpenoid from Russula delica F R. Chem. Pharm. Bull. 2003, 51, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Yaoita, Y.; Watanabe, N.; Takano, D.; Kikuchi, M. Sesquiterpenoids from the fruit bodies of Russula delica. Nat. Med. 2004, 58, 235. [Google Scholar]
- Wang, X.-N.; Shen, J.-H.; Du, J.-C.; Liu, J.-K. Marasmane Sesquiterpenes Isolated from Russula foetens. J. Antibiot. 2006, 59, 669–672. [Google Scholar] [CrossRef]
- Daniewski, W.M.; Gumułka, M.; Ptaszyńska, K.; Skibicki, P.; Krajewski, J.; Gluziński, P. Marasmane lactones from Lactarius vellereus. Phytochemistry 1992, 31, 913–915. [Google Scholar] [CrossRef]
- Trudeau, S.; Morgan, J.B.; Shrestha, M.; Morken, J.P. Rh-Catalyzed Enantioselective Diboration of Simple Alkenes: Reaction Development and Substrate Scope. J. Org. Chem. 2005, 70, 9538–9544. [Google Scholar] [CrossRef]
- Matsuura, M.; Saikawa, Y.; Inui, K.; Nakae, K.; Igarashi, M.; Hashimoto, K.; Nakata, M. Identification of the toxic trigger in mushroom poisoning. Nat. Chem. Biol. 2009, 5, 465–467. [Google Scholar] [CrossRef]
- Kim, K.H.; Noh, H.J.; Choi, S.U.; Park, K.M.; Seok, S.-J.; Lee, K.R. Russulfoen, a new cytotoxic marasmane sesquiterpene from Russula foetens. J. Antibiot. 2010, 63, 575–577. [Google Scholar] [CrossRef]
- Tan, J.-W.; Dong, Z.-J.; Liu, J.-K. New terpenoids from basidiomycetes Russula lepida. Helv. Chim. Acta 2000, 83, 3191–3197. [Google Scholar] [CrossRef]
- Tan, J.W.; Xu, J.B.; Dong, Z.J.; Luo, D.Q.; Liu, J.K. Nigricanin, the first ellagic acid derived metabolite from the basidiomycete Russula nigricans. Helv. Chim. Acta 2004, 87, 1025–1028. [Google Scholar] [CrossRef]
- Malagòn, O.; Porta, A.; Clericuzio, M.; Gilardoni, G.; Gozzini, D.; Vidari, G. Structures and biological significance of lactarane sesquiterpenes from the European mushroom Russula nobilis. Phytochemistry 2014, 107, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Yang, G.H.; Wu, S.H.; Wang, S.F.; Li, G.Y.; Xu, W.K.; Meng, L.S.; Li, Z.Y. Chemical studies on Russula rosacea. Acta Pharm. Sin. 1994, 29, 39–43. [Google Scholar]
- Gilardoni, G.; Malagòn, O.; Tosi, S.; Clericuzio, M.; Vidari, G. Lactarane sesquiterpenes from the European mushrooms Lactarius aurantiacus, L. subdulcis, and Russula sanguinaria. Nat. Prod. Commun. 2014, 9, 1934578X1400900309. [Google Scholar] [CrossRef]
- Matsuzaki, N.; Wu, J.; Kawaide, M.; Choi, J.-H.; Hirai, H.; Kawagishi, H. Plant growth regulatory compounds from the mushroom Russula vinosa. Mycoscience 2016, 57, 404–407. [Google Scholar] [CrossRef]
- Xu, M.-L.; Choi, J.-Y.; Jeong, B.-S.; Li, G.; Lee, K.-R.; Lee, C.-S.; Woo, M.-H.; Lee, E.S.; Jahng, Y.; Chang, H.-W.; et al. Cytotoxic constituents isolated from the fruit bodies of Hypsizigus marmoreus. Arch. Pharmacal Res. 2007, 30, 28–33. [Google Scholar] [CrossRef]
- Klungsupya, P. Apoptotic activity of ethanolic extract of Thai indigenous mushroom Russula alboareolata against L929, HeLa and HepG2 cells by MMP assay. Thai J. Pharm. Sci. (TJPS) 2016, 40, 1–9. [Google Scholar]
- Klungsupya, P.; Muangman, T.; Taengphan, W.; Pradermwong, K. Biological activities and phytochemical constituent assessments of Thai Russula mushroom extracts. Thai J. Pharm. Sci. (TJPS) 2018, 42, 46–50. [Google Scholar]
- Taengphan, W.; Klungsupya, P.; Maungman, T.; Pethtubtim, I.; Pradermwong, K.; Jangklang, C. Anti-inflammation and active compounds of four indigenous Thai Russula mushrooms. Biol. Chem. Res. 2019, 6, 155–162. [Google Scholar]
- Khatua, S.; Sikder, R.; Acharya, K. Chemical and biological studies on a recently discovered edible mushroom: A report. FABAD J. Pharm. Sci. 2018, 43, 241–247. [Google Scholar]
- Khatua, S.; Chandra, S.; Acharya, K. Expanding knowledge on Russula alatoreticula, a novel mushroom from tribal cuisine, with chemical and pharmaceutical relevance. Cytotechnology 2019, 71, 245–259. [Google Scholar] [CrossRef]
- Prasad, R.; Varshney, V.K.; Harsh, N.S.K.; Kumar, M. Antioxidant Capacity and Total Phenolics Content of the Fruiting Bodies and Submerged Cultured Mycelia of Sixteen Higher Basidiomycetes Mushrooms from India. Int. J. Med. Mushrooms 2015, 17, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Puttaraju, N.G.; Venkateshaiah, S.U.; Dharmesh, S.M.; Urs, S.M.N.; Somasundaram, R. Antioxidant Activity of Indigenous Edible Mushrooms. J. Agric. Food Chem. 2006, 54, 9764–9772. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.P.; Sharma, R.; Khatua, S.; Acharya, K. Morphotaxonomy and comparative mycochemical study and antioxidant activity of hydromethanol, infusion and decoction extracts from Russula brevipes Peck. Indian Phytopathol. 2019, 72, 445–452. [Google Scholar] [CrossRef]
- Pacheco-Hernández, Y.; Villa-Ruano, N.; Lozoya-Gloria, E.; de Jesús Terán-Sánchez, E.; Becerra-Martínez, E. Revealing the 1H-NMR Profiling of Six Edible Mushrooms Consumed in the Northeastern Highlands of Puebla, Mexico. Chem. Biodivers. 2024, 10, e202301851. [Google Scholar] [CrossRef]
- Ye, M.; Jeon, Y.; Jin, H.; Kim, Y.; Lim, B. Russula cutefracta inhibits antigen-induced degranulation and Syk and MAPK phosphorylation in rat basophilic leukaemia cells. Allergol. Immunopathol. 2012, 40, 261–263. [Google Scholar] [CrossRef]
- Khan, F.; Chandra, R. Bioprospecting of Wild Mushrooms from India with Respect to Their Medicinal Aspects. Int. J. Med. Mushrooms 2019, 21, 181–192. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Y.; Li, S.; Zhang, G.; Wang, H.; Ng, T.B. An antiproliferative ribonuclease from fruiting bodies of the wild mushroom Russula delica. J. Microbiol. Biotechnol. 2010, 20, 693–699. [Google Scholar] [CrossRef]
- Panchak, L.V. Russulaceae family mushrooms lectins: Function, purification, structural features and possibilities of practical applications. Biotechnol. Acta 2019, 12, 29–38. [Google Scholar] [CrossRef]
- Türkoğlu, A.; Duru, M.E.; Mercan, N. Antioxidant and Antimicrobial Activity of Russula delica Fr: An Edidle Wild Mushroom. Eurasian J. Anal. Chem. 2007, 2, 54–67. [Google Scholar] [CrossRef]
- Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal. 2007, 20, 337–345. [Google Scholar] [CrossRef]
- Yaltirak, T.; Aslim, B.; Ozturk, S.; Alli, H. Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem. Toxicol. 2009, 47, 2052–2056. [Google Scholar] [CrossRef] [PubMed]
- Amabye, T.G. Antioxidant and Anti-inflammatory Properties of Cultivated Mushrooms Grown in Mekelle City Tigray Ethiopia. Int. J. Nutr. Food Sci. 2015, 4, 578–583. [Google Scholar] [CrossRef]
- Choocheep, K.; Nathip, N. Detection of a Non-animal Source of Glycosaminoglycans from Edible Mushrooms in Northern Thailand. Chiang Mai Univ. J. Nat. Sci. 2018, 17, 213–218. [Google Scholar] [CrossRef]
- Acay, H.; Baran, M. Fatty acid compositions of total lipid, phospholipid and triacylglycerol fractions of the wild edible mushroom Pleurotus ostreatus and Russula delica with cytotoxic activities on prostate carcinoma cell lines. Medicine 2019, 8, 736–740. [Google Scholar] [CrossRef]
- Choi, C.W.; Yoon, J.W.; Yon, G.H.; Kim, Y.S.; Ryu, S.Y.; Seok, S.J.; Kang, S.; Kim, Y.H. Multidrug resistance reversal activity of methanol extracts from basidiomycete mushrooms in cancer cells. Nat. Prod. Sci. 2012, 18, 239–243. [Google Scholar]
- Yamada, S.; Tanaka, M.; Miura, R.; Takeuchi, C.; Tu, Z.; Hu, D.; Matsuoka, K.; Sugawara, R.; Hoshibaa, T.; Yamaguchi, A. Anti-Inflammatory and Antimicrobial Activities of Aqueous Extracts of Wild Mushrooms from Japan. Int. J. Med. Mushrooms 2019, 21, 469–486. [Google Scholar] [CrossRef]
- Paul, C.; Das, N. Comparative study of bio-chemicals and antioxidant activities of two wild edible mushrooms Russula gnathangensis and Ramaria thindii from Sikkim Himalayas, India. Mushroom Res. 2021, 30, 41. [Google Scholar] [CrossRef]
- Lou, X.-H.; Gan, Y.-K.; Wang, L.-M.; Yan, L.; Yang, X. Protective effect of extract from Russula sp. on oxidative damage caused by formaldehyde. J. Toxicol. 2007, 21, 225–226. (In Chinese) [Google Scholar]
- Gan, Y.-K.; Chen, X.-J.; Wei, Q.-C.; Peng, S.-N.; Chen, L. The Influence of Temperature upon the Growth of the Natural Red Mushroom Hypha. J. Yulin Teach. Coll. (Nat. Sci.) 2007, 28, 58–60+64. (In Chinese) [Google Scholar]
- Gan, Y.-K.; Chen, X.-J.; Su, L.; He, Y. Effects of Aquatic Extraction Substance from Tenebrio molitor Linnaeus Feces on Mycelium Growth of Five Edible Fungi. J. Anhui Agric. Sci. 2008, 36, 11295–11296+11320. [Google Scholar]
- Dong, J.; Zhang, M.; Lu, L.; Sun, L.; Xu, M. Nitric oxide fumigation stimulates flavonoid and phenolic accumulation and enhances antioxidant activity of mushroom. Food Chem. 2012, 135, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Shen, X.; Chao, X.; Ho, C.C.; Cheng, X.L.; Zhang, Y.; Lin, R.C.; Du, K.J.; Luo, W.J.; Chen, J.Y.; et al. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol. Microbiol. 2020, 113, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Butkhup, L.; Samappito, W.; Jorjong, S. Evaluation of bio-activities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci. Biotechnol. 2018, 27, 193–202. [Google Scholar] [CrossRef]
- O’Callaghan, Y.C.; O’Brien, N.M.; Kenny, O.; Harrington, T.; Brunton, N.; Smyth, T.J. Anti-Inflammatory Effects of Wild Irish Mushroom Extracts in RAW264. 7 Mouse Macrophage Cells. J. Med. Food 2015, 18, 202–207. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, G.; Hur, H.; Lee, U.; Lee, T. Immuno-potentiating and Antitumor Effects against Mouse Sarcoma 180 by Crude Polysaccharides Extracted from Fruiting Body of Russula rosacea. Korean J. Mycol. 2008, 36, 84–92. [Google Scholar] [CrossRef]
- Yoon, K.N.; Lee, T.S. In vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and inhibition of nitric oxide production activities of methanol and hot water extracts of Russula rosacea mushroom. J. Mushroom 2015, 13, 1–10. [Google Scholar] [CrossRef]
- Takahashi, A.; Agatsuma, T.; Ohta, T.; Nunozawa, T.; Endo, T.; Nozoe, S. Russuphelins B, C, D, E and F, New Cytotoxic Substances from the Mushroom Russula subnigricans Hongo. Chem. Pharm. Bull. 1993, 41, 1726–1729. [Google Scholar] [CrossRef]
- Takahashi, A.; Agatsuma, T.; Matsuda, M.; Ohta, T.; Nunozawa, T.; Endo, T.; Nozoe, S. Russuphelin A, a New Cytotoxic Substane from the Mushroom Russula subnigricans Hongo. Chem. Pharm. Bull. 1992, 40, 3185–3188. [Google Scholar] [CrossRef]
- Adejumo, T.O.; Awosanya, O.B. Proximate and mineral composition of four edible mushroom species from South Western Nigeria. Afr. J. Biotechnol. 2005, 4, 1084–1088. [Google Scholar]
- Stojanova, M.; Djukic, D.; Veskovic-Moracanin, S.; Stojanova, M.T.; Mladenoska, I.; Limani-Bektashi, N. Determination of antioxidant potential of Agaricus macrosporus and Russula vesca mushroom extracts. In Proceedings of the III International Agricultural, Biological & Life Science Conference, Istanbul, Turkey, 15–17 October 2021. [Google Scholar]
- Zhang, H.; Li, C.; Lai, P.F.; Chen, J.; Xie, F.; Xia, Y.; Ai, L. Fractionation, chemical characterization and immunostimulatory activity of β-glucan and galactoglucan from Russula vinosa Lindblad. Carbohydr. Polym. 2021, 256, 117559. [Google Scholar] [CrossRef]
- Leahu, A.; Damian, C.; Oroian, M.; Ropciuc, S. Establishing the antioxidant activity based on chemical composition of wild edible mushrooms. Food Environ. Saf. J. 2016, 14, 398–406. [Google Scholar]
- Hur, J.; Young Choi, S.; Ou Lim, B. In vitro anti–inflammatory activity of Russula virescens in the macrophage like cell line RAW 264.7 activated by lipopolysaccharide. Nutr. Food Sci. 2012, 2, 142. [Google Scholar] [CrossRef]
- Wang, X.H.; Liu, P.G.; Yu, F.Q. Color Atlas of Wild Commercial Mushrooms in Yunnan; Yunnan Science and Technology Press: Kunming, China, 2004. [Google Scholar]
- Demirbaş, A. Heavy metal bioaccumulation by mushrooms from artificially fortified soils. Food Chem. 2001, 74, 293–301. [Google Scholar] [CrossRef]
- Georgescu, A.A.; Busuioc, G. Determination of heavy metals in several species of wild mushrooms and their influence on peroxidase activity. Lucr. Ştiinţifice 2011, 54, 62–66. [Google Scholar]
- Güler, P.; Khatun, S.; Cakilcioglu, U.; Chatterjee, N.C. Antifungal Effects of Russula cyanoxantha Against the Plant Pathogen Fusarium moniliforme and Fusarium culmorum. In Proceedings of the 3rd International Biotechnology and Biodiversity Conference & Exhibition, Diyarbakır, Turkey, 22–26 October 2012; pp. 9–11. [Google Scholar]
- Bonkat, G.; Widmer, A.F.; Rieken, M.; van der Merwe, A.; Braissant, O.; Müller, G.; Wyler, S.; Frei, R.; Gasser, T.C.; Bachmann, A. Microbial biofilm formation and catheter-associated bacteriuria in patients with suprapubic catheterisation. World J. Urol. 2013, 31, 565–571. [Google Scholar] [CrossRef]
- Branda, S.S.; Vik Å Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.F.R.; Lourenço, I.; Costa, E.; Martins, A.; Pintado, M. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathogens 2014, 3, 667–679. [Google Scholar] [CrossRef]
- Sácký, J.; Leonhardt, T.; Kotrba, P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. BioMetals 2016, 29, 349–363. [Google Scholar] [CrossRef]
- Leonhardt, T.; Sácký, J.; Šimek, P.; Šantrůček, J.; Kotrba, P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 2014, 6, 1693–1701. [Google Scholar] [CrossRef]
- Leonhardt, T.; Sácký, J.; Kotrba, P. Functional analysis RaZIP1 transporter of the ZIP family from the ectomycorrhizal Zn-accumulating Russula atropurpurea. BioMetals 2018, 31, 255–266. [Google Scholar] [CrossRef]
- Vetter, J.; Siller, I.; Horváth, Z. Zinc content of sporocarps of basidiomycetous fungi. Mycologia 1997, 89, 481–483. [Google Scholar] [CrossRef]
- Borovička, J.; Řanda, Z. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol. Prog. 2007, 6, 249–259. [Google Scholar] [CrossRef]
- Leonhardt, T.; Borovička, J.; Sácký, J.; Šantrůček, J.; Kameník, J.; Kotrba, P. Zn over accumulating Russula species clade together and use the same mechanism for the detoxification of excess Zn. Chemosphere 2019, 225, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Busuioc, G.; Elekes, C.C.; Stihi, C.; Iordache, S.; Ciulei, S.C. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ. Sci. Pollut. Res. 2011, 18, 890–896. [Google Scholar] [CrossRef]
- Saithong, P.; Permpool, J.; Rattanaloeadnusorn, S.; Poompurk, P.; Khunnamwong, P.; Lomthong, T. Nutritional compositions, microbial quality, bioactivities, and volatile compounds of a novel vinegar from wild edible mushroom, Russula delica Fr. Food Prod. Process. Nutr. 2024, 6, 50. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Lu, J.-K.; Liu, L.-Z.; Sui, Z.-N.; Peng, Y.-Y.; Zhang, Y.; Qu, H.; Yi, J.-J. Fortification Effect of Mixed Fermentation Product of Russula vinosa Lindblad Supplementation on Physicochemical, Sensory and Antioxidant Properties of Wheat Bread. Food Med. Homol. 2025, 4, 71. [Google Scholar] [CrossRef]
- Zhu, M.-J.; Du, F.; Zhang, G.-Q.; Wang, H.-X.; Ng, T.-B. Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int. Biodeterior. Biodegradation 2013, 82, 33–39. [Google Scholar] [CrossRef]
- Lajin, B.; Braeuer, S.; Borovička, J.; Goessler, W. Is the water disinfection by-product dichloroacetic acid biosynthesized in the edible mushroom Russula nigricans? Chemosphere 2021, 281, 130819. [Google Scholar] [CrossRef]
- Semreen, M.H.; Aboul-Enein, H.Y. Determination of Heavy Metal Content in Wild-Edible Mushroom from Jordan. Anal. Lett. 2011, 44, 932–941. [Google Scholar] [CrossRef]
- Yildirim, A.; Acay, H. Methylene blue and malachite green dyes adsorption onto Russula delica/bentonite/tripolyphosphate. Heliyon 2025, 11, e41250. [Google Scholar] [CrossRef]
- Matsuura, M.; Kato, S.; Saikawa, Y.; Nakata, M.; Hashimoto, K. Identification of Cyclopropylacetyl-(R)-carnitine, a Unique Chemical Marker of the Fatally Toxic Mushroom Russula subnigricans. Chem. Pharm. Bull. 2016, 64, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Mu, M.; Yang, F.; Yang, C. Russula subnigricans Poisoning: From Gastrointestinal Symptoms to Rhabdomyolysis. Wilderness Environ. Med. 2015, 26, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.T.; Han, J.H. A case of mushroom poisoning with Russula subnigricans: Development of rhabdomyolysis.; acute kidney injury, cardiogenic shock, and death. J. Korean Med. Sci. 2016, 31, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, P.; Kirsi, M.; Mustonen, A.-M. Suspected Myotoxicity of Edible Wild Mushrooms. Exp. Biol. Med. 2006, 231, 221–228. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, F.; Zhang, H.; Chai, X.; Xiao, B. Hemolysis associated with Russula subnigricans ingestion in a patient with glucose-6-phosphate dehydrogenase deficiency. Clin. Toxicol. 2023, 61, 473–475. [Google Scholar] [CrossRef]
- Min, M.K.; Lee, D.; Shon, S.W.; Ryu, J.H.; Wang, I.; Lee, M.J.; Chun, M.; Hyun, T. Russula subnigricans Poisoning Causes Severe Rhabdomyolysis That Could be Misdiagnosed as Non-ST Segment Elevation Myocardial Infarction. Wilderness Environ. Med. 2022, 33, 324–328. [Google Scholar] [CrossRef]
- Grodzinskaya, A.A.; Nebesnyi, V.B.; Landin, V.P.; Gabriel, J. Radioactive Contamination of Wild Mushrooms from Ukraine under Conditions of Contrasting Radiation Loads: 36 Years after the Chernobyl Nuclear Power Plant Catastrophe. Int. J. Med. Mushrooms 2022, 24, 25–40. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Socha, K.; Witkowska, A.M.; Zujko, M.E.; Borawska, M.H. Cadmium and Lead in Wild Edible Mushrooms from the Eastern Region of Poland’s ‘Green Lungs’. Pol. J. Environ. Stud. 2013, 22, 1759–1765. [Google Scholar]
- Senila, M.; Resz, M.-A.; Senila, L.; Torok, I. Application of Diffusive Gradients in Thin-films (DGT) for assessing the heavy metals mobility in soil and prediction of their transfer to Russula virescens. Sci. Total. Environ. 2024, 909, 168591. [Google Scholar] [CrossRef]
- Huang, G.W.; Zhang, P. Symbiosis Cultivation of Ectomycorrhizal Mycelium. Edible Fungi China 2005, 24, 16–17. (In Chinese) [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Wand, R.; Liu, C.-G.; Xu, J. The Separation and Cultivation of Ectomycorrhizal Fungi. Edible Fungi China 2013, 32, 4–7. (In Chinese) [Google Scholar]
- Hall, I.R.; Yun, W.; Amicucci, A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003, 21, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Giomaro, G.M.; Sisti, D.; Zambonelli, A. Cultivation of edible ectomycorrhizal fungi by in vitro mycorrhizal synthesis. In In Vitro Culture of Mycorrhizas; Soil Biology; Declerck, S., Fortin, J.A., Strullu, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 4, pp. 253–267. [Google Scholar] [CrossRef]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef] [PubMed]
- Luan, Q.-S.; Jin, R.-Z.; Yun, L.-L. Study on Isolation and Cultivation of Wild Macro Fungi in Forest. In Proceedings of the 11th Chapter of the 2004 China Association for Science and Technology Annual Conference, Qionghai, China, 20–21 November 2004; pp. 489–491. (In Chinese). [Google Scholar]
- Karwa, A.; Varma, A.; Rai, M. Edible Ectomycorrhizal Fungi: Cultivation, Conservation and Challenges. In Diversity and Biotechnology of Ectomycorrhizae; Soil Biology; Rai, M., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 25. [Google Scholar] [CrossRef]
- Chen, Y.H. The theories and application of th cultivation of Russula vinosa. In Proceedings of the First Cross-Strait Symposium on Edible (Medicinal) Fungi, Fuzhou, China, 1 November 2005; pp. 97–100. (In Chinese). [Google Scholar]
- Yamada, A.; Ogura, T.; Ohmasa, M. Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis. Mycorrhiza 2001, 11, 59–66. [Google Scholar] [CrossRef]
- Hintikka, V.; Niemi, K. Aseptic culture of slowly growing mycorrhical Russula and Cortinarius species. Karstenia 1999, 39, 39–41. [Google Scholar] [CrossRef]
- Wang, E.J.; Jeon, S.M.; Jang, Y.; Ka, K.H. Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. Korean J. Mycol. 2016, 44, 166–170. [Google Scholar] [CrossRef]
- Wu, J. Method for Preparing Russula Cultivation Material by Utilizing Sunflower by-Products (CN103601596B); China National Intellectual Property Administration: Beijing, China, 2015. [Google Scholar]
- Hortal, S.; Pera, J.; Parladé, J. Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 2008, 18, 69–77. [Google Scholar] [CrossRef]
- De Miguel, A.M.; Águeda, B.; Sánchez, S.; Parladé, J. Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts: Applying lessons learned to future truffle culture. Mycorrhiza 2014, 24, S5–S18. [Google Scholar] [CrossRef]
- Lian, C.L. Research Progress on Cultivating Russula in Harvested Forest Lands. Fujian For. 2023, 22–23. (In Chinese) [Google Scholar]
Russula Species | Edibility | References |
---|---|---|
Russula acrifolia | Not edible | [80] |
R. adusta | Edible (caution) | [81] |
R. aeruginea | Edible | [82] |
R. alboareolata | Edible | [83,84,85] |
R. alatoreticula | Unknown | [86,87] |
R. albonigra | Not edible | [81,88,89] |
R. alnetorum | Edible (caution) | [90] |
R. alutacea | Edible | [83,84,85] |
R. amarissima | Not edible | [91] |
R. aurea | Edible | [92,93,94,95] |
R. aurora | Unknown | [96] |
R. brevipes | Edible (caution) | [97] |
R. chloroides | Edible (caution) | [98] |
R. cyanoxantha | Edible | [80,99] |
R. delica | Edible (caution) | [80,99] |
R. densifolia | Not edible | [100] |
R. emetica | Poisonous | [101] |
R. flavobrunnea var. aurantioflava | Unknown | [102] |
R. foetens | Not edible | [103] |
R. fragilis | Not edible | [104] |
R. fragrantissima | Not edible | [100] |
R. griseocarnosa | Edible (caution) | [105] |
R. helios | Edible | [83,84,85] |
R. integra | Edible | [70] |
R. japonica | Edible (caution) | [106,107] |
R. kivuensis | Unknown | [108] |
R. laurocerasi | Unknown | [109] |
R. lepida | Edible | [91,110,111,112,113,114,115] |
R. luteotacta | Edible (caution) | [80] |
R. mairei (=R. nobilis) | Edible (caution) | [80,99] |
R. medullata | Edible | [83,84,85] |
R. monspeliensis | Edible | [83,84,85] |
R. mustelina | Unknown | [113,116] |
R. nigricans | Poisonous | [101] |
R. nobilis | Edible (caution) | [80,99] |
R. ochroleuca | Edible (caution) | [117,118] |
R. ochrocephala | Unknown | [102] |
R. paludosa | Edible | [119] |
R. pseudocyanoxantha | Edible (caution) | [86,120,121] |
R. queletii | Not edible | [122] |
R. rosacea | Not edible | [100] |
R. sanguinaria | Not edible | [123] |
R. senecis | Not edible | [124,125,126] |
R. subnigricans | Poisonous | [127] |
R. vesca | Edible | [128,129,130] |
R. vinosa | Edible (caution) | [131,132,133,134,135,136] |
R. violeipes | Edible (caution) | [137] |
R. virescens | Edible | [83,84,85] |
R. viscida | Not edible | [117] |
R. xerampelina | Edible | [138,139,140] |
Species | Polysaccharide | Biological Activity | Reference |
---|---|---|---|
R. adusta | RAP (5763 Da) | Antioxidant activity, scavenges hydroxyl radicals | [167] |
R. alatoreticula | Rusalan, RualaCap, RualaHap | Antioxidant, antibacterial (S. aureus, B. subtilis), immune-stimulatory, anticancer (Hep3B) | [86,87,105] |
R. albonigra | β-glucan, heteroglycan | Antioxidant, macrophage activation, NO production, splenocyte and thymocyte proliferation | [81,88,89] |
R. alutacea | Acetylated and sulfated polysaccharides | Antioxidant, anti-inflammatory, immune-modulatory | [85,151,152] |
R. aurea | Water-soluble polysaccharides | Antitumor (sarcoma 180, Ehrlich solid cancer), antioxidant, mutagenic and antimutagenic potential | [92,93,94] |
R. delica | Water-soluble polysaccharides | Anti-leishmanial (inhibits L. donovani amastigotes) | [81] |
R. emetica | Bioactive polysaccharides | Antidiabetic, antihypertensive | [170] |
R. griseocarnosa | PRG, PRG1-1, RGP1, RGP2 | Antioxidant, immunomodulatory (macrophage activation, NF-κB, MAPK pathways), anticancer (HeLa, SiHa), hematopoietic function improvement | [153,154,155,156,157,158,159,160,161,163] |
R. pseudocyanoxantha | RP-CAP, RP-HAP | Antioxidant, immune-boosting (macrophage proliferation, TLR/NF-κB pathway) | [120,121] |
R. senecis | Rusenan | Antioxidant (free radical scavenging, Fe2⁺ chelation), immune-stimulatory (macrophage activation, NO and ROS production, gene transcription) | [124] |
R. virescens | RVP, RVP-1, RVP-2, SRVP1 | Antidiabetic, anticancer, antioxidant, immunological, anticoagulant, antibacterial | [85,92,95,164,165] |
R. vinosa | RP-1, RP-5, CA-S, CA-L | Antioxidant, anticancer (HeLa, HepG2), immunomodulatory (macrophage activation, NF-κB pathway), anti-inflammatory (ulcerative colitis) | [131,132,133,134,135,136,137] |
Species | Compound Type | Specific Compounds | Biological Activity | Reference |
---|---|---|---|---|
Russula amarissima | Aristolane sesquiterpenes, seco-cucurbitane triterpene | Four aristolane sesquiterpenes, seco-cucurbitane triterpene (3,4-secocucurbita-4, 24E-diene-3-hydroxy-26-carboxylic acid) | - | [91] |
R. brevipes | Triterpenoids | Lactarorufin A, Russulactarorufin | - | [97] |
R. cyanoxantha | Phytosphingosine-derived ceramides | Russulamide and other ceramides | - | [172] |
R. delica | Protoilludane-type sesquiterpenoids | New norsesquiterpenoid (russulanorol), eight known sesquiterpenoids: lactarorufin A, blennin C, furandiol, lactarorufin B, lactarolide A, 14-hydroxylactarolide A, 3-O-methyllactarolide B, isolactarorufin | - | [174,175] |
R. foetens | Marasmane sesquiterpenes, ergosterol | New marasmane sesquiterpene (russulfoen), known marasmane sesquiterpenes: 7α,8α,13-trihydroxy-marasm-5-oic acid γ-lactone, 8α,13-dihydroxy-marasm-5-oic acid γ-lactone, ergosterol, (1R,2R)-1-phenylpropane-1,2-diol | Poisonous with gastrointestinal irritants | [176,177,187] |
R. japonica | Illudoid sesquiterpenes | Russujaponols A–F, neurite outgrowth-promoting sesquiterpenes | Neurite outgrowth-promoting activity; potential anticancer properties | [106,107] |
R. lepida | Cucurbitane triterpenes, Aristolane sesquiterpenes | Cucurbitane-type triterpenoids, lepidolide, rulepidadiol, rulepidatriol, rulepidol, lepidamine | Potential type-2 diabetes and obesity treatment through PTP1B inhibition | [110,111,112] |
Seco-cucurbitane triterpenes | (24E)-3,4-seco-cucurbita-4,24-diene-3,26,29-trioic acid, rulepidadiol, rulepidatriol | PTP1B and T-cell PTP activity inhibition for potential diabetes and obesity treatment | ||
R. nobilis | Sesquiterpenoids | Velutinal esters, Russulanobilines A-C | Chemical defense against predators, parasites, and microorganisms | [183] |
R. queletii | Bioactive compounds | Piperalol, piperdial | Antimicrobial and anticancer properties | [122] |
R. rosacea | Triterpenes | Rosacea acids A and B | - | [184] |
R. sanguinaria | Lactarane-type sesquiterpenoids | Sangusulactones A-C, blennin A, 15-hydroxyblennin A | Anti-inflammatory potential | [123] |
R. vinosa | Triterpenoids, sesquiterpenoids | (1R,2S)-1-phenylpropane-1,2-diol, isolactarorufin, lactarorufin A, 8α,13-dihydroxy-marasm-5-oic acid γ-lactone, 7α,8α,13-trihydroxy-marasm-5-oic acid γ-lactone | Growth-regulating effects on plant species like lettuce | [186] |
R. virescens | Terpenoids, fatty acids, amino acids | 633 phytochemicals including polyphenols, terpenoids | Linked to cancer treatment pathways (HSP90AA1, AKT3); Nutritional and medicinal potential | [143] |
Species | Key Findings | Active Compounds | References |
---|---|---|---|
Russula aeruginea |
| Not specified | [82,90] |
R. alnetorum |
| Not specified | [90] |
R. brevipes |
| Phenolic compounds, essential amino acids, betaine, carnitine | [193,195,196] |
R. fragrantissima |
| Not specified | [90] |
R. nobilis |
| Not specified | [90] |
R. ochroleuca |
| Ochroleucin A1, ochroleucin B | [117] |
R. alboareolata |
| Ethanolic extract (apoptosis-inducing compounds) | [188,189,190] |
R. alatoreticula |
| Phenols, flavonoids, ascorbic acid, β-carotene, lycopene, pyrogallol, cinnamic acid | [86,87] |
R. alveolata |
| Volatile oil, sterols, triterpenes, carotenoids, saponosides, essential amino acids | [102] |
R. aruea |
| Isolactarane sesquiterpene, sterols, allitol, fatty acids | [150] |
R. aurora |
| Gallic acid, fumaric acid, catechin hydrate | [96] |
R. cf. compressa |
| Volatile oil, sterols, triterpenes, carotenoids, saponosides, essential amino acids | [102] |
R. cf. foetentoides |
| Gallic acid, flavonoids, phenolic compounds | [103] |
R. chloroides |
| Ferulic acid, gallic acid, myricetin | [182] |
R. cutefracta (=R. cyanoxantha) |
| Ergosta-4,6,8(14),22-tetraen-3-one (ergone), lectins | [197,199,200] |
R. cyanoxantha |
| Phytosphingosine-type ceramide, ergone | [172,198] |
R. delica |
| Catechin, glycosaminoglycans, essential amino acids, fatty acids | [196,201,202,203,206] |
R. densifolia |
| Phenols, flavonoids | [137] |
R. emetica (M12) |
| Not specified | [207] |
R. flavobrunnea var. aurantioflava |
| Volatile oil, sterols, triterpenes, carotenoids, saponosides, essential amino acids | [102] |
R. foetens |
| Gallic acid, flavonoids, phenolic compounds | [103] |
R. fragilis |
| Proteins, peptides | [104] |
R. fragrantissima |
| Not specified | [90] |
R. mgnathangensis |
| Not specified | [209] |
R. griseocarnosa |
| Caffeic acid, flavonoids, ergosterol, phenolics, protocatechuic acid, β-carotene, quercetin | [163,210,211,212,213,214] |
R. helios |
| Not specified | [190] |
R. integra |
| Not specified | [70] |
R. kivuensis |
| Fatty acids, carotenoids, alkaloids, phenols, terpenes, steroids, amino acids | [108] |
R. laurocerasi |
| Phenols, flavonoids | [109] |
R. lepida |
| Lectins, amino acids, phenols, flavonoids | [113,114,115] |
R. luteotacta |
| Catechin | [215] |
R. mairei (=R. nobilis) |
| Not specified | [216] |
R. medullata |
| Not specified | [190] |
R. mustelina |
| Amino acids, phenols, flavonoids | [113,116] |
R. nigricans |
| Nigricanin, P-hydroxybenzoic acid, cinnamic acid | [70,182] |
R. ochrocephala |
| Volatile oil, sterols, triterpenes, carotenoids, saponosides, essential amino acids | [102] |
R. paludosa |
| Not specified | [119] |
R. pseudocyanoxantha |
| Phenolics, flavonoids, β-glucan | [120,142] |
R. rosea |
| Lectin | [115] |
R. rosacea |
| Phenolic compounds | [208,217,218] |
R. senecis |
| Phenolics, flavonoids, ascorbic acid, carotenoids, β-glucan | [124,125] |
R. subnigricans |
| Russuphelins A-F | [219,220] |
R. vesca |
| Triyne acid, triyinol, phenols, flavonoids | [129,130,222] |
R. vinosa |
| β-(1→3)-glucan, galactoglucans | [223] |
R. violeipes |
| Phenols, flavonoids | [137] |
R. virescens |
| Not specified | [224,225,226,227,228,229,230,231,232,233,234,235,236] |
R. viscida |
| Ochroleucin A1, ochroleucin B | [117] |
R. xerampelina |
| Trimethylamine, trimethylamine N-oxide | [138,139,140] |
Species | Trace Elements | Findings | Reference |
---|---|---|---|
Russula cyanoxantha | Cd: 3.16 mg/kg |
| [228,229] |
R. delica | - |
| [232,244] |
R. delica | - |
| [240] |
R. foetens | Hg: 0.06 mg/kg |
| [227] |
R. nigricans | DCAA: 23–37 mg/kg |
| [243] |
R. ochroleuca | Hg: 0.017 to 0.43 μg/g (caps), 0.011 to 0.24 μg/g (stipes) |
| [118] |
R. virescens | - |
| [242] |
Russula species | Fe, Zn, Cu (varied concentrations) |
| [239] |
Zn: high concentrations |
| [233,234,235,236,237,238] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Karunarathna, S.C.; Patabendige, N.; Tarafder, E.; Lou, D.; Zhou, Y.; Hapuarachchi, K. Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review. J. Fungi 2025, 11, 341. https://doi.org/10.3390/jof11050341
Yang J, Karunarathna SC, Patabendige N, Tarafder E, Lou D, Zhou Y, Hapuarachchi K. Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review. Journal of Fungi. 2025; 11(5):341. https://doi.org/10.3390/jof11050341
Chicago/Turabian StyleYang, Jingya, Samantha C. Karunarathna, Nimesha Patabendige, Entaj Tarafder, Dengji Lou, Yuanqing Zhou, and Kalani Hapuarachchi. 2025. "Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review" Journal of Fungi 11, no. 5: 341. https://doi.org/10.3390/jof11050341
APA StyleYang, J., Karunarathna, S. C., Patabendige, N., Tarafder, E., Lou, D., Zhou, Y., & Hapuarachchi, K. (2025). Unveiling the Bioactive Compounds and Therapeutic Potential of Russula: A Comprehensive Review. Journal of Fungi, 11(5), 341. https://doi.org/10.3390/jof11050341