Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture
Abstract
1. Introduction
2. Methodology
3. Assembly of Fungal Communities in the Rhizosphere Microbiome and Their Species Composition
3.1. Dynamic Building with Soil, Plant, and Fungi
3.2. Species and Functions of Rhizosphere Fungi
4. Inter- and Intra-Specific Communication of Rhizosphere Fungi
4.1. Hyphosphere
4.2. Diffusible Signaling Molecule
Fungi | Produced Molecules | Communication Type (Intraspecific/Interspecific/Interkingdom) | Function | References |
---|---|---|---|---|
Candida spp. | Farnesol Tyrosol γ-butyrolactone Phenylethanol, 3,4-Dihydroxyphenyl ethanol | Intraspecific | Regulate morphological transitions (yeast-to-hyphae); control biofilm maturation and quorum sensing; coordinate virulence gene expression. | [78,79] |
Aspergillus spp. | Gliotoxin Pyomelanin 1-Octen-3-olCyclopiazonic acid | Intraspecific & Interspecific (bacteria/fungi) | Mediate competition in microbial communities via antimicrobial activity; regulate fungal sporulation. | [80,81] |
Trichoderma spp. | 6-Pentyl-α-pyrone (6-PAP) Trichovirin Volatile terpenes Trichodermin Chitinase-inducing factors | Interspecific & Interkingdom (Plant) | Inhibit phytopathogens (e.g., Fusarium oxysporum); induce plant systemic resistance via jasmonic acid signaling. | [82] |
Penicillium spp. | Penicillic acid Sesquiterpenoids Roquefortine C PR-toxin Citrinin | Intraspecific & Interspecific | Regulate fungal growth; modulate plant defense responses in fruits (e.g., apples). | [83] |
Rhizopus spp. | Putrescine Cadaverine Spermidine Ethylene precursor (1-aminocyclopropane -1- carboxylic acid) | Intraspecific & Interkingdom (Plant) | Promote fungal spore germination; enhance plant root elongation and nutrient uptake. | [84] |
Arbuscular Mycorrhizal Fungi (AMF) e.g., Glomus spp. | Strigolactone analogs Flavonoid-inducing factors Mycorrhizal lipochitooligosaccharides (Myc-LCOs) Strigolactone mimics | Interkingdom (Plant–Fungus) | Trigger fungal spore germination and hyphal branching, stimulate plant root colonization and phosphate transport; facilitating the establishment of mycorrhizal symbiotic relationships. | [85] |
Saccharomyces cerevisiae | 2-Phenylethanol Maltol Isoamyl alcohol 2-Methylpropanol | Intraspecific | Regulates yeast flocculation and fermentation processes; participate in signal transmission for nutrient exchange during symbiosis with plants; inhibit bacterial biofilm formation (e.g., E. coli). | [86,87] |
Fusarium spp. | Fusaric acid Fumonisins Beauvericin Zearalenone | Interspecific & Interkingdom (Plant) | Suppress plant immune responses; modulate plant hormone signaling (auxin pathways); facilitate fungal invasion of cereal crops (e.g., wheat). | [88] |
Metarhizium spp. | Volatile organic compounds (e.g., 1-octen-3-ol, 3-Octanone) Destruxins | Interkingdom (plants/insects) | Stimulate plant growth via auxin-like activity; attract insect hosts for fungal pathogenesis. | [89] |
Piriformospora indica | Indole-3-acetic acid (IAA) Gibberellin A3 Sphingolipids | Interkingdom (plants) | Promote plant growth through hormone signaling; enhance stress tolerance. | [90] |
4.3. Biofilm
5. Application and Development
5.1. Ecological Restoration
Type | Contaminant | Application | Repair | Species | References |
---|---|---|---|---|---|
Cellulose decomposing fungi | micropollutants | Forest and grassland | Secreting cellulase and lignin enzyme to degrade large plants and promote ecological cycle | Phanaerochaete chrysosporium Pleurotus ostreatus | [104] |
arbuscular mycorrhizal fungi | Barren land | Sandy land | Form symbiotic relationship with plant roots to enhance plant resistance to abiotic stresses, thus improving soil structure | Rhizophagus Diversispora epigaea Gigaspora rosea | [105] |
Halophilic fungi | Rigid, deteriorating soil | Mining areas Saline-alkali land | Adapt and improve soil structure and fertility through metabolism to promote vegetation recovery | Aspergillus glaucus | [106] |
Plastic degrading fungi | Plastic polymer | litter-piled field | Biological reactions occur with plastics through the enzymes produced, breaking chemical bonds between plastic molecules or polymers |
Alternaria alternate
Aspergillus tubingensis Penicillium oxalicum Pestalotiopsis microspora | [107] |
Pesticide-tolerant fungi | Organochlorine, phosphorus and other pesticides | Overused farmland | Secretory enzymes form a degradation system, decomposes pesticide molecules into inorganic compounds through co-metabolism and mineralization |
Phanerochaete
Acremonium sp. Rhodococcus sp. Paecilomyces lilacinus | [108,109] |
basidiomycetes | polycyclic aromatic hydrocarbons, polychlorinated biphenyls | Soil Water | intracellular segregation, organic acid precipitation and metal binding proteins | Aspergillus niger Podospora anserina | [110] |
Mushroom | Heavy metal, Dyes, etc. | Wastewater and field | Mycelium cell wall has ion adsorption capacity | Trachyderma lucidum Phoenix mushroom | [111,112] |
Algae | water contamination | Water | Photosynthesis absorbs carbon dioxide and nutrients such as nitrogen, phosphorus and ammonia in wastewater. Both adsorption and desorption mechanisms are more effective in living cells than in dead cells | Phycoremediation | [113] |
5.2. Host Growth Promotion
5.3. Enhanced Host Resistance
Genus | Species | Applied | Control | Product (Country) | References |
---|---|---|---|---|---|
Bacillus | B. amyloliquefaciens B. cepacia B. cereus B. laterosporus B. lichenifomis B. subtilis B. thuringiensis B. velezensis | Various grain Cotton Vegetable Fruit Arabidopsis | Sheath blight Blight Chlorotic wilt Black rot, Anthrax, Rice blast Lepidoptera, Root-knot nematode | ARVATICO (China) Double nickel (Canada) XenTari WG (Canada) Companion (USA) Provilar (USA) | [154,155] |
Pseudomonas | P. fluorescens P. putida P. brassicacaerum P. oryzihabitans P. marginali | Tomato, potato, cucumber, rape, strawberry, Cotton, Various grain, Tobacco | Bacterial wilt, Plague, Gray mold, Root rot, Black shank | GaoTian (China) | [156,157,158] |
Agrobacterium | A. amazonense A. radiobacter A. rhizoides A. larrymoorei | Fruit tree, rice | Root cancerosis | K599 (China) | [159] |
Collimonas | C. fungivorans | Tomato, cabbage, watermelon, jujube | Scab Black rot | Complex biological agent (China) | [160] |
Comamonas | C. acidovorans C. aquatica | Rice Kiwi | Sheath blight | Ca30 (China) | [161] |
Trichoderma | T. harzianum T. longibrachiatum T. viride T. asperellum T. atroviride | Various grain, vegetable, fruit. Agricultural and forestry fields | Dry rot, Wilt, Verticillium | Trianum (Canada) TrichoPlus (USA) RootShield Plus (USA) Trichodex®, Trianum® (Holland) | [162,163] |
Streptomyces | S. jingyangensis S. bungoensis S. fimbriatus S.lydicus S.griseoviridis | Vegetable, Pear | Anthrax, Gray mold Black blot | TJ561 (China) Actinovate®, Mycostop® | [164] |
Aspergillus | A. oryzae A. niger A. awamori A. glaucus A. terreus | Rice Maize Peanut | Blast | CGMCCNo.7127 (China) | [165] |
Penicillum | P. frequentans P. baileii P. citri P.P.P. | Cucumber Apple Maize Wheat Cotton Sesame Tobacco | Wilt Verticillium Anthracnose Root rot botrytis | MoonBiotech (China) | [166] |
Paecilomyces | P. lilacinus | Various fruits and vegetables, tobacco, rice, oil crops | Plant pathogenic nematode | JBC033 (China) | [167] |
Beauveria | B. bassiana | Forest, nurserie, lawn, field | Grub, ostrinia nubilalis Dendrolimus Empoasca vitis | Tackler (India) Tezpetix Beauve (USA) ARBIOGY (China) | [168,169] |
Metarhizium | M. anisopliae M. ablum M. cylindrosporum M. acridum M. lepidiotae M. globosum M.robertsii M.majus M.rileyi | Agriculture and forestry, fruit trees, fields | Scarabean beetle Weevil Wireworm Lepidoptera Hemiptera | JULIXIN (China) | [170,171,172] |
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuhrman, J.A. Microbial community structure and its functional implications. Nature 2009, 459, 193–199. [Google Scholar] [CrossRef]
- Kayiranga, A.; Isabwe, A.; Yao, H.; Shangguan, H.; Coulibaly, J.L.K.; Breed, M.; Sun, X. Distribution patterns of soil bacteria, fungi, and protists emerge from distinct assembly processes across subcommunities. Ecol. Evol. 2024, 14, e11672. [Google Scholar] [CrossRef]
- Islam, W.; Noman, A.; Naveed, H.; Huang, Z.; Chen, H.Y.H. Role of environmental factors in shaping the soil microbiome. Environ. Sci. Pollut. Res. 2020, 27, 41225–41247. [Google Scholar] [CrossRef] [PubMed]
- Pantigoso, H.A.; Newberger, D.; Vivanco, J.M. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition. J. Appl. Microbiol. 2022, 133, 2864–2876. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Feng, G.; Limpens, E.; Bonfante, P.; Xie, X.; Zhang, L. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nat. Rev. Microbiol. 2024, 22, 773–790. [Google Scholar] [CrossRef]
- Khade, O.; Sruthi, K. The rhizosphere microbiome: A key modulator of plant health and their role in secondary metabolites production. In Biotechnology of Emerging Microbes; Sarma, H., Joshi, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 327–349. [Google Scholar]
- Luo, C.; He, Y.; Chen, Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. Curr. Res. Microb. Sci. 2025, 8, 100322. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- O’Brien, A.M.; Harrison, T.L. Host match improves root microbiome growth. Nat. Microbiol. 2021, 6, 1103–1104. [Google Scholar] [CrossRef]
- Lü, H.; Tang, G.-X.; Huang, Y.-H.; Mo, C.-H.; Zhao, H.-M.; Xiang, L.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Li, Q.-X. Response and adaptation of rhizosphere microbiome to organic pollutants with enriching pollutant-degraders and genes for bioremediation: A critical review. Sci. Total Environ. 2024, 912, 169425. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, A.; et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 2019, 136, 107521. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Whalen, E.D.; Grandy, A.S.; Geyer, K.M.; Morrison, E.W.; Frey, S.D. Microbial trait multifunctionality drives soil organic matter formation potential. Nat. Commun. 2024, 15, 10209. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.S.; Du, D.L. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Nizamani, M.M.; Hughes, A.C.; Qureshi, S.; Zhang, Q.; Tarafder, E.; Das, D.; Acharya, K.; Wang, Y.; Zhang, Z.-G. Microbial biodiversity and plant functional trait interactions in multifunctional ecosystems. Appl. Soil Ecol. 2024, 201, 105515. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Védère, C.; Lebrun, M.; Honvault, N.; Aubertin, M.-L.; Girardin, C.; Garnier, P.; Dignac, M.-F.; Houben, D.; Rumpel, C. How does soil water status influence the fate of soil organic matter? A review of processes across scales. Earth-Sci. Rev. 2022, 234, 104214. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Photosynthesis. In Plant Physiological Ecology; Lambers, H., Chapin, F.S., Pons, T.L., Eds.; Springer: New York, NY, USA, 2008; pp. 11–99. [Google Scholar]
- Afzal, M.R.; Naz, M.; Yu, Y.; Yan, L.; Wang, P.; Mohotti, J.; Hao, G.F.; Zhou, J.-J.; Chen, Z.; Zhang, L.; et al. Root exudates: The rhizospheric frontier for advancing sustainable plant protection. Resour. Environ. Sustain. 2025, 21, 100249. [Google Scholar] [CrossRef]
- Fan, X.Y.; Ge, A.-H.; Qi, S.S.; Guan, Y.; Wang, R.; Yu, N.; Wang, E. Root exudates and microbial metabolites: Signals and nutrients in plant-microbe interactions. Sci. China Life Sci. 2025, 68, 2290–2302. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zou, Y.; Zheng, J.; Qiu, S.; Liu, L.; Wei, C. Quorum sensing-mediated microbial interactions: Mechanisms, applications, challenges and perspectives. Microbiol. Res. 2023, 273, 127414. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.; Zhalnina, K.; Kosina, S.; Northen, T.R.; Sasse, J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat. Commun. 2023, 14, 1649. [Google Scholar] [CrossRef]
- Poria, V.; Singh, S.; Nain, L.; Singh, B.; Saini, J.K. Rhizospheric Microbial Communities: Occurrence, Distribution, and Functions. In Microbial Metatranscriptomics Belowground; Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K., Eds.; Springer: Singapore, 2021; pp. 239–271. [Google Scholar]
- Wang, Y.; Ebrahimi, A.; Chen, G.; Zhang, Z.; Zhu, K.; Franklin, S.; Jin, Y.; Liu, Y.; Wang, G. Active motility and chemotactic movement regulate the microbial early-colonization and biodiversity. Geoderma 2025, 460, 117419. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, Y.; Chang, H.; Wang, C.; Yang, J.; Shi, J.; Gao, J.; Yang, W.; Lan, L.; Wang, Y.; et al. An SHR–SCR module specifies legume cortical cell fate to enable nodulation. Nature 2021, 589, 586–590. [Google Scholar] [CrossRef]
- Wu, S.-H.; Luo, M.-X.; Chang, J.-T.; Chen, Y.; Liao, P.-C. Unravelling the dynamics of soil microbial communities under the environmental selection and range shift process in afforestation ecosystems. Sci. Total Environ. 2023, 898, 165476. [Google Scholar] [CrossRef]
- Pattnaik, S.S.; Busi, S. Rhizospheric fungi: Diversity and potential biotechnological applications. In Recent Advancement in White Biotechnology Through Fungi; Yadav, A.N., Mishra, S., Singh, S., Gupta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 63–84. [Google Scholar]
- Wang, Z.; Li, T.; Wen, X.; Liu, Y.; Han, J.; Liao, Y.; DeBruyn, J.M. Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth. Front. Microbiol. 2017, 8, 1301. [Google Scholar] [CrossRef]
- Suyal, D.C.; Prasad, P.; Sahu, B.; Soni, R.; Goel, R. Rhizosphere fungi and their plant association: Current and future prospects. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology; Sharma, V.K., Shah, M.P., Parmar, S., Kumar, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 339–356. [Google Scholar]
- Tang, B.; Man, J.; Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecol. Lett. 2023, 26, 2087–2097. [Google Scholar] [CrossRef]
- Bhantana, P.; Rana, M.S.; Sun, X.-C.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A.; et al. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 84, 19–37. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Vanneste, S.; Pei, Y.; Friml, J. Mechanisms of auxin action in plant growth and development. Nat. Rev. Mol. Cell Biol. 2025, 26, 648–666. [Google Scholar] [CrossRef] [PubMed]
- Adedayo, A.A.; Babalola, O.O. Fungi that promote plant growth in the rhizosphere boost crop growth. J. Fungi 2023, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Ghorui, M.; Chowdhury, S.; Balu, P.; Das, K.; Sunar, K. Boosting plant immunity: The functional role and mechanism of arbuscular mycorrhizal fungi in resistance. In Plant Microbiome and Biological Control: Emerging Trends and Applications; Mathur, P., Roy, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 195–219. [Google Scholar]
- Darsaraei, H.; Afshan, N.U.S.; Afzal, S.; Zafar, I.; Anwar, A.; Goetz, M.; Khodaparast, S.A.; Braun, U.; Khodaparast, G.; Braun, S. A re-assessment of Erysiphe polygoni: Phylogenetic analyses suggest an undescribed species. Sydowia 2023, 75, 233–242. [Google Scholar]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Li, Y.; Yang, N.; Mu, T.; Wu, X.; Zhao, C. Diversity of mycoviruses present in strains of binucleate rhizoctonia and multinucleate rhizoctonia, causal agents for potato stem canker or black scurf. J. Fungi 2023, 9, 214. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, S.; Li, F.; Zhang, S.; Zhang, H.; Sun, R.; Li, G. Research Overview and Prospects of the Downy Mildew in Cruciferous Vegetables. Acta Hortic. Sinica 2025, 52, 1233–1250. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, Y.; Hao, Y.; Lu, J. Genetic diversity and population structure of Plasmopara viticola in China. Eur. J. Plant Pathol. 2014, 140, 365–376. [Google Scholar] [CrossRef]
- Zeng, X.-Y. A checklist for identifying Meliolales species. Mycosphere 2017, 8, 218–359. [Google Scholar] [CrossRef]
- Murria, S.; Kaur, N.; Arora, N.; Mahal, A.K. Field reaction and metabolic alterations in grape (Vitis vinifera L.) varieties infested with anthracnose. Sci. Hortic. 2018, 235, 286–293. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, X.; Wang, X.; Guo, M. Colletotrichum spaethianum Causing Anthracnose on Polygonatum cyrtonema in Anhui Province, China. Plant Dis. 2021, 105, 509. [Google Scholar] [CrossRef]
- Mohammadi, A.; Bahramikia, S. Molecular identification and genetic variation of Alternaria species isolated from tomatoes using ITS1 sequencing and inter simple sequence repeat methods. Curr. Med. Mycol. 2019, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hermosa, R.; Cardoza, R.E.; Rubio, M.B.; Gutiérrez, S.; Monte, E. Chapter 10 - Secondary Metabolism and Antimicrobial Metabolites of Trichoderma. In Biotechnology and Biology of Trichoderma; Gupta, V.K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 125–137. [Google Scholar]
- Dong, S.; Zhou, S. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies. J. Integr. Agric. 2021, 21, 3456–3466. [Google Scholar] [CrossRef]
- Van Tran, Q.; Ha, C.V.; Vvedensky, V.V.; Han, V.-C. Current status and characterization of Phytophthora species associated with gummosis of citrus in Northern Vietnam. J. Phytopathol. 2023, 171, 478–488. [Google Scholar] [CrossRef]
- Chandrasekaran, U.M.; Perumal, N.; Balakrishnan, A.; Ravikumar, P. Biocontrol potential of Acremonium sclerotigenum (Moreau & R. Moreau ex Valenta) W. Gams Against Wheat Oat Rust Fungi (Puccinia Species). Indian Phytopathol. 2024, 77, 739–746. [Google Scholar] [CrossRef]
- Castillejo, M.-Á.; Fondevilla-Aparicio, S.; Fuentes-Almagro, C.; Rubiales, D. Quantitative analysis of target peptides related to resistance against Ascochyta blight (Peyronellaea pinodes) in pea. J. Proteome Res. 2020, 19, 1000–1012. [Google Scholar] [CrossRef]
- Cai, J.; Ma, D.Y.; Yu, F.; Qiang, S. Expression analysis of chickpea defense-related genes induced by Ascochyta rabiei. J. Plant Prot. 2019, 46, 1121–1131. [Google Scholar]
- Liu, X.; Li, B.; Cai, J.; Zheng, X.; Feng, Y.; Huang, G. Colletotrichum species causing anthracnose of Rubber trees in China. Sci. Rep. 2018, 8, 10435. [Google Scholar] [CrossRef]
- Qu, Z.; Ren, X.; Du, Z.; Hou, J.; Li, Y.; Yao, Y.; An, Y. Fusarium mycotoxins: The major food contaminants. mLife 2024, 3, 176–206. [Google Scholar] [CrossRef]
- Šliková, S.; Gregová, E.; Pastirčák, M. Toxin accumulation in avena species after different spray inoculation by Fusarium graminearum and F. culmorum. Cereal Res. Commun. 2019, 47, 656–668. [Google Scholar] [CrossRef]
- Riedling, O.L.; David, K.T.; Rokas, A. Global patterns of species diversity and distribution in the biomedically and biotechnologically important fungal genus Aspergillus. bioRxiv. 2024. [Google Scholar]
- He, Z.; Abeywickrama, P.D.; Wu, L.; Zhou, Y.; Zhang, W.; Yan, J.; Shang, Q.; Zhou, Y.; Li, S. Diversity of Cytospora species associated with trunk diseases of Prunus persica (Peach) in northern China. J. Fungi 2024, 10, 843. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dun, C.; Tang, T.; Duan, Y.; Guo, X.; You, J. Boeremia exigua causes leaf spot of walnut trees (Juglans regia) in China. Plant Dis. 2022, 106, 1993. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Ma, A.; Yan, H.; Miao, Y.; Shao, J.; Zhang, N.; Xu, Z.; Shen, Q.; Zhang, R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. New Phytol. 2024, 242, 2401–2410. [Google Scholar] [CrossRef]
- Barto, E.K.; Weidenhamer, J.D.; Cipollini, D.; Rillig, M.C. Fungal superhighways: Do common mycorrhizal networks enhance below ground communication? Trends Plant Sci. 2012, 17, 633–637. [Google Scholar] [CrossRef]
- Rodríguez, L.A.Y.; Gutiérrez, P.E.Á.; Gunde-Cimerman, N.; Jiménez, J.C.C.; Gutiérrez-Cepeda, A.; Ocaña, A.M.F.; Batista-García, R.A. Exploring extremophilic fungi in soil mycobiome for sustainable agriculture amid global change. Nat. Commun. 2024, 15, 6951. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, R.; Song, Y.; Lu, J.; Zhou, B.; Song, F.; Zhang, L.; Huang, Q.; Gong, J.; Lei, J.; et al. Pyoluteorin-deficient Pseudomonas protegens improves cooperation with Bacillus velezensis, biofilm formation, co-colonizing, and reshapes rhizosphere microbiome. NPJ Biofilms Microbiomes 2024, 10, 145. [Google Scholar] [CrossRef]
- Song, H.; Li, N.; Zhang, R.; Hu, X.; Zhang, W.; Zhang, B.; Li, X.; Wang, Z.; Xin, J. Study on signal transmission mechanism of arbuscular mycorrhizal hyphal network against root rot of Salvia miltiorrhiza. Scientific. Reports. 2023, 13, 16936. [Google Scholar]
- He, Y.-W.; Deng, Y.; Miao, Y.; Chatterjee, S.; Tran, T.M.; Tian, J.; Lindow, S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol. 2023, 31, 36–50. [Google Scholar] [CrossRef]
- Maitra, P.; Hrynkiewicz, K.; Szuba, A.; Jagodziński, A.M.; Al-Rashid, J.; Mandal, D.; Mucha, J. Metabolic niches in the rhizosphere microbiome: Dependence on soil horizons, root traits and climate variables in forest ecosystems. Front. Plant Sci. 2024, 15, 1344205. [Google Scholar] [CrossRef]
- Gasperini, D.; Howe, G.A. Phytohormones in a universe of regulatory metabolites: Lessons from jasmonate. Plant Physiol. 2024, 195, 135–154. [Google Scholar] [CrossRef]
- Mukherjee, A.; Gaurav, A.K.; Singh, S.; Yadav, S.; Bhowmick, S.; Abeysinghe, S.; Verma, J.P. The bioactive potential of phytohormones: A review. Biotechnol. Rep. 2022, 35, e00748. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Sharma, P.; Singh, P.; Kumar, V.; Yadav, P.; Sharma, A. Nitric oxide: An emerging warrior of plant physiology under abiotic stress. Nitric Oxide 2023, 140–141, 58–76. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Yun, B.-W. Nitric oxide acts as a key signaling molecule in plant development under stressful conditions. Int. J. Mol. Sci. 2023, 24, 4782. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Yadav, V.K.; Kalia, M.; Dohare, S.; Sharma, D.; Agarwal, V. Pseudomonas aeruginosa auto inducer3-oxo-C12-HSL exerts bacteriostatic effect and inhibits Staphylococcus epidermidis biofilm. Microb. Pathog. 2017, 110, 612–619. [Google Scholar] [CrossRef]
- Moreno-Gámez, S.; Hochberg, M.E.; van Doorn, G.S. Quorum sensing as a mechanism to harness the wisdom of the crowds. Nat. Commun. 2023, 14, 3415. [Google Scholar] [CrossRef]
- Padder, S.A.; Prasad, R.; Shah, A.H. Quorum sensing: A less known mode of communication among fungi. Microbiol. Res. 2018, 210, 51–58. [Google Scholar] [CrossRef]
- Wu, L.; Luo, Y. Bacterial quorum sensing systems and their role in intestinal bacteria-host crosstalk. Front. Microbiol. 2021, 12, 611413. [Google Scholar] [CrossRef]
- Kim, S.-R.; Yeon, K.-M. Quorum sensing as language of chemical signals. Fundamentals of Quorum Sensing, Analytical Methods and Applications in Membrane Bioreactors. Compr. Anal. Chem. 2018, 81, 57–94. [Google Scholar]
- Shirtliff, M.E.; Krom, B.P.; Meijering, R.A.; Peters, B.M.; Zhu, J.; Scheper, M.A.; Harris, M.L.; Jabra-Rizk, M.A. Farnesol-induced apoptosis in Candida albicans. Antimicrob. Agents Chemother. 2009, 53, 2392–2401. [Google Scholar] [CrossRef]
- Dižová, S.; Bujdáková, H. Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans. Pharmazie 2017, 72, 307–312. [Google Scholar] [PubMed]
- Soltani, J. Secondary metabolite diversity of the genus Aspergillus: Recent advances. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 275–292. [Google Scholar]
- Vadlapudi, V.; Borah, N.; Yellusani, K.R.; Gade, S.; Reddy, P.; Rajamanikyam, M.; Vempati, L.; Gubbala, S.; Chopra, P.; Upadhyayula, S.; et al. Aspergillus secondary metabolite database, a resource to understand the secondary metabolome of Aspergillus genus. Sci. Rep. 2017, 7, 7325. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Metin, B. Penicillium roqueforti secondary metabolites: Biosynthetic pathways, gene clusters, and bioactivities. Fermentation 2023, 9, 836. [Google Scholar] [CrossRef]
- Mou, W.; Kao, Y.T.; Michard, E.; Simon, A.A.; Li, D.; Wudick, M.M.; Lizzio, M.A.; Feijó, J.A.; Chang, C. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nat. Commun. 2020, 11, 4082. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, J.; Lian, X.; Wei, B.; Ma, X.; Wu, P. Effect of Glomus intraradices on root morphology, biomass production and phosphorous use efficiency of Chinese fir seedlings under low phosphorus stress. Front. Plant Sci. 2023, 13, 1095772. [Google Scholar] [CrossRef]
- Gao, P.; Yang, S.; Jiang, Q.; Yu, P.; Yang, F.; Zhang, X.; Zhang, Z.; Liu, S.; Xia, W. Effect of quorum-sensing molecule 2-phenylethanol on fermentation performance of Saccharomyces cerevisiae 31 in simulated sour fish. Food Microbiol. 2025, 132, 104822. [Google Scholar] [CrossRef]
- Maillet, F.; Poinsot, V.; André, O.; Puech-Pagès, V.; Haouy, A.; Gueunier, M.; Cromer, L.; Giraudet, D.; Formey, D.; Niebel, A.; et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 2011, 469, 58–63. [Google Scholar] [CrossRef]
- Darino, M.; Jaiswal, N.; Darma, R.; Kroll, E.; Urban, M.; Xiang, Y.; Srivastava, M.; Kim, H.; Myers, A.; Scofield, S.; et al. The Fusarium graminearum Effector Protease FgTPP1 Suppresses Immune Responses and Facilitates Fusarium Head Blight Disease. Mol. Plant-Microbe Interact. 2025, 38, 297–314. [Google Scholar]
- Wood, M.J.; Kortsinoglou, A.M.; Khoja, S.; Kouvelis, V.N.; Myrta, A.; Midthassel, A.; Butt, T.M. Metarhizium brunneum (Hypocreales: Clavicipitaceae) and Its Derived Volatile Organic Compounds as Biostimulants of Commercially Valuable Angiosperms and Gymnosperms. J. Fungi 2022, 8, 1052. [Google Scholar]
- Hussien, R.H.M.; Ghareeb, S.; Kalmosh, F.S. Metarhizium species and their volatile organic compounds: Promising alternatives for the two-spotted spider mite, Tetranychus urticae management. BioControl 2025, 70, 345–355. [Google Scholar] [CrossRef]
- Cheng, C.; Li, D.; Wang, B.; Liao, B.; Qu, P.; Liu, W.; Zhang, Y.; Lu, P. Piriformospora indica colonization promotes the root growth of Dimocarpus longan seedlings. Sci. Hortic. 2022, 301, 111137. [Google Scholar] [CrossRef]
- Saxena, P.; Joshi, Y.; Rawat, K.; Bisht, R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J. Microbiol. 2019, 59, 3–12. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Alpkvist, E.; Picioreanu, C.; Loosdrecht, M.C.M.; Heyden, A. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng. 2006, 94, 961–979. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; van Hullebusch, E.D.; Little, B.J.; Neu, T.R.; Nielsen, P.H.; Seviour, T.; Stoodley, P.; Wingender, J.; Wuertz, S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat. Rev. Microbiol. 2025, 23, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Kumari, J.; Kumawat, R.; Prasanna, R.; Jothieswari, D.; Debnath, R.; Ikbal, A.M.A.; Palit, P.; Rawat, R.; Gopikrishna, K.; Tiwari, O. Microbial exopolysaccharides: Classification, biosynthetic pathway, industrial extraction and commercial production to unveil its bioprospection: A comprehensive review. Int. J. Biol. Macromol. 2025, 297, 139917. [Google Scholar] [CrossRef]
- Li, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. Sci. Total Environ. 2024, 907, 167774. [Google Scholar] [CrossRef]
- Liu, H.Y.; Prentice, E.L.; Webber, M.A. Mechanisms of antimicrobial resistance in biofilms. npj Antimicrob. Resist. 2024, 2, 27. [Google Scholar] [CrossRef]
- Philipp, L.-A.; Bühler, K.; Ulber, R.; Gescher, J. Beneficial applications of biofilms. Nat. Rev. Microbiol. 2024, 22, 276–290. [Google Scholar] [CrossRef]
- Wang, H.R.; Du, X.R.; Zhang, Z.Y.; Feng, F.J.; Zhang, J.M. Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. iMeta 2023, 2, e133. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Nomura, K.; Wang, X.; Sohrabi, R.; Xu, J.; Yao, L.; Paasch, B.C.; Ma, L.; Kremer, J.; Cheng, Y.; et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 2020, 580, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-T.; Nguyen, T.-D.; Nguyen, T.-T.; Pham, M.-N.; Nguyen, P.-T.; Nguyen, T.-U.T.; Huynh, T.-T.; Nguyen, H.-T. Rhizosphere bacterial exopolysaccharides: Composition, biosynthesis, and their potential applications. Arch. Microbiol. 2024, 206, 388. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, J.; Kallman, J.; Liu, X.; Meng, M.; Lin, J. Polysaccharide biosynthetic pathway profiling and putative gene mining of Dendrobium moniliforme using RNA-Seq in different tissues. BMC Plant Biol. 2019, 19, 521. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; He, Y.; Ji, R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. J. Hazard. Mater. 2024, 469, 133906. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.; Sucharitha, K.; Godi, S. Biodegradation of plastic polymers by fungi: A brief review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef]
- Śliżewska, W.; Struszczyk-Świta, K.; Marchut-Mikołajczyk, O. Metabolic potential of halophilic filamentous fungi—Current perspective. Int. J. Mol. Sci. 2022, 23, 4189. [Google Scholar] [CrossRef]
- Okal, E.J.; Heng, G.; Magige, E.A.; Khan, S.; Wu, S.; Ge, Z.; Zhang, T.; Mortimer, P.; Xu, J. Insights into the mechanisms involved in the fungal degradation of plastics. Ecotoxicol. Environ. Saf. 2023, 262, 115202. [Google Scholar] [CrossRef]
- Serdar, O.; Yıldırım, N.; Onder Erguven, G.; Ketenalp, Z.; Cikcikoglu Yildirim, N.; Durmus, B. The Bioremediation of Industrial Effluents by Phanerochaete Chrysosporium: The COD, TOC Removal Efficiency and Biochemical Assessment for Dreissena Polymorpha. ChemistrySelect 2024, 9, e202304258. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y.; Yang, M.; Zhang, J.; Lin, D. Earthworms enhance the bioremediation of tris (2-butoxyethyl) phosphate-contaminated soil by releasing degrading microbes. J. Hazard. Mater. 2023, 452, 131303. [Google Scholar] [CrossRef] [PubMed]
- Treu, R.; Falandysz, J.; Health, P.B. Mycoremediation of hydrocarbons with basidiomycetes—A review. J. Environ. Sci. Health 2017, 52, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Corral-Bobadilla, M.; González-Marcos, A.; Vergara-González, E.P.; Alba-Elías, F. Bioremediation of waste water to remove heavy metals using the spent mushroom substrate of Agaricus bisporus. Water 2019, 11, 454. [Google Scholar] [CrossRef]
- Sahithya, K.; Mouli, T.; Biswas, A. Remediation potential of mushrooms and their spent substrate against environmental contaminants: An overview. Biocatal. Agric. Biotechnol. 2022, 42, 102323. [Google Scholar] [CrossRef]
- Kandasamy, S.; Narayanan, M.; He, Z.; Liu, G.; Ramakrishnan, M.; Thangavel, P.; Pugazhendhi, A.; Raja, R.; Carvalho, I.S. Current strategies and prospects in algae for remediation and biofuels: An overview. Biocatal. Agric. Biotechnol. 2021, 35, 102045. [Google Scholar] [CrossRef]
- Mishra, S.; Huang, Y.; Li, J.; Wu, X.; Zhou, Z.; Lei, Q.; Bhatt, P.; Chen, S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 2022, 294, 133609. [Google Scholar] [CrossRef]
- Imam, A.; Kumar Suman, S.; Kanaujia, P.K.; Ray, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresour. Technol. 2022, 343, 126121. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, X.; Xiong, J.; Yan, B.; Gao, R.; Liu, S.; Zong, M.; Ge, J.; Lou, W. Hydrolase mimic via second coordination sphere engineering in metal-organic frameworks for environmental remediation. Nat. Commun. 2023, 14, 5974. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Botyanszki, Z.; Tay, P.K.R.; Joshi, N.S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 2014, 5, 4945. [Google Scholar] [CrossRef]
- Meyer, V.; Wu, B.; Ram, A.F. Aspergillus as a multi-purpose cell factory: Current status and perspectives. Biotechnol. Lett. 2011, 33, 469–476. [Google Scholar] [CrossRef]
- Chen, Q.; Song, Y.; An, Y.; Lu, Y.; Zhong, G. Mechanisms and Impact of Rhizosphere Microbial Metabolites on Crop Health, Traits, Functional Components: A Comprehensive Review. Molecules 2024, 29, 5922. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, O.S.; Mazumder, M.; Kini, S.; Hill, E.D.; Aow, J.S.B.; Phua, S.M.L.; Elejalde, U.; Kjelleberg, S.; Swarup, S. Volatile methyl jasmonate from roots triggers host-beneficial soil microbiome biofilms. Nat. Chem. Biol. 2024, 20, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Raza, W.; Jiang, G.; Yi, Z.; Fields, B.; Greenrod, S.; Friman, V.; Jousset, A.; Shen, Q.; Wei, Z. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs. ISME J. 2023, 17, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Solomon, W.; Janda, T.; Molnár, Z. Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. Plant Physiol. Biochem. 2024, 206, 108290. [Google Scholar] [CrossRef]
- Gao, M.; Xiong, C.; Gao, C.; Tsui, C.K.M.; Wang, M.-M.; Zhou, X.; Zhang, A.; Cai, L. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 2021, 9, 187. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Wang, Y.; Wang, M.; Xie, X.; Chang, H.; Wang, L.; Qu, J.; Sun, K.; He, W.; et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia–legume symbiosis. Mol. Plant 2021, 14, 503–516. [Google Scholar] [CrossRef]
- Alvi, G.B.; Iqbal, M.S.; Ghaith, M.M.S.; Haseeb, A.; Ahmed, B.; Qadir, M.I. Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Sci. Rep. 2021, 11, 4811. [Google Scholar] [CrossRef]
- Asad, S.A. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecol. Complex. 2022, 49, 100978. [Google Scholar] [CrossRef]
- Sehim, A.E.; Hewedy, O.A.; Altammar, K.A.; Alhumaidi, M.S.; Abd Elghaffar, R.Y. Trichoderma asperellum empowers tomato plants and suppresses Fusarium oxysporum through priming responses. Front. Microbiol. 2023, 14, 1140378. [Google Scholar] [CrossRef]
- Mastouri, F.; Björkman, T.; Harman, G.E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010, 100, 1213–1221. [Google Scholar] [CrossRef]
- Sofo, A.; Scopa, A.; Manfra, M.; De Nisco, M.; Tenore, G.; Troisi, J.; Di Fiori, R.; Novellino, E. Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul. 2011, 65, 421–425. [Google Scholar] [CrossRef]
- Contina, J.B.; Dandurand, L.M.; Knudsen, G.R. Use of GFP-tagged Trichoderma harzianum as a tool to study the biological control of the potato cyst nematode Globodera pallida. Appl. Soil Ecol. 2017, 115, 31–37. [Google Scholar] [CrossRef]
- Borges, J.; Muniz, P.; Peixoto, G.; Oliveira, T.; Elizabeth, D.; Rodrigues, F.; Costa Carvalho, D.D. Promotion of Seedling Growth and Production of Wheat by Using Trichoderma spp. J. Agric. Sci. 2018, 10, 267. [Google Scholar] [CrossRef]
- Shakeri, J.; Foster, H.A. Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym. Microb. Technol. 2007, 40, 961–968. [Google Scholar] [CrossRef]
- Chowdappa, P.; Kumar, S.M.; Lakshmi, M.J.; Upreti, K. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control 2013, 65, 109–117. [Google Scholar] [CrossRef]
- Jena, B.; Senapati, A.; Priyadarshinee, L.; Sen, A.; Sciences, P. Efficacy of T harzianum isolates in plant growth promotion and BLB management in rice. GSC Biol. Pharm. Sci. 2022, 20, 221–226. [Google Scholar] [CrossRef]
- Arif, S.; Munis, M.F.H.; Liaquat, F.; Gulzar, S.; Haroon, U.; Zhao, L.; Zhang, Y. Trichoderma viride establishes biodefense against clubroot (Plasmodiophora brassicae) and fosters plant growth via colonizing root hairs in pak choi (Brassica campestris spp. chinesnsis). Biol. Control 2023, 183, 105265. [Google Scholar] [CrossRef]
- Nykiel-Szymańska, J.; Bernat, P.; Słaba, M. Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pestic. Biochem. Physiol. 2020, 163, 216–226. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Valencia-Cantero, E.; Santoyo, G. Plant growth-promoting bacteria potentiate antifungal and plant-beneficial responses of Trichoderma atroviride by upregulating its effector functions. PLoS ONE 2024, 19, e0301139. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, N.; Pang, Q.; Khan, R.A.A.; Xu, Q.; Wu, C.; Liu, T. A salt-tolerant strain of Trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing fusarium wilt disease in cowpeas. J. Fungi 2023, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Huang, Y.; Ge, W.; Jia, Z.; Song, S.; Zhang, L.; Huang, Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom. 2019, 20, 144. [Google Scholar] [CrossRef] [PubMed]
- Ayyandurai, M.; Akila, R.; Manonmani, K.; Theradimani, M.; Vellaikumar, S. Phytostimulation and growth promotion activities of Trichoderma spp. on groundnut (Arachis hypogaea L.) crop. J. Appl. Nat. Sci. 2021, 13, 1172–1179. [Google Scholar] [CrossRef]
- Prismantoro, D.; Jefferson, T.A.; Akbari, S.I.; Miranti, M.; Mispan, M.S.; Doni, F. In vitro inhibition mechanisms of Trichoderma yunnanense TM10 against Pyricularia oryzae and Rhizoctonia solani causing blast and sheath blight diseases in rice (Oryza sativa L.). All Life 2024, 17, 2422845. [Google Scholar] [CrossRef]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, Z.; Hao, B.; Diao, F.; Zhang, J.; Bao, Z.; Guo, W. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol. Environ. Saf. 2021, 212, 111996. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Z.; Liu, J.; Li, X.; Wang, X.; Dai, C.; Zhang, T.; Carrión, V.; Wei, Z.; Cao, F.; et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nat. Commun. 2023, 14, 8126. [Google Scholar] [CrossRef]
- Marschner, P.; Crowley, D.; Rengel, Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—Model and research methods. Soil Biol. Biochem. 2011, 43, 883–894. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef]
- Chormey, D.S.; Bakirdere, S.; Turan, N.B.; Engin, G.O. Fundamentals of Quorum Sensing. In Analytical Methods and Applications in Membrane Bioreactors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 117–149. [Google Scholar]
- Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv. 2013, 31, 224–245. [Google Scholar] [CrossRef]
- Wang, M.; Geng, L.; Jiao, S.; Wang, K.; Xu, W.; Shu, C.; Zhang, J. Bacillus thuringiensis exopolysaccharides induced systemic resistance against Sclerotinia sclerotiorum in Brassica campestris L. Biol. Control 2023, 183, 105267. [Google Scholar]
- Vadakkan, K. Quorum sensing in rhizosphere microbiome: Minding some serious business. In Rhizosphere Engineering; Dubey, R.C., Kumar, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 383–394. [Google Scholar]
- Yang, P.; Zhao, Z.; Fan, J.; Liang, Y.; Bernier, M.C.; Gao, Y.; Zhao, L.; Opiyo, S.; Xia, Y. Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. Front. Plant Sci. 2023, 14, 1078100. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ma, F.; Li, P.-W.; Zhang, W.; Ding, X.-X.; Zhang, Q.; Li, M.; Wang, Y.; Xu, B. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chem. 2014, 146, 284–288. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Nascimento, I.; Rodrigues, A.A.C.; Andrade, K.S.P.; Cunha, W.L.; Moraes, F.H.R.; de Sousa, F.A. Microbiolização de sementes de arroz com Bacillus spp. na redução de patógenos. Res. Soc. Dev. 2020, 9, e189108138. [Google Scholar] [CrossRef]
- Kumar, P.; Pandhi, S.; Mahato, D.K.; Kamle, M.; Mishra, A. Bacillus-based nano-bioformulations for phytopathogens and insect–pest management. Egypt. J. Biol. Pest Control 2021, 31, 128. [Google Scholar] [CrossRef]
- Boro, M.; Sannyasi, S.; Chettri, D.; Verma, A.K. Microorganisms in biological control strategies to manage microbial plant pathogens: A review. Arch. Microbiol. 2022, 204, 666. [Google Scholar] [CrossRef]
- Patel, J.S.; Kharwar, R.N.; Singh, H.B.; Upadhyay, R.S.; Sarma, B.K. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front. Microbiol. 2017, 8, 306. [Google Scholar] [CrossRef]
- Rahanandeh, H.; Safari Motlagh, M.R.; Hamzeh, A. Protease enzymes from Pseudomonas fluorescens and Pseudomonas aeruginosa as potential bioagents against Pratylenchus loosi. Can. J. Plant Pathol. 2024, 46, 465–477. [Google Scholar] [CrossRef]
- Song, G.Q.; Prieto, H.; Orbovic, V. Agrobacterium-mediated transformation of tree fruit crops: Methods, progress, and challenges. Front. Plant Sci. 2019, 10, 226. [Google Scholar] [CrossRef]
- Doan, H.K.; Maharaj, N.N.; Kelly, K.N.; Miyao, E.M.; Davis, R.M.; Leveau, J.H.J. Antimycotal activity of Collimonas isolates and synergy-based biological control of Fusarium wilt of tomato. Phytobiomes J. 2020, 4, 64–74. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, B.; Yan, Y.; Cheng, Z.; Li, Z.; Han, L.; Sun, Y.; Zheng, Y.; Xia, Y. Comamonas-dominant microbial community in carbon poor aquitard sediments revealed by metagenomic-based growth rate investigation. Sci. Total Environ. 2024, 912, 169203. [Google Scholar] [CrossRef]
- Nguvo, K.J.; Gao, X. Weapons hidden underneath: Bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. J. Plant Dis. Prot. 2019, 126, 177–190. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.; Kannangara, S.D.; Promputtha, I. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef]
- LeBlanc, N. Bacteria in the genus Streptomyces are effective biological control agents for management of fungal plant pathogens: A meta-analysis. BioControl 2022, 67, 111–121. [Google Scholar] [CrossRef]
- Benoit-Gelber, I.; Gruntjes, T.; Vinck, A.; van Veluw, J.G.; Wösten, H.A.B.; Boeren, S.; Vervoort, J.J.M.; de Vries, R.P. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran. Fungal Genet. Biol. 2017, 102, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Vibha. Evaluation of fungal and bacterial bioagents against Rhizoctonia solani on Solanum melongena (L.). Arch. Phytopathol. Plant Prot. 2011, 44, 743–750. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, J.; Li, M.; Fang, F.; Hu, J.; Sun, Z.; Zhang, A.; Gao, X.; Li, J. Synergistic effect of Bacillus subtilis and Paecilomyces lilacinus in alleviating soil degradation and improving watermelon yield. Front. Microbiol. 2023, 13, 1101975. [Google Scholar] [CrossRef]
- Geremew, D.; Shiberu, T.; Leta, A. Isolation, morphological characterization, and screening a virulence of Beauveria bassiana and Metarhizium robertsii as bioagents. F1000Research 2023, 12, 827. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, M.; Tariq, M.; Mukhtar, T.; Gulzar, A. On the virulence of the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales), against the diamondback moth, Plutella xylostella (L.)(Lepidoptera: Plutellidae). Egypt. J. Biol. Pest Control 2021, 31, 86. [Google Scholar] [CrossRef]
- de Almeida Moura, I.; Pereira, I.D.S.; Pires, R.A.; Ribeiro, O.L.; de Oliveira Monteiro, C.M.; de Souza Rocha, L.; de Souza Perinotto, W.M. First report of Metarhizium anisopliae sl action on gastrointestinal ruminant nematodes in the free-living stage and its persistence in soil. Biocontrol Sci. Technol. 2023, 33, 539–554. [Google Scholar] [CrossRef]
- Manjunatha, C.; Velavan, V.; Rangeshwaran, R.; Mohan, M.; Kandan, A.; Sivakumar, G.; Shylesha, A.N.; Kumar, M.; Pramesh, D.; Sujithra, M.; et al. Assessment of bio-formulations of indigenous strains of Bacillus thuringiensis, Metarhizium robertsii and Metarhizium majus for management of the rhinoceros beetle, Oryctes rhinoceros L., in field. Egypt. J. Biol. Pest Control 2023, 33, 70. [Google Scholar] [CrossRef]
- Xue, R.; Du, G.; Chen, C.; Chen, B.; Peng, Y. Oleic acid improves the conidial production and quality of Metarhizium rileyi as a biocontrol agent. Biocontrol Sci. Technol. 2023, 33, 758–771. [Google Scholar] [CrossRef]
- Synowiec, C.; Fletcher, E.; Heinkel, L.; Salisbury, T. Getting rigor right: A framework for methodological choice in adaptive monitoring and evaluation. Glob. Health Sci. Pract. 2023, 11, e2200243. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bai, Z.X.; Bo, W.H.; Lin, J.; Yang, J.J.; Chen, T. Analysis and evaluation of heavy metal pollution in farmland soil in China: A Meta-analysis. Huan Jing Ke Xue 2024, 45, 2913–2925. [Google Scholar]
- Scholz, M.J.; Obenour, D.R.; Morrison, E.S.; Elser, J.J. A critical eutrophication–climate change link. Nat. Sustain. 2025, 8, 222–223. [Google Scholar] [CrossRef]
- Yan, Q.; Ming, Y.; Liu, J.; Yin, H.; He, Q.; Li, J.; Huang, M.; He, Z. Microbial biotechnology: From synthetic biology to synthetic ecology. Adv. Biotechnol. 2025, 3, 1. [Google Scholar] [CrossRef]
- Gadar, K.; McCarthy, R.R. Using next generation antimicrobials to target the mechanisms of infection. npj Antimicrob. Resist. 2023, 1, 11. [Google Scholar] [CrossRef]
- Pearson, A.J.; Mukherjee, K.; Fattori, V.; Lipp, M. Opportunities and challenges for global food safety in advancing circular policies and practices in agrifood systems. npj Sci. Food 2024, 8, 60. [Google Scholar] [CrossRef]
- Jansson, J.K.; McClure, R.; Egbert, R.G. Soil microbiome engineering for sustainability in a changing environment. Nat. Biotechnol. 2023, 41, 1716–1728. [Google Scholar] [CrossRef]
Method Category | Key Techniques |
---|---|
DSM Identification | LC-MS/MS; UHPLC-Q-TOF-MS (untargeted profiling of novel terpenes); Ion mobility spectrometry-MS (IMS-MS); Surface-enhanced Raman spectroscopy (SERS, label-free detection of low-abundance molecular) |
Microbial Cultivation | Microfluidic chips (for single-cell cultivation); SynComs (defined synthetic microbial signaling communities); Hypha-on-a-chip platforms (real-time imaging of molecular secretion) |
Microbiome & Interaction Analysis | High-throughput ITS2 metabarcoding (with PacBio Sequel II for species-level fungal profiling); Confocal Raman microscopy (in situ mapping); Single-molecule fluorescence (in situ hybridization); NanoSIMS (trace nutrient exchange linked to DSM signaling) |
Metabolomics & Omics Integration | Spatial metabolomics (map DSM distribution across microdomains); Meta-transcriptomics (Iso-Seq for full-length fungal transcripts); Multi-omics integration (LC-MS/MS + RNA-seq + 16S/ITS sequencing via tools like MetaboAnalyst) |
Biosensing & Real-Time Detection | Whole-cell biosensors (engineered cells with GFP); Electrochemical biosensors (gold-nanoparticle modified electrodes); Fluorescent aptamers (targeted imaging of molecular in plant roots) |
Computational & Systems Biology | Genome mining (antiSMASH + PRISM for predicting gene clusters); Metabolic flux (COBRA toolbox to simulate DSM production) |
Fungal Genus | Pathogenic Species | Infection Site | Cause Disease | Disease Characteristics | Affected Crop/Plant | References |
---|---|---|---|---|---|---|
Erysiphe | E. cichoracearum E. polygoni | Leaf Branch Flower | powdery mildew | Damage by toxin, white powder appears at the affected part and develops into blister points, resulting in fallen leaves, scorched tips, poor growth, etc. | Melons Beans Polygonaceae chenopodiaceae | [40] |
Rhizoctonia | R. leguminicola R. solani R. zeae | Root Stem Leaf | Root, stem rot Seedling blight Stem canker Black spot | Toxins and degrading enzymes destroy cell walls and cause root rot | Grains Cotton Tobacco Beans Flowers | [41,42] |
Pasasitica | Hyaloperonospora parasitica Peronospora destructor Plasmopara viticola Pseudoperonospora cubensis P. tabacina | Leaf Shoot | Downy mildew | Grayish-white frosty substance appears at the leaf back side and develops into polygonal lesion, characterized by swelling or deformity | Cruciferous vegetables Leguminosae Allium Grapes Calabash Tobacco | [43,44] |
Meliolales | M. butleri M. camellicola M. schimicola M. ardinis M. phyllestachydis | Leaf | Fumigant mold Sooty disease Sooty blight | Leaf covered with coal dust produced by radiative mildew that inhibits plant photosynthesis, and toxins cause curl and fall off. | Citrus Theaceae Schima Poaceae Bamboos | [45] |
Colletotrichum | C. fructicola C. karsti C. siamense C. fioriniae C. gloeosporioides C. acutatum C. kingianum C. viniferum C. truncatum | Leaf Fruit | anthracnose | Symptoms on petioles, tendrils, and young stems appear as light brown spots, which gradually change from round to oval concave necrotic spots. Form dark brown lesions and pink gelatinous mucus | Fruit trees Polygonatum Magnolia Grapes | [46,47] |
Alternaria | A. iridicola. A. tenuissima A. longipes A. alternata A. solani | Leaf | Leaf spot Tobacco brown spot Tomato Early Blight | Leaves were locally infected with spots of various shapes and colors | Cereal crops oil crops vegetables and fruits ornamental flowers Chinese herbs Tobacco | [48] |
Sclerotinia | S. sclerotiorum S asari S. trifoliorum S. rolfsii | Leaf Stem Root near the earth surface | White blight White rot Sclerotiniose | White silk hypha then develops to sclerotium, can produce virulence factors that inhibit plant immune system and even induce plant cell death | Mono-/Dicotyledon Leguminosae Tobacco Solanaceae Fruit trees | [49] |
Phytophthora | P. sojae P. capsici P. ramorum P. citrophthora P. meadii P. parasitica P. palmivora | Petiole of leaf | Late blight | Secreting toxins that interfere with plant cell metabolism | Potatoes Tomatoes Soybeans Citrus Palm trees | [50,51] |
Puccinia | P. sorghi P. polysora P. coronata P. striiformis P. graminis | Apex bud, lateral bud of young and large trees | rust | Secreted virulence factors can interfere with the metabolism of plant cells, resulting in rusty dry rot on the leaf edge | Wheat Corn Orchardgrass | [52] |
Ascochyta | A. graminicola A. hordei A. sorghi A. melongena | Root Leaf | Vine blight Ring spot Brown spot | Toxins and degrading enzymes destroy the cell wall, and transfer to the whole plant through the tube system. | Elder trees Nightshade Cucurbitaceae | [53,54] |
Colletotrichum | C. gloeosporioides C. acutatum C. boninense C. orchidearum C. gigasporum | Leaf | Rot disease Anthracnose | Pathogenic factors caused bark rot and xylem damage, inhibiting water and nutrient transport. | Litchi Kiwi Apple Cowpea Soybean | [55] |
Fusarium | F. graminearum F. avenaceum F. oxysporum | Root Stem Spike | Blight Gibberellosis Leaf spot | Secreted toxins and degrading enzymes break down cell walls and cause root rot | Grains Fruit Tomato | [56,57] |
Aspergillus | A. flavus A. niger A. ochraceus A. parasiticus | Root Fruit | Aspergillosis rot Mycotoxin contamination | Toxigenic | Grains Beans Coffee Onions Grapes | [58] |
Cytospora | C. chrsosperma C. pyriformis C. poplar C. willows | Main branch Trunk Fruit | Rot disease | Infection causes the plant host to ulcerate or wilt | Willow Fruit tree Poplar Eucalyptus | [59] |
Boeremia | B.exigua | Root | Leaf spot Root rot | Caused root vascular bundle necrosis | Red euphorbia | [60] |
Species | Strains | Characteristic | Application | Reference |
---|---|---|---|---|
T. asperellum | HTTA-Z0002 CHF 78 | Degrade the insoluble phosphorus and potassium, produce phytase, cellulase, indole-acetic acid and iron carriers that promote plant growth | Tomato | [127] |
T. harzianum | ACCC31649 | Produce plant growth regulators that can regulate exogenous plant hormones bidirectionally | Pepper | [128] |
T22 | Produce plant hormones that can accelerate seed germination, increase seedling vitality, and induce physiological protection of plants against oxidative damage | Tomato seeds, cherry wood | [129] | |
T2-16 | Regulating microbial diversity in soil, increasing enzyme activity, and promoting effect on plant | Watermelon | [130] | |
ESALQ 1306 | Reduce the roots biomass allocated by seedlings, which can promote seedling growth | Wheat | [131] | |
IMI 206040 | Produce hormones that stimulate plant growth and development | Arabidopsis thaliana | [132] | |
OTPB3 | Stimulate the secretion of hormone and induce plant defense system | Tomato | [133] | |
IRRI-2,3,4,5,6 | Promote tillering and earing of rice, increase the total number of grains per ear, and increase fertility rate | Rice | [134] | |
T. viride | KKP 792 DSM 1963 | Produce ferric support, increases the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD), and has the effect of phosphate solubilization | Rape | [135] |
TR-7 | Produce indole acetic acid, ferric support, and extracellular enzymes that promote growth by colonizing root hairs | Cabbage | [136] | |
Gv. 29-8 | Produce auxin analogs, which promote root development | Arabidopsis thaliana | [137] | |
T. koningi | IM 0956 | Stimulate the production of iron carrier, phosphate dissolution and ACC deaminase activity | Rape | [136] |
T-51 | Produce volatile organic compounds that have growth-promoting effects | Arabidopsis thaliana | [138] | |
T. longibrachiatum | HL167 | Induce the production of chlorophyll and soluble protein, and increase K/Na ratio, which can promote plants growth | Cowpea | [139] |
H9 | Regulates defense networks by activating signaling pathways associated with the plant hormones | Cucumber | [140] | |
T(SP)-20 | Stimulate plant product indole-acetic acid, ferriferous carrier, phospholytic enzyme | Peanut | [141] | |
MD30 | High temperature resistance, promote crop absorption and utilization of soil nutrients, improve the growth rate of seedling | Cucumber | [141] | |
T. yunnanense | TM10 | Stimulate the production of indole-acetic acid, phospholytic enzyme, ammonia, regulate HCN and other mechanisms to promote rice growth and germination. | Rice | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Dong, A.; Li, J.; Xu, J.; Liang, Z.; Logrieco, A.F. Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture. J. Fungi 2025, 11, 726. https://doi.org/10.3390/jof11100726
Gao J, Dong A, Li J, Xu J, Liang Z, Logrieco AF. Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture. Journal of Fungi. 2025; 11(10):726. https://doi.org/10.3390/jof11100726
Chicago/Turabian StyleGao, Jing, Anqi Dong, Jiayi Li, Jiayu Xu, Zhihong Liang, and Antonio Francesco Logrieco. 2025. "Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture" Journal of Fungi 11, no. 10: 726. https://doi.org/10.3390/jof11100726
APA StyleGao, J., Dong, A., Li, J., Xu, J., Liang, Z., & Logrieco, A. F. (2025). Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture. Journal of Fungi, 11(10), 726. https://doi.org/10.3390/jof11100726