Longitudinal Study on Clinical Predictors for Allergic Bronchopulmonary Aspergillosis in Children and Young People with Cystic Fibrosis Highlights the Impact of Infection with Aspergillus and Pseudomonas and Ivacaftor Treatment
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Design
2.2. Statistical Analysis
2.2.1. Baseline Characteristics: Cross-Sectional Analysis
2.2.2. Longitudinal Analysis
3. Results
3.1. Baseline Characteristics
3.2. Longitudinal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, D.A.; Moss, R.B.; Kurup, V.P.; Knutsen, A.P.; Greenberger, P.; Judson, M.A.; Denning, D.W.; Crameri, R.; Brody, A.S.; Light, M.; et al. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis—State of the Art: Cystic Fibrosis Foundation Consensus Conference. Clin. Infect. Dis. 2003, 37, 225–264. [Google Scholar] [CrossRef] [PubMed]
- Kaditis, A.G.; Miligkos, M.; Bossi, A.; Colombo, C.; Hatziagorou, E.; Kashirskaya, N.; De Monestrol, I.; Thomas, M.; Mei-Zahav, M.; Chrousos, G.; et al. Effect of Allergic Bronchopulmonary Aspergillosis on FEV1 in Children and Adolescents with Cystic Fibrosis: A European Cystic Fibrosis Society Patient Registry Analysis. Arch. Dis. Child. 2017, 102, 742–747. [Google Scholar] [CrossRef]
- Mastella, G.; Rainisio, M.; Harms, H.K.; Hodson, M.E.; Koch, C.; Navarro, J.; Strandvik, B.; Mckenzie, S.G. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. A European Epidemiological Study. Eur. Respir. J. 2000, 16, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Chesshyre, E.; Warren, F.C.; Shore, A.C.; Davies, J.C.; Armstrong-james, D.; Warris, A. Long-Term Outcomes of Allergic Bronchopulmonary Aspergillosis and Aspergillus Colonization in Children and Adolescents with Cystic Fibrosis. J. Fungi 2024, 10, 599. [Google Scholar] [CrossRef]
- Cystic Fibrosis Trust UK Cystic Fibrosis Registry Annual Data Report 2022. Available online: https://www.cysticfibrosis.org.uk/about-us/uk-cf-registry/reporting-and-resources (accessed on 20 January 2025).
- Geller, D.E.; Kaplowitz, H.; Light, M.J.; Colin, A.A. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Reported Prevalence, Regional Distribution, and Patient Characteristics. Chest 1999, 116, 639–646. [Google Scholar] [CrossRef] [PubMed]
- De Baets, F.; De Keyzer, L.; Van daele, S.; Schelstraete, P.; Van Biervliet, S.; Van Braeckel, E.; Thomas, M.; Wanyama, S.S. Risk Factors and Impact of Allergic Bronchopulmonary Aspergillosis in Pseudomonas Aeruginosa-Negative CF Patients. Pediatr. Allergy Immunol. 2018, 29, 726–731. [Google Scholar] [CrossRef]
- Jubin, V.; Ranque, S.; Le Bel, N.S.; Sarles, J.; Dubus, J.C. Risk Factors for Aspergillus Colonization and Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis. Pediatr. Pulmonol. 2010, 45, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Ritz, N.; Ammann, R.A.; Casaulta Aebischer, C.; Schoeni-Affolter, F.; Schoeni, M.H. Risk Factors for Allergic Bronchopulmonary Aspergillosis and Sensitisation to Aspergillus Fumigatus in Patients with Cystic Fibrosis. Eur. J. Pediatr. 2005, 164, 577–582. [Google Scholar] [CrossRef]
- Bird, S.; O’Bren C, M.S. RCPCH Abstracts. Arch. Dis. Child. 2010, 95, A58–A61. [Google Scholar]
- Poore, T.S.; Hong, G.; Zemanick, E.T. Fungal Infection and Inflammation in Cystic Fibrosis. Pathogens 2021, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Wainwright, C.E.; Canny, G.J.; Chilvers, M.A.; Howenstine, M.S.; Munck, A.; Mainz, J.G.; Rodriguez, S.; Li, H.; Yen, K.; et al. Efficacy and Safety of Ivacaftor in Patients Aged 6 to 11 Years with Cystic Fibrosis with a G551D Mutation. Am. J. Respir. Crit. Care Med. 2013, 187, 1219–1225. [Google Scholar] [CrossRef]
- Sutharsan, S.; Mckone, E.F.; Downey, D.G.; Duckers, J.; Macgregor, G.; Tullis, E.; Van Braeckel, E.; Wainwright, C.E.; Watson, D.; Ahluwalia, N.; et al. 24-Week Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in People with Cystic Fibrosis Homozygous for F508del-CFTR: A Phase 3b Randomised Controlled Trial. Lancet Reespir. Med. 2022, 10, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.J.; Mall, M.A.; Alvarez, A.; Colombo, C.; de Winter-de Groot, K.M.; Fajac, I.; McBennett, K.A.; McKone, E.F.; Ramsey, B.W.; Sutharsan, S.; et al. Triple Therapy for Cystic Fibrosis Phe508del-Gating and -Residual Function Genotypes. N. Engl. J. Med. 2021, 385, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; Van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and Safety of the Elexacaftor plus Tezacaftor plus Ivacaftor Combination Regimen in People with Cystic Fibrosis Homozygous for the F508del Mutation: A Double-Blind, Randomised, Phase 3 Trial. Lancet 2019, 394, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M. Pseudomonas Aeruginosa in Cystic Fibrosis Patients with G551D-CFTR Treated with Ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Frost, F.J.; Nazareth, D.S.; Charman, S.C.; Winstanley, C.; Walshaw, M.J. Ivacaftor Is Associated with Reduced Lung Infection by Key Cystic Fibrosis Pathogens A Cohort Study Using National Registry Data. Ann. Am. Thorac. Soc. 2019, 16, 1375–1382. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.K.; Volkova, N.; Ahluwalia, N.; Sahota, G.; Xuan, F.; Chin, A.; Weinstock, T.G.; Ostrenga, J.; Elbert, A. Real-World Safety and Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor in People with Cystic Fibrosis: Interim Results of a Long-Term Registry-Based Study. J. Cyst. Fibros. 2023, 22, 730–737. [Google Scholar] [CrossRef] [PubMed]
- McNally, P.; Lester, K.; Stone, G.; Elnazir, B.; Williamson, M.; Cox, D.; Linnane, B.; Kirwan, L.; Rea, D.; O’Regan, P.; et al. Improvement in Lung Clearance Index and Chest Computed Tomography Scores with Elexacaftor/Tezacaftor/Ivacaftor Treatment in People with Cystic Fibrosis Aged 12 Years and Older—The RECOVER Trial. Am. J. Resp. Crit. Care Med. 2023, 208, 917–929. [Google Scholar] [CrossRef]
- Agarwal, R.; Sehgal, I.S.; Muthu, V.; Denning, D.W.; Chakrabarti, A.; Soundappan, K.; Garg, M.; Rudramurthy, S.M.; Dhooria, S.; Armstrong-James, D.; et al. Revised ISHAM-ABPA Working Group Clinical Practice Guidelines for Diagnosing, Classifying and Treating Allergic Bronchopulmonary Aspergillosis/Mycoses. Eur. Respir. J. 2024, 63, 2400061. [Google Scholar] [CrossRef] [PubMed]
- Welsh, K.G.; Holden, K.A.; Wardlaw, A.J.; Satchwell, J.; Monteiro, W.; Pashley, C.H.; Gaillard, E.A. Fungal Sensitization and Positive Fungal Culture from Sputum in Children with Asthma Are Associated with Reduced Lung Function and Acute Asthma Attacks Respectively. Clin. Exp. Allergy 2021, 51, 790–800. [Google Scholar] [CrossRef]
- Noverr, M.C.; Noggle, R.M.; Toews, G.B.; Huffnagle, G.B. Role of Antibiotics and Fungal Microbiota in Driving Pulmonary Allergic Responses. Infect. Immun. 2004, 72, 4996–5003. [Google Scholar] [CrossRef] [PubMed]
- Bilton, D.; Osmond, J. UK CF Registry Annual Data Report 2009. Available online: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2009%20Registry%20Annual%20Data%20Report.pdf (accessed on 30 January 2025).
- Charman, S.; Lee, A.; Cosgriff, R.; McClenaghan, E.; Carr, S. UK Cystic Fibrosis Registry 2019 Annual Data Report. Available online: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2019%20Registry%20Annual%20Data%20report_Sep%202020.pdf (accessed on 30 January 2025).
- Hamosh, A.; King, T.M.; Rosenstein, B.J.; Corey, M.; Levison, H.; Durie, P.; Tsui, L.C.; McIntosh, I.; Keston, M.; Brock, D.J.H.; et al. Cystic Fibrosis Patients Bearing Both the Common Missense Mutation Gly→asp at Codon 551 and the ΔF508 Mutation Are Clinically Indistinguishable from ΔF508 Homozygotes, except for Decreased Risk of Meconium Ileus. Am. J. Hum. Genet. 1992, 51, 245–250. [Google Scholar] [PubMed]
- Comer, D.M.; Ennis, M.; McDowell, C.; Beattie, D.; Rendall, J.; Hall, V.; Elborn, J.S. Clinical Phenotype of Cystic Fibrosis Patients with the G551D Mutation. QJM An. Int. J. Med. 2009, 102, 793–798. [Google Scholar] [CrossRef] [PubMed]
- McKone, E.F.; Emerson, S.S.; Edwards, K.L.; Aitken, M.L. Effect of Genotype on Phenotype and Mortality in Cystic Fibrosis: A Retrospective Cohort Study. Lancet 2003, 361, 1671–1676. [Google Scholar] [CrossRef]
- De Boeck, K.; Zolin, A. Year to Year Change in FEV1 in Patients with Cystic Fibrosis and Different Mutation Classes. J. Cyst. Fibros. 2017, 16, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, R.; Arora, A.; Chakrabarti, A.; Rudramurthy, S.M.; Agarwal, R. Occurrence of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Patients with Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Mycopathologia 2022, 187, 147–155. [Google Scholar] [CrossRef]
- Agarwal, R.; Khan, A.; Aggarwal, A.N.; Gupta, D. Link between CFTR Mutations and ABPA: A Systematic Review and Meta-Analysis. Mycoses 2012, 55, 357–365. [Google Scholar] [CrossRef]
- Bessonova, L.; Volkova, N.; Higgins, M.; Bengtsson, L.; Tian, S.; Simard, C.; Konstan, M.W.; Sawicki, G.S.; Sewall, A.; Nyangoma, S.; et al. Data from the US and UK Cystic Fibrosis Registries Support Disease Modification by CFTR Modulation with Ivacaftor. Thorax 2018, 73, 731–740. [Google Scholar] [CrossRef]
- Harvey, C.; Weldon, S.; Elborn, S.; Downey, D.G.; Taggart, C. The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. Int. J. Mol. Sci. 2022, 23, 3513. [Google Scholar] [CrossRef]
- Fritsch, N.C.; Green, H.D.; Jones, A.M.; Barry, P. The Influence of the CFTR Modulator Ivacaftor on Aspergillosis in CF. Thorax 2019, 74, A11.2. [Google Scholar]
- Currie, A.J.; Main, E.T.; Wilson, H.M.; Armstrong-James, D.; Warris, A. CFTR Modulators Dampen Aspergillus-Induced Reactive Oxygen Species Production by Cystic Fibrosis Phagocytes. Front. Cell. Infect. Microbiol. 2020, 10, 372. [Google Scholar] [CrossRef]
- Zhang, S.; Shrestha, C.L.; Kopp, B.T. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators Have Differential Effects on Cystic Fibrosis Macrophage Function. Sci. Rep. 2018, 8, 17066. [Google Scholar] [CrossRef]
- Wainwright, C.; McColley, S.A.; McNally, P.; Powers, M.; Ratjen, F.; Rayment, J.H.; Retsch-Bogart, G.; Roesch, E.; Ahluwalia, N.; Chin, A.; et al. Long-Term Safety and Efficacy of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged >6 Years with Cystic Fibrosis and at Least One F508del Allele A Phase 3, Open-Label Clinical Trial. Am. J. Respir. Crit. Care Med. 2023, 208, 68–78. [Google Scholar] [CrossRef]
- Zolin, A.; Adamoli, A.; Bakkeheim, E.; van Rens, J. European CF Society Patient Registry Annual Report 2022. 2024. Available online: https://www.ecfs.eu/sites/default/files/Annual%20Report_2022_ECFSPR_20240603.pdf (accessed on 30 January 2025).
- Mehta, A.M.; Lee, I.; Li, G.; Jones, M.K.; Hanson, L.; Lonabaugh, K.; List, R.; Borish, L.; Albon, D.P. The Impact of CFTR Modulator Triple Therapy on Type 2 Inflammatory Response in Patients with Cystic Fibrosis. Allergy Asthma Clin. Immunol. 2023, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Chesnay, A.; Bailly, É.; Cosson, L.; Flament, T.; Desoubeaux, G. Advent of Elexacaftor/Tezacaftor/Ivacaftor for Cystic Fibrosis Treatment: What Consequences on Aspergillus-Related Diseases? Preliminary Insights. J. Cyst. Fibros. 2022, 21, 1084–1085. [Google Scholar] [CrossRef]
- Eschenhagen, P.N.; Bacher, P.; Grehn, C.; Mainz, J.G.; Scheffold, A.; Schwarz, C. Proliferative Activity of Antigen-Specific CD154+ T Cells against Bacterial and Fungal Respiratory Pathogens in Cystic Fibrosis Decreases after Initiation of Highly Effective CFTR Modulator Therapy. Front. Pharmacol. 2023, 14, 1180826. [Google Scholar] [CrossRef]
- Knutsen, A.P. Genetic and Respiratory Tract Risk Factors for Aspergillosis: ABPA and Asthma with Fungal Sensitization. Med. Mycol. 2006, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Madan, T.; Shah, A.; Muralidhar, K.; Sarma, P.U. Association of Polymorphisms in the Collagen Region of SP-A2 with Increased Levels of Total IgE Antibodies and Eosinophilia in Patients with Allergic Bronchopulmonary Aspergillosis. J. Allergy Clin. Immunol. 2003, 111, 1001–1007. [Google Scholar] [CrossRef]
- Rocchi, S.; Richaud-Thiriez, B.; Barrera, C.; Grenouillet, F.; Dalphin, J.C.; Millon, L.; Reboux, G. Evaluation of Mold Exposure in Cystic Fibrosis Patients’ Dwellings and Allergic Bronchopulmonary Risk. J. Cyst. Fibros. 2015, 14, 242–247. [Google Scholar] [CrossRef] [PubMed]
Whole Cohort | ABPA Absent | ABPA Present | p-Value | |
---|---|---|---|---|
(n = 1612) | (n = 1420) | (n = 192) | ||
Clinical characteristics (2009) | ||||
Male sex | 829 | 729 | 100 | 0.85 |
Number (%) | (51.4%) | (51.3%) | (52.1%) | |
Age in years | 11.9 | 11.9 | 12.4 | 0.008 |
Mean (SD) | (2.51) | (2.51) | (2.50) | |
CFTR genotype (n = 1601) * | 0.32 | |||
F508del/F508del | 895 | 786 | 109 | |
Number, (%) | 55.9% | 55.8% | 56.8% | |
F508del/Other | 593 | 528 | 65 | |
Number, (%) | 37.0% | 37.5% | 33.9% | |
Other | 113 | 95 | 18 | |
Number, (%) | 7.1% | 6.7% | 9.4% | |
ppFEV1 (n = 1444) * | 80.3 | 80.9 | 76.0 | 0.0003 |
Mean (SD) (range) | (16.9) (18.5–135.7) | (16.9) (18.5–135.7) | (16.4) (30.9–113.1) | |
pBMI (n = 1550) * | 49.4 | 48.8 | 53.6 | 0.04 |
Mean (SD) (range) | (29.0) (0–99.9) | (29.1) (0–99.9) | 27.9 (0.9–99.3) | |
Respiratory disease severity markers (2009) | ||||
Oxygen therapy (n = 1469) * | 44 | 30 | 14 | <0.0001 |
Number, (%) | (3.0%) | (2.3%) | (7.9%) | |
Non-invasive ventilation | 27 | 16 | 11 | <0.0001 |
(n = 1445) * Number, (%) | (1.9%) | (1.3%) | (6.2%) |
Factors Associated with ABPA in 2009: (n = 1356) * | ||
---|---|---|
Clinical characteristics OR (95% CI) | ||
ppFEV1 | 0.998 (0.986–1.009) | p = 0.65 |
pBMI | 1.009 (1.003–1.015) | p = 0.004 |
Infection OR (95% CI) | ||
Pseudomonas aeruginosa ** | 0.92 (0.62–1.38) | p = 0.70 |
Aspergillus spp. ** | 2.00 (1.15–3.49) | p = 0.01 |
Treatments OR (95% CI) | ||
IV antibiotic requirement *** | 3.59 (2.41–5.36) | p < 0.0001 |
Chronic oral macrolide | 1.24 (0.87–1.76) | p = 0.24 |
Pancreatic enzyme supplementation | 1.97 (0.81–4.78) | p = 0.13 |
ABPA Predictors: (n = 1394) * | ||
---|---|---|
Patient Characteristics: OR (95% CI) | ||
Age | 0.89 (0.87–0.91) | p < 0.0001 |
CFTR genotype F508del heterozygous (vs. F508del homozygous) Other (vs. F508del homozygous) | 1.07 (0.93–1.22) 0.82 (0.62–1.07) | p = 0.16 |
Male gender | 1.45 (1.28–1.65) | p < 0.0001 |
Disease characteristics at annual review preceding year of ABPA diagnosis: OR (95% CI) | ||
ppFEV1 | 0.98 (0.98–0.99) | p < 0.0001 |
pBMI | 1.000 (0.999–1.001) | p = 0.66 |
Infection at annual review preceding year of ABPA diagnosis: OR (95% CI) | ||
Pseudomonas aeruginosa ** | 1.31 (1.15–1.49) | p < 0.0001 |
Aspergillus colonisation ** | 1.47(1.28–1.69) | p < 0.0001 |
ABPA Predictors: (n = 1394) * | ||
---|---|---|
Treatments at Annual Review Preceding Year of ABPA Diagnosis: OR (95% CI) | ||
Ivacaftor (Kalydeco®) | 0.46 (0.26–0.80) | p = 0.006 |
Lumacaftor/ivacaftor (Orkambi®) | 0.64 (0.29–1.44) | p = 0.28 |
Pancreatic enzyme supplements | 0.86 (0.68–1.09) | p = 0.22 |
Total IV antibiotic days | 1.000 (0.996–1.000) | p = 0.24 |
Chronic oral macrolide use | 1.30 (1.15–1.48) | p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesshyre, E.L.D.; Enderby, B.; Shore, A.C.; Warren, F.C.; Warris, A. Longitudinal Study on Clinical Predictors for Allergic Bronchopulmonary Aspergillosis in Children and Young People with Cystic Fibrosis Highlights the Impact of Infection with Aspergillus and Pseudomonas and Ivacaftor Treatment. J. Fungi 2025, 11, 116. https://doi.org/10.3390/jof11020116
Chesshyre ELD, Enderby B, Shore AC, Warren FC, Warris A. Longitudinal Study on Clinical Predictors for Allergic Bronchopulmonary Aspergillosis in Children and Young People with Cystic Fibrosis Highlights the Impact of Infection with Aspergillus and Pseudomonas and Ivacaftor Treatment. Journal of Fungi. 2025; 11(2):116. https://doi.org/10.3390/jof11020116
Chicago/Turabian StyleChesshyre, Emily L. D., Beth Enderby, Angela C. Shore, Fiona C. Warren, and Adilia Warris. 2025. "Longitudinal Study on Clinical Predictors for Allergic Bronchopulmonary Aspergillosis in Children and Young People with Cystic Fibrosis Highlights the Impact of Infection with Aspergillus and Pseudomonas and Ivacaftor Treatment" Journal of Fungi 11, no. 2: 116. https://doi.org/10.3390/jof11020116
APA StyleChesshyre, E. L. D., Enderby, B., Shore, A. C., Warren, F. C., & Warris, A. (2025). Longitudinal Study on Clinical Predictors for Allergic Bronchopulmonary Aspergillosis in Children and Young People with Cystic Fibrosis Highlights the Impact of Infection with Aspergillus and Pseudomonas and Ivacaftor Treatment. Journal of Fungi, 11(2), 116. https://doi.org/10.3390/jof11020116