Transcription Factors in Biocontrol Fungi
Abstract
:1. Introduction
2. Transcription Factors
3. Functions of Transcription Factors in Biocontrol Fungi
3.1. Beauveria bassiana
3.2. Members of the Genus Metarhizium
3.3. Arthrobotrys Oligospora, Arthrobotrys Flagrans, and Drechslerella Dactyloides
3.4. Members of the Genus Trichoderma
3.5. Clonostachys Rosea and Coniothyrium Minitans
3.6. Other Biocontrol Fungi
4. Conclusions and Future Prospects
- (1)
- Developing more biocontrol-related transcription factors: Compared with the currently reported biocontrol fungal species, there are fewer corresponding types of transcription factors involved in biocontrol. There are many types of biocontrol fungi in which no biocontrol transcription factors have been reported. Moreover, at present, among the total transcription factor families, the reported transcription factor families related to biocontrol only cover a small proportion. Developing more types of transcription factors from more families will be useful in comprehensively elaborating the mechanisms underlying the regulation of biocontrol using transcription factors.
- (2)
- The construction of transcription factor engineering strains: The overexpression of biocontrol-related transcription factors encoding genes in the same biocontrol fungi or the expression of the above genes in different biocontrol fungi can be useful to improve control efficacy.
- (3)
- The screening of transcription factors upstream of regulated genes and downstream of target genes and the analysis of the roles of these genes in biocontrol: This will allow for the construction of a regulation network of biocontrol-related transcription factors and a comprehensive exploration of the molecular mechanisms behind the regulation of biocontrol using transcription factors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, S.F.; Wang, C.L.; Hu, Y.F.; Wen, Y.C.; Sun, Z.B. Biocontrol of three severe diseases in soybean. Agriculture 2022, 12, 1391. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef]
- Herrera Pérez, G.M.; Castellano, L.E.; Ramírez Valdespino, C.A. Trichoderma and mycosynthesis of metal nanoparticles: Role of their secondary metabolites. J. Fungi 2024, 10, 443. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.K.; Pradhan, B.; Tripathi, S.; Kumar, K.S.; Chand, S.; Rout, P.R.; Shahid, M.K. Harnessing Trichoderma mycoparasitism as a tool in the management of soil dwelling plant pathogens. Microb. Ecol. 2024, 87, 158. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, W.Y. MAPK cascades mediating biocontrol activity of Trichoderma brevicrassum strain TC967. J. Agric. Food Chem. 2022, 70, 2762–2775. [Google Scholar] [CrossRef]
- Yu, S.F.; Sun, Z.B.; Li, S.D.; Hu, Y.F.; Ren, Q.; Xu, J.L.; Song, H.J.; Sun, M.H. The adenylate cyclase-encoding gene crac is involved in Clonostachys rosea mycoparasitism. J. Fungi 2023, 9, 861. [Google Scholar] [CrossRef]
- Guo, G.Y.; Bai, F.; Liu, W.; Bi, C.L. Advances in research of the regulation of transcription factors of lignin biosynthesis. Sci. Agric. Sin. 2015, 48, 1277–1287. [Google Scholar]
- He, F.; Kange, A.M.; Yang, J.; Xiao, J.; Wang, R.; Yang, L.; Jia, Y.; Fu, Z.Q.; Zhao, Y.; Liu, F. The transcription factor VpxlnR is required for the growth, development, and virulence of the fungal pathogen Valsa pyri. Front. Microbiol. 2022, 13, 784686. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cao, S.; Sun, H.; Deng, Y.; Zhang, X.; Li, Y.; Ma, D.; Chen, H.; Li, W. The critical roles of the Zn2Cys6 transcription factor Fp487 in the development and virulence of Fusarium pseudograminearum: A potential target for Fusarium crown rot control. Microbiol. Res. 2024, 285, 127784. [Google Scholar] [CrossRef]
- Huang, Y.; Zhaxi, Z.; Fu, Y.; Xie, J.; Chen, T.; Li, B.; Yu, X.; Lin, Y.; Jiang, D.; Cheng, J. The transcription factor SsZNC1 mediates virulence, sclerotial development, and osmotic stress response in Sclerotinia sclerotiorum. J. Fungi 2024, 10, 135. [Google Scholar] [CrossRef]
- Xue, F.; Zhao, Z.; Gu, S.; Chen, M.; Xu, J.; Luo, X.; Li, J.; Tian, C. The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa. BMC Biotechnol. 2023, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Meng, F.Z.; Zhang, M.M.; Yin, L.F.; Yin, W.X.; Lin, Y.; Hsiang, T.; Peng, Y.L.; Wang, Z.H.; Luo, C.X. A putative Zn2Cys6 transcription factor is associated with isoprothiolane resistance in Magnaporthe oryzae. Front. Microbiol. 2018, 9, 2608. [Google Scholar] [CrossRef]
- Hong, S.Y.; Roze, L.V.; Linz, J.E. Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins 2013, 5, 683–702. [Google Scholar] [CrossRef]
- Wong Sak Hoi, J.; Dumas, B. Ste12 and Ste12-like proteins, fungal transcription factors. regulating development and pathogenicity. Eukaryot. Cell 2010, 9, 480–485. [Google Scholar] [CrossRef]
- John, E.; Singh, K.B.; Oliver, R.P.; Tan, K.C. Transcription factor control of virulence in phytopathogenic fungi. Mol. Plant Pathol. 2021, 2, 858–881. [Google Scholar] [CrossRef]
- Wang, H.; Peng, H.; Li, W.; Cheng, P.; Gong, M. The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Front. Microbiol. 2021, 12, 705343. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, J.; Song, J.Z.; Hu, S.J.; Zhang, T.S.; Li, Z.; Wang, J.J.; Cheng, W. Involvement of BbTpc1, an important Zn(II)2Cys6 transcriptional regulator, in chitin biosynthesis, fungal development and virulence of an insect mycopathogen. Int. J. Biol. Macromol. 2021, 166, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Sun, J.; Tian, F.; Tian, X.; Liu, Q.; Pan, Y.; Zhang, Y.; Luo, Z. The Bbotf1 Zn(II)2Cys6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 2024, 204, 108083. [Google Scholar] [CrossRef]
- Huang, S.; Keyhani, N.O.; Zhao, X.; Zhang, Y. The Thm1 Zn(II)2 Cys6 transcription factor contributes to heat, membrane integrity and virulence in the insect pathogenic fungus Beauveria bassiana. Environ. Microbiol. 2019, 21, 3153–3171. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, A.; Liu, Y.; Fu, Y.; Cheng, J.; Jin, D.; Fan, Y. Transcription factor BbCDR1 regulates the orchestration between conidial formation and maturation in the entomopathogenic fungus Beauveria bassiana. Pest Manag. Sci. 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.X.; Tong, S.; Wang, J.Y.; Zhu, S.A.; Zhang, L.Y.; Fan, Y.H. Effects of NirA1 gene on growth, stress resistance and virulence of Beauveria bassiana. Acta Microbiol. Sin. 2021, 61, 2469–2480. [Google Scholar]
- Mohamed, R.A.; Guo, C.T.; Xu, S.Y.; Ying, S.H.; Feng, M.G. Characterization of BbKlf1 as a novel transcription factor vital for asexual and infection cycles of Beauveria bassiana. Environ. Microbiol. Rep. 2022, 14, 719–731. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.L.; Zhang, L.B.; Ying, S.H.; Feng, M.G. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana. Appl. Microbiol. Biotechnol. 2015, 99, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, Y.F.; Zhong, H.Y.; Chen, J.M. Effects of zinc-responsive transcriptional activator ZafA on zinc utilization and biocontrol potential of Beauveria bassiana. Mycosystema 2022, 41, 570–586. [Google Scholar]
- Mascarin, G.M.; Shrestha, S.; de Carvalho Barros Cortes, M.V.; Ramirez, J.L.; Dunlap, C.A.; Coleman, J.J. CRISPR-Cas9-mediated enhancement of Beauveria bassiana virulence with overproduction of oosporein. Fungal Biol. Biotechnol. 2024, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, X.; Lu, Z.; Wang, H.; He, Z.; Zhou, G.; Luo, Z.; Zhang, Y. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ. Microbiol. 2019, 21, 3392–3416. [Google Scholar] [CrossRef]
- He, Z.; Song, Y.; Deng, J.; Zhao, X.; Qin, X.; Luo, Z.; Zhang, Y. Participation of a MADS-box transcription factor, Mb1, in regulation of the biocontrol potential in an insect fungal pathogen. J. Invertebr. Pathol. 2020, 170, 107335. [Google Scholar] [CrossRef]
- Wang, G.; Chen, B.; Zhang, X.; Du, G.; Han, G.; Liu, J.; Peng, Y. The basic leucine zipper domain (bZIP) transcription factor BbYap1 promotes evasion of host humoral immunity and regulates lipid homeostasis contributing to fungal virulence in Beauveria bassiana. mSphere 2024, 9, e0035124. [Google Scholar] [CrossRef]
- Peng, Y.J.; Wang, J.J.; Lin, H.Y.; Ding, J.L.; Feng, M.G.; Ying, S.H. HapX, an indispensable bZIP transcription factor for iron acquisition, regulates infection initiation by orchestrating conidial oleic acid homeostasis and cytomembrane functionality in mycopathogen Beauveria bassiana. mSystems 2020, 5, e00695-20. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Jiao, S.; He, L.; Fan, Y.; Han, X.; Sun, B.; Zhao, W.; Mei, Y.; Wei, N.; et al. Bbhox2 is a key regulator for conidiation and virulence in Beauveria bassiana. J. Invertebr. Pathol. 2024, 203, 108059. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Chen, Q.; Su, Y.; Hu, S.; Keyhani, N.O.; Wang, J.; Zhu, C.; Zhou, T.; Pan, Y.; Bidochka, M.J.; et al. The AreA nitrogen catabolite repression activator balances fungal nutrient utilization and virulence in the insect fungal pathogen Beauveria bassiana. J. Agric. Food Chem. 2023, 71, 646–659. [Google Scholar] [CrossRef]
- Qiu, L.; Song, J.Z.; Li, J.; Zhang, T.S.; Li, Z.; Hu, S.J.; Liu, J.H.; Dong, J.C.; Cheng, W.; Wang, J.J. The transcription factor Ron1 is required for chitin metabolism, asexual development and pathogenicity in Beauveria bassiana, an entomopathogenic fungus. Int. J. Biol. Macromol. 2022, 206, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Yin, Y.P.; Song, J.Z.; Hu, S.J.; Cheng, W.; Qiu, L. A p53-like transcription factor, BbTFO1, contributes to virulence and oxidative and thermal stress tolerances in the insect pathogenic fungus, Beauveria bassiana. PLoS ONE 2021, 16, e0249350. [Google Scholar] [CrossRef] [PubMed]
- Muniz, E.R.; Ribeiro-Silva, C.S.; Arruda, W.; Keyhani, N.O.; Fernandes, É.K.K. The Msn2 transcription factor regulates acaricidal virulence in the fungal pathogen Beauveria bassiana. Front. Cell Infect. Microbiol. 2021, 11, 690731. [Google Scholar] [CrossRef]
- Liu, Q.; Ying, S.H.; Li, J.G.; Tian, C.G.; Feng, M.G. Insight into the transcriptional regulation of Msn2 required for conidiation, multi-stress responses and virulence of two entomopathogenic fungi. Fungal Genet. Biol. 2013, 54, 42–51. [Google Scholar] [CrossRef]
- Zhou, G.; Ying, S.H.; Hu, Y.; Fang, X.; Feng, M.G.; Wang, J. Roles of three HSF domain-containing proteins in mediating heat-shock protein genes and sustaining asexual cycle, stress tolerance, and virulence in Beauveria bassiana. Front. Microbiol. 2018, 9, 1677. [Google Scholar] [CrossRef]
- Wang, Z.L.; Pan, H.B.; Huang, J.; Yu, X.P. The zinc finger transcription factors Bbctf1α and Bbctf1β regulate the expression of genes involved in lipid degradation and contribute to stress tolerance and virulence in a fungal insect pathogen. Pest Manag. Sci. 2020, 76, 2589–2600. [Google Scholar] [CrossRef]
- Luo, Z.; Ren, H.; Mousa, J.J.; Rangel, D.E.; Zhang, Y.; Bruner, S.D.; Keyhani, N.O. The PacC transcription factor regulates secondary metabolite production and stress response, but has only minor effects on virulence in the insect pathogenic fungus Beauveria bassiana. Environ. Microbiol. 2017, 19, 788–802. [Google Scholar] [CrossRef]
- Wang, J.J.; Qiu, L.; Cai, Q.; Ying, S.H.; Feng, M.G. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen. Sci. Rep. 2015, 5, 10108. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, T.; Huang, S.; Peng, N.; Yin, Y.; Luo, Z.; Zhang, Y. A novel transcription factor negatively regulates antioxidant response, cell wall integrity and virulence in the fungal insect pathogen, Beauveria bassiana. Environ. Microbiol. 2021, 23, 4908–4924. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, G.A.; Padilla-Guerrero, I.E.; Martínez-Vázquez, A.; Torres-Guzmán, J.C. Virulence factors of the entomopathogenic genus Metarhizium. Curr. Protein Pept. Sci. 2020, 21, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.F.; Parker, B.L.; Skinner, M. A review of commercial Metarhizium- and Beauveria-based biopesticides for the biological control of ticks in the USA. Insects 2022, 13, 260. [Google Scholar] [CrossRef]
- Song, D.; Cao, Y.; Xia, Y. Transcription factor MaMsn2 regulates conidiation pattern shift under the control of MaH1 through homeobox domain in Metarhizium acridum. J. Fungi 2021, 7, 840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wei, Q.; Xia, Y.; Jin, K. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Curr. Genet. 2020, 66, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Du, Y.; Jin, K.; Xia, Y. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Appl. Microbiol. Biotechnol. 2017, 101, 8571–8584. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Keyhani, N.O.; Xia, Y.; Cao, Y. The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in Metarhizium acridum. Appl. Microbiol. Biotechnol. 2017, 101, 5033–5043. [Google Scholar] [CrossRef]
- Li, C.; Xia, Y.; Jin, K. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum. Int. J. Biol. Macromol. 2022, 216, 426–436. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Q.; Xia, Y.; Jin, K. MaAreB, a GATA transcription factor, is involved in nitrogen source utilization, stress tolerances and virulence in Metarhizium acridum. J. Fungi 2021, 7, 512. [Google Scholar] [CrossRef]
- Hong, G.; Wang, S.; Xia, Y.; Peng, G. MaAzaR influences virulence of Metarhizium acridum against Locusta migratoria manilensis by affecting cuticle penetration. J. Fungi 2024, 10, 564. [Google Scholar] [CrossRef]
- Du, Y.; Xia, Y.; Jin, K. Enhancing the biocontrol potential of the entomopathogenic fungus in multiple respects via the overexpression of a transcription factor gene MaSom1. J. Fungi 2022, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Yang, M.; Wang, S.; Xia, Y.; Peng, G. Metarhizium acridum transcription factor MaFTF1 negatively regulates virulence of the entomopathogenic fungus by controlling cuticle penetration of locusts. Pest Manag. Sci. 2025, 81, 2020–2031. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Yin, Y.; Deng, C.; Yang, K.; Wang, Z. MripacC regulates blastosphere budding and influences virulence of the pathogenic fungus Metarhizium rileyi. Fungal Biol. 2021, 125, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, J.; Yang, K.; Fan, L.; Wang, Z.; Yin, Y. Regulation of conidiation, polarity growth, and pathogenicity by MrSte12 transcription factor in entomopathogenic fungus, Metarhizium rileyi. Fungal Genet. Biol. 2021, 155, 103612. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yang, J.; Xin, C.; Xing, X.; Yuan, Q.; Yin, Y.; Wang, Z. A transcription factor, MrMsn2, in the dimorphic fungus Metarhizium rileyi is essential for dimorphism transition, aggravated pigmentation, conidiation and microsclerotia formation. Microb. Biotechnol. 2018, 11, 1157–1169. [Google Scholar] [CrossRef]
- Song, Z.; Yin, Y.; Lin, Y.; Du, F.; Ren, G.; Wang, Z. The bZIP transcriptional factor activator protein-1 regulates Metarhizium rileyi morphology and mediates microsclerotia formation. Appl. Microbiol. Biotechnol. 2018, 102, 4577–4588. [Google Scholar] [CrossRef]
- Xin, C.; Yang, J.; Mao, Y.; Chen, W.; Wang, Z.; Song, Z. GATA-type transcription factor MrNsdD regulates dimorphic transition, conidiation, virulence and microsclerotium formation in the entomopathogenic fungus Metarhizium rileyi. Microb. Biotechnol. 2020, 13, 1489–1501. [Google Scholar] [CrossRef]
- Xin, C.; Zhang, J.; Nian, S.; Wang, G.; Wang, Z.; Song, Z.; Ren, G. Analogous and diverse functions of APSES-Type transcription factors in the morphogenesis of the entomopathogenic fungus Metarhizium rileyi. Appl. Environ. Microbiol. 2020, 86, e02928-19. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Xin, C.; Xing, X.; Yin, Y.; Chen, L.; Song, Z. Regulation of conidiation, dimorphic transition, and microsclerotia formation by MrSwi6 transcription factor in dimorphic fungus Metarhizium rileyi. World J. Microbiol. Biotechnol. 2019, 35, 46. [Google Scholar] [CrossRef]
- Huang, W.; Shang, Y.; Chen, P.; Gao, Q.; Wang, C. MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii. Environ. Microbiol. 2015, 17, 994–1008. [Google Scholar] [CrossRef]
- Huang, W.; Shang, Y.; Chen, P.; Cen, K.; Wang, C. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J. Biol. Chem. 2015, 290, 8218–8231. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Qian, Y.; Zhang, Q.; Chen, X.; Zeng, G.; Zhang, X.; Mi, W.; Xu, C.; St Leger, R.J.; Fang, W. Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nat. Commun. 2017, 8, 1565. [Google Scholar] [CrossRef]
- Yang, N.; Wu, H.; Tong, Y.; Liu, Z.; Li, X.; Huang, B. The homeobox transcription factor MrHOX7 contributes to stress tolerance and virulence in the entomopathogenic fungus Metarhizium robertsii. J. Invertebr. Pathol. 2024, 203, 108071. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wu, H.; Wang, Z.; Sun, Q.; Qiao, L.; Huang, B. The APSES gene MrStuA regulates sporulation in Metarhizium robertsii. Front. Microbiol. 2018, 9, 1208. [Google Scholar] [CrossRef]
- Shang, Y.; Chen, P.; Chen, Y.; Lu, Y.; Wang, C. MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. Eukaryot. Cell 2015, 14, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, X.; Guo, N.; Fang, W. MrSt12 implicated in the regulation of transcription factor AFTF1 by Fus3-MAPK during cuticle penetration by the entomopathogenic fungus Metarhizium robertsii. Fungal Genet. Biol. 2019, 131, 103244. [Google Scholar] [CrossRef]
- Wang, D.; Ma, N.; Rao, W.; Zhang, Y. Recent advances in life history transition with nematode-trapping fungus Arthrobotrys oligospora and its application in sustainable agriculture. Pathogens 2023, 12, 367. [Google Scholar] [CrossRef]
- Hu, X.; Hoffmann, D.S.; Wang, M.; Schuhmacher, L.; Stroe, M.C.; Schreckenberger, B.; Elstner, M.; Fischer, R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat. Microbiol. 2024, 9, 1752–1763. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, K.; Duan, S.; Zhao, N.; Shen, Y.; Zhu, L.; Zhang, K.Q.; Yang, J. Identification of a transcription factor AoMsn2 of the Hog1 signaling pathway contributes to fungal growth, development and pathogenicity in Arthrobotrys oligospora. J. Adv. Res. 2025, 68, 1–15. [Google Scholar] [CrossRef]
- Bai, N.; Xie, M.; Liu, Q.; Wang, W.; Liu, Y.; Yang, J. AoSte12 is required for mycelial development, conidiation, trap morphogenesis, and secondary metabolism by regulating hyphal fusion in nematode-trapping fungus Arthrobotrys oligospora. Microbiol. Spectr. 2023, 11, e0395722. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Liu, Y.; Xie, M.; Yang, J. The MADS-box transcription factor AoRlmA is involved in the regulation of mycelium development, conidiation, cell-wall integrity, stress response, and trap formation of Arthrobotrys oligospora. Microbiol. Res. 2023, 268, 127299. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Wang, Y.; Tang, L.; Yang, L.; Zhou, D.; Li, Q.; Niu, X.; Zhang, K.Q.; Yang, J. AoStuA, an APSES transcription factor, regulates the conidiation, trap formation, stress resistance and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. Environ. Microbiol. 2019, 21, 4648–4661. [Google Scholar] [CrossRef]
- Linghu, S.X.; Zhang, Y.; Zuo, J.F.; Mo, M.H.; Li, G.H. AfSwi6 regulates the stress response, chlamydospore production, and pathogenicity in the nematode-trapping fungus Arthrobotrys flagrans. Microorganisms 2024, 12, 1765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, T.; Xu, Y.R.; Sun, J.M.; Pan, X.R.; Gu, K.Z.; Zhang, K.Q.; Zhang, Z.G.; Liang, L.M. Induction of conidial traps in the nematode-trapping fungus Drechslerella dactyloides by soil microbes. mSystems 2025, e0129124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fan, Y.; Xiang, M.; Kang, S.; Wang, S.; Liu, X. DdaCrz1, a C2H2-type transcription factor, regulates growth, conidiation, and stress resistance in the nematode-trapping fungus Drechslerella dactyloides. J. Fungi 2022, 8, 750. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, W.; Chen, Y.; Xiang, M.; Liu, X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl. Microbiol. Biotechnol. 2021, 105, 7379–7393. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, P.; Kumar, A.; de Los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the bocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Lodi, R.S.; Peng, C.; Dong, X.; Deng, P.; Peng, L. Trichoderma hamatum and its benefits. J. Fungi 2023, 9, 994. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Musumeci, M.A. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 2021, 37, 90. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, L.R.; Li, M.; Wu, B.L.; Jiang, X.L. Function of a C2H2 transcription factor Tha09974 in Trichoderma harzianum. Chin. J. Biol. Control 2019, 35, 407–415. [Google Scholar]
- Fan, L.; Fu, K.; Yu, C.; Li, Y.; Li, Y.; Chen, J. Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata. J. Basic Microbiol. 2015, 55, 591–600. [Google Scholar] [CrossRef]
- Rubio, M.B.; Monti, M.M.; Gualtieri, L.; Ruocco, M.; Hermosa, R.; Monte, E. Trichoderma harzianum volatile organic compounds regulated by the THCTF1 transcription factor are involved in antifungal activity and beneficial plant responses. J. Fungi 2023, 9, 654. [Google Scholar] [CrossRef]
- Moreno-Mateos, M.A.; Delgado-Jarana, J.; Codón, A.C.; Benítez, T. pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genet. Biol. 2007, 44, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wei, H.; Ma, K.; Cui, P.; Zhu, S.; Lai, D.; Ren, J.; Wang, W.; Fan, A.; Lin, W.; et al. ThpacC acts as a positive regulator of homodimericin A biosynthesis and antifungal activities of Trichoderma harzianum 3.9236. J. Agric. Food Chem. 2021, 69, 12695–12704. [Google Scholar] [CrossRef]
- Gruber, S.; Zeilinger, S. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PLoS ONE 2014, 9, e111636. [Google Scholar] [CrossRef] [PubMed]
- Baldin, C.; Segreto, R.; Bazafkan, H.; Schenk, M.; Millinger, J.; Schreiner, U.; Flatschacher, D.; Speckbacher, V.; Pierson, S.; Alilou, M.; et al. Are1-mediated nitrogen metabolism is associated with iron regulation in the mycoparasite Trichoderma atroviride. Microbiol. Res. 2024, 289, 127907. [Google Scholar] [CrossRef]
- Liu, B.; Han, J.; Zhang, H.; Li, Y.; An, Y.; Ji, S.; Liu, Z. The regulatory pathway of transcription factor MYB36 from Trichoderma asperellum Tas653 resistant to poplar leaf blight pathogen Alternaria alternata Aal004. Microbiol. Res. 2024, 282, 127637. [Google Scholar] [CrossRef] [PubMed]
- Trushina, N.; Levin, M.; Mukherjee, P.K.; Horwitz, B.A. PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 2013, 14, 138. [Google Scholar] [CrossRef]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef]
- Sun, Z.B.; Yu, S.F.; Sun, M.H.; Li, S.D.; Hu, Y.F.; Song, H.J. Transcriptomic response of Clonostachys rosea mycoparasitizing Rhizoctonia solani. J. Fungi 2023, 9, 818. [Google Scholar] [CrossRef]
- Piombo, E.; Tzelepis, G.; Ruus, A.G.; Rafiei, V.; Jensen, D.F.; Karlsson, M.; Dubey, M. Sterol regulatory element-binding proteins mediate intrinsic fungicide tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea IK726. Microbiol. Res. 2024, 289, 127922. [Google Scholar] [CrossRef]
- Zou, C.G.; Tu, H.H.; Liu, X.Y.; Tao, N.; Zhang, K.Q. PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environ. Microbiol. 2010, 12, 1868–1877. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.B.; Wang, Q.; Zhang, J.; Jiang, W.Z.; Wang, Q.; Li, S.D.; Ma, G.Z.; Sun, M.H. The transcription factor-encoding gene crtf is involved in Clonostachys chloroleuca mycoparasitism on Sclerotinia sclerotiorum. Microbiol. Res. 2018, 210, 6–11. [Google Scholar] [CrossRef] [PubMed]
- de Vrije, T.; Antoine, N.; Buitelaar, R.M.; Bruckner, S.; Dissevelt, M.; Durand, A.; Gerlagh, M.; Jones, E.E.; Lüth, P.; Oostra, J.; et al. The fungal biocontrol agent Coniothyrium minitans: Production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol. 2001, 56, 58–68. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, T.; Xie, J.; Cheng, J.; Chen, T.; Jiang, D.; Fu, Y. Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microb. Genom. 2020, 6, e000345. [Google Scholar] [CrossRef]
- Lou, Y.; Han, Y.; Yang, L.; Wu, M.; Zhang, J.; Cheng, J.; Wang, M.; Jiang, D.; Chen, W.; Li, G. CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans. Environ. Microbiol. 2015, 17, 4711–4729. [Google Scholar] [CrossRef]
- Yang, X.; Huang, X.; Zhang, L.; Du, L.; Liu, Y. The NDT80-like transcription factor CmNdt80a affects the conidial formation and germination, mycoparasitism, and cell wall integrity of Coniothyrium minitans. J. Appl. Microbiol. 2022, 133, 808–818. [Google Scholar] [CrossRef]
- Yang, F.; Abdelnabby, H.; Xiao, Y. The Zn(II)2Cys6 putative transcription factor is involved in the regulation of leucinostatin production and pathogenicity of the nematophagous fungus Paecilomyces lilacinus. Can. J. Plant Pathol. 2015, 37, 342–352. [Google Scholar] [CrossRef]
- Hussain, M.; Hamid, M.I.; Wang, N.; Bin, L.; Xiang, M.; Liu, X. The transcription factor. SKN7 regulates conidiation, thermotolerance, apoptotic-like cell death and parasitism in the nematode endoparasitic fungus Hirsutella minnesotensis. Sci. Rep. 2016, 6, 30047. [Google Scholar] [CrossRef]
- Castoria, R.; Miccoli, C.; Barone, G.; Palmieri, D.; De Curtis, F.; Lima, G.; Heitman, J.; Ianiri, G. Molecular tools for the yeast Papiliotrema terrestris LS28 and identification of Yap1 as a transcription factor involved in biocontrol activity. Appl. Environ. Microbiol. 2021, 7, e02910-20. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Y.; Li, Y.; Cao, H.; Mao, Z.; Ling, J.; Yang, Y.; Xie, B. Functional genetic analysis of the leucinostatin biosynthesis transcription regulator lcsL in Purpureocillium lilacinum using CRISPR-Cas9 technology. Appl. Microbiol. Biotechnol. 2019, 103, 6187–6194. [Google Scholar] [CrossRef]
- Sui, Y.; Sun, Z.Q.; Zou, Y.P.; Li, W.H.; Jiang, M.G.; Luo, Y.Z.; Liao, W.J.; Wang, Y.H.; Gao, X.W.; Liu, J.; et al. The Rlm1 transcription factor in Candida oleophila contributes to abiotic stress resistance and biocontrol efficacy against postharvest gray mold of kiwifruit. Postharvest Biol. Technol. 2020, 166, 111222. [Google Scholar] [CrossRef]
Biocontrol Fungus | Transcription Factors | Family | Pathogens | Reference |
---|---|---|---|---|
Beauveria bassiana | BbYap1 | bZIP | Galleria mellonella | 29 |
BbCDR1 | Zn2Cys6 | Galleria mellonella | 21 | |
BbSmr1 | C2H2-type | Galleria mellonella | 26 | |
Bbotf1 | Zn(II)2Cys6 | Galleria mellonella | 19 | |
Bbhox2 | Homeobox | Galleria mellonella | 31 | |
Bbklf1 | C2H2-type | Galleria mellonella | 23 | |
Ron1 | NDT80 | Galleria mellonella | 33 | |
Mb1 | MADS-box | Galleria mellonella | 28 | |
Bbctf1α | Far/CTF1-type | Galleria mellonella | 38 | |
Bbctf1β | Far/CTF1-type | Galleria mellonella | 38 | |
BbHapX | bZIP | Galleria mellonella | 30 | |
BbTpc1 | Zn(II)2Cys6 | Galleria mellonella | 18 | |
BbStf1 | Leucine zipper dimerization | Galleria mellonella | 41 | |
BbTFO1 | p53-like | Galleria mellonella | 34 | |
Bbmsn2 | — | Galleria mellonella; Spodoptera litura; Rhipicephalus microplus | 35, 36 | |
BbThm1 | Zn(II)2Cys6 | Galleria mellonella | 20 | |
Bbmcm1 | MADS-box | Galleria mellonella | 27 | |
Crz1 | C2H2-type | Spodoptera litura | 24 | |
BbPacC | — | Galleria mellonella; Tenebrio molitor | 39 | |
zafa | C2H2-type | Galleria mellonella | 25 | |
NirA1 | Zn2Cys6 | Galleria mellonella | 22 | |
Fkh2 | — | Galleria mellonella | 40 | |
BbAreA | GATA-type | Galleria mellonella | 32 | |
hsf1 | HSF-type | Galleria mellonella | 37 | |
skn7 | HSF-type | Galleria mellonella | 37 | |
sfl1 | HSF-type | Galleria mellonella | 37 | |
Metarhizium acridum | MaFTF1 | — | Locusta migratoria manilensis | 52 |
MaAzaR | Zn(II)2Cys6 | Locusta migratoria manilensis | 50 | |
MaSom1 | — | Locusta migratoria manilensis | 51 | |
MaAreB | GATA-type | Locust | 49 | |
MaPacC | C2H2-type | Locusta migratoria manilensis | 45 | |
MaSte12 | C2H2-type | Locusta migratoria | 46 | |
MaCrz1 | C2H2-type | Locusta migratoria manilensis | 47 | |
MaMsn2 | C2H2-type | Locusta migratoria | 44 | |
MaNCP1 | C2H2-type | Locusta migratoria manilensis | 48 | |
Metarhizium robertsii | MrHOX7 | Homeobox | Galleria mellonella | 63 |
MrSt12 | — | Galleria mellonella | 66 | |
MrStuA | APSES-type | Galleria mellonella | 58 | |
MrSkn7 | HSF-type | Galleria mellonella | 65 | |
MBZ1 | bZIP | Galleria mellonella; Bombyx mori | 61 | |
MrpacC | C2H2-type | Bombyx mori | 60 | |
Mrmsn2 | — | Tenebrio molitor | 36 | |
Aftf1 | Zn2Cys6 | Galleria mellonella | 62 | |
Metarhizium rileyi | MrSte12 | C2H2-type | Spodoptera litura | 54 |
MrNsdD | GATA-type | Spodoptera litura | 57 | |
MrStuA | APSES-type | Spodoptera litura | 64 | |
MrXbp | APSES-type | Spodoptera litura | 58 | |
MrSwi6 | — | Spodoptera litura | 59 | |
MrMsn2 | C2H2-type | Spodoptera litura | 36 | |
Mrap1 | bZIP | Spodoptera litura | 56 | |
MripacC | C2H2-type | Spodoptera litura | 53 | |
Coniothyrium minitans | CmNdt80a | NDT80 | Sclerotinia sclerotiorum | 97 |
CmpacC | — | Sclerotinia sclerotiorum | 96 | |
Clonostachys rosea | pacC | — | Panagrellus redivivus | 92 |
sre1 | bHLH | Botrytis cinerea; Rhizoctonia solani | 91 | |
Clonostachys chloroleuca | crtf | Tubby | Sclerotinia sclerotiorum | 93 |
Trichoderma harzianum | ThpacC | — | Sclerotinia sclerotiorum | 84 |
Thctf1 | Cys6Zn(II)2 | Botrytis cinerea | 82 | |
pac1 | — | Rhizoctonia solani; Rhizoctonia meloni; Phytophthora citrophthora | 83 | |
Thc6 | C6 zinc finger | Curvularia lunata | 81 | |
Tha09974 | C2H2-type | Botrytis cinerea; Fusarium oxysporum | 80 | |
Trichoderma asperellum | MYB36 | MYB | Alternaria alternata | 87 |
Trichoderma virens | pacC | — | Rhizoctonia solani; Sclerotium rolfsii | 88 |
Trichoderma atroviride | Ste12 | C2H2-type | Rhizoctonia solani; Botrytis cinerea | 85 |
are1 | GATA-type | Rhizoctonia solani; Botrytis cinerea | 86 | |
Hirsutella minnesotensis | HIM-SKN7 | HSF-type | Heterodera glycines | 99 |
Candida oleophila | Rlm1 | MADS-box | Botrytis cinerea | 102 |
Arthrobotrys flagrans | AfSwi6 | APSES-type | Caenorhabditis elegans | 73 |
Arthrobotrys oligospora | Aomsn2 | C2H2-type | Caenorhabditis elegans | 69 |
AoRlmA | MADS-box | Caenorhabditis elegans | 71 | |
AoStuA | APSES-type | Caenorhabditis elegans | 72 | |
AoSte12 | C2H2-type | Caenorhabditis elegans | 70 | |
Drechslerella dactyloides | DdaCrz1 | C2H2-type | Caenorhabditis elegans | 75 |
DdaSTE12 | C2H2-type | Caenorhabditis elegans | 76 | |
Paecilomyces lilacinus | rolP | Zn(II)2Cys6 | Meloidogyne incognita | 98 |
Purpureocillium lilacinum | lcsL | bZIP | Phytophthora infestans | 101 |
Papiliotrema terrestris | yap1 | bZIP | Penicillium expansum; Monilinia fructigena | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.-J.; Li, X.-F.; Pei, X.-R.; Sun, Z.-B.; Pan, H.-X. Transcription Factors in Biocontrol Fungi. J. Fungi 2025, 11, 223. https://doi.org/10.3390/jof11030223
Song H-J, Li X-F, Pei X-R, Sun Z-B, Pan H-X. Transcription Factors in Biocontrol Fungi. Journal of Fungi. 2025; 11(3):223. https://doi.org/10.3390/jof11030223
Chicago/Turabian StyleSong, Han-Jian, Xiao-Feng Li, Xin-Ran Pei, Zhan-Bin Sun, and Han-Xu Pan. 2025. "Transcription Factors in Biocontrol Fungi" Journal of Fungi 11, no. 3: 223. https://doi.org/10.3390/jof11030223
APA StyleSong, H.-J., Li, X.-F., Pei, X.-R., Sun, Z.-B., & Pan, H.-X. (2025). Transcription Factors in Biocontrol Fungi. Journal of Fungi, 11(3), 223. https://doi.org/10.3390/jof11030223