Dual-Emission FRET-PCR Outperforms SYBR Green and EvaGreen for Accurate Discrimination of Primary Canine Dermatophytes: Microsporum canis, Nannizzia gypsea, and Trichophyton mentagrophytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Genomic DNA Extraction
2.3. Primer and Probe Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piri, F.; Zarei Mahmoudabadi, A.; Ronagh, A.; Ahmadi, B.; Makimura, K.; Rezaei-Matehkolaei, A. Assessment of a Pan-dermatophyte Nested-PCR Compared with Conventional Methods for Direct Detection and Identification of Dermatophytosis Agents in Animals. Mycoses 2018, 61, 837–844. [Google Scholar] [CrossRef]
- Spanamberg, A.; Ravazzolo, A.P.; Araujo, R.; Tomazi, N.; Fuentes, B.; Ferreiro, L. Molecular Detection and Species Identification of Dermatophytes by SYBR-Green Real-Time PCR in-House Methodology Using Hair Samples Obtained from Dogs and Cats. Med. Mycol. 2023, 61, myad047. [Google Scholar] [CrossRef]
- Bescrovaine, J.D.O.; Warth, J.F.G.; De Souza, C.; Benoni, V.W.; Baja, F.; Schneider, G.X.; Vicente, V.A.; de Hoog, G.S.; Queiroz-Telles, F. Nannizzia Species Causing Dermatophytosis in Cats and Dogs: First Report of Nannizzia incurvata as an Etiological Agent in Brazil. Med. Mycol. 2023, 61, myad105. [Google Scholar] [CrossRef]
- Tartor, Y.H.; Abo Hashem, M.E.; Enany, S. Towards a Rapid Identification and a Novel Proteomic Analysis for Dermatophytes from Human and Animal Dermatophytosis. Mycoses 2019, 62, 1116–1126. [Google Scholar] [CrossRef] [PubMed]
- Segal, E.; Frenkel, M. Dermatophyte Infections in Environmental Contexts. Res. Microbiol. 2015, 166, 564–569. [Google Scholar] [CrossRef]
- Aljabre, S.H.M.; Richardson, M.D.; Scott, E.M.; Rashid, A.; Shankland, G.S. Adherence of Arthroconidia and Germlings of Anthropophilic and Zoophilic Varieties of Trichophyton mentagrophytes to Human Corneocytes as an Early Event in the Pathogenesis of Dermatophytosis. Clin. Exp. Dermatol. 1993, 18, 231–235. [Google Scholar] [CrossRef]
- Plangsiri, S.; Arenas, R.; Rattananukrom, T. Zoonotic and Anthropophilic Trichophyton mentagrophytes Complex Infection in Human: An Update and Narrative Review. Mycoses 2025, 68, e70082. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Kong, X.; Ahmed, S.A.; Thakur, R.; Chowdhary, A.; Nenoff, P.; Uhrlass, S.; Verma, S.B.; Meis, J.F.; Kandemir, H.; et al. Taxonomy of the Trichophyton mentagrophytes/T. Interdigitale Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. Indotineae. Mycopathologia 2021, 186, 315–326. [Google Scholar] [CrossRef]
- Rudramurthy, S.; Shaw, D. Overview and Update on the Laboratory Diagnosis of Dermatophytosis. Clin. Dermatol. Rev. 2017, 1, 3. [Google Scholar] [CrossRef]
- Mendonça, A.; Santos, H.; Franco-Duarte, R.; Sampaio, P. Fungal Infections Diagnosis—Past, Present and Future. Res. Microbiol. 2022, 173, 103915. [Google Scholar] [CrossRef]
- Nenoff, P.; Krüger, C.; Schaller, J.; Ginter-Hanselmayer, G.; Schulte-Beerbühl, R.; Tietz, H. Mycology—An Update Part 2: Dermatomycoses: Clinical Picture and Diagnostics. J. Dtsch. Dermatol. Ges. 2014, 12, 749–777. [Google Scholar] [CrossRef]
- Verrier, J.; Monod, M. Diagnosis of Dermatophytosis Using Molecular Biology. Mycopathologia 2017, 182, 193–202. [Google Scholar] [CrossRef]
- Kabtani, J.; Diongue, K.; Dione, J.-N.; Delmas, A.; L’Ollivier, C.; Amoureux, M.-C.; Ndiaye, D.; Ranque, S. Real-Time PCR Assay for the Detection of Dermatophytes: Comparison between an In-House Method and a Commercial Kit for the Diagnosis of Dermatophytoses in Patients from Dakar, Senegal. J. Fungi 2021, 7, 949. [Google Scholar] [CrossRef]
- Ohst, T.; Kupsch, C.; Gräser, Y. Detection of Common Dermatophytes in Clinical Specimens Using a Simple Quantitative Real-Time TaqMan Polymerase Chain Reaction Assay. Br. J. Dermatol. 2016, 174, 602–609. [Google Scholar] [CrossRef]
- Sherman, S.; Goshen, M.; Treigerman, O.; Ben-Zion, K.; Carp, M.; Maisler, N.; Ehrenreich, I.B.; Kimchi, A.; Lifshitz, S.; Smollan, G.; et al. Evaluation of Multiplex Real-time PCR for Identifying Dermatophytes in Clinical Samples—A Multicentre Study. Mycoses 2018, 61, 119–126. [Google Scholar] [CrossRef]
- Eischeid, A.C. SYTO Dyes and EvaGreen Outperform SYBR Green in Real-Time PCR. BMC Res. Notes 2011, 4, 263. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Leung, W.-Y.; Xin, X. Characterization of EvaGreen and the Implication of Its Physicochemical Properties for qPCR Applications. BMC Biotechnol. 2007, 7, 76. [Google Scholar] [CrossRef]
- Gong, J.; Iduu, N.V.; Zhang, D.; Chenoweth, K.; Wei, L.; Yang, Y.; Dou, X.; Wang, C. Dual-Emission Fluorescence Resonance Energy Transfer (FRET) PCR Discriminates Salmonella Pullorum and Gallinarum. Microorganisms 2024, 12, 1815. [Google Scholar] [CrossRef] [PubMed]
- Iduu, N.V.; Raiford, D.; Cohen, N.D.; Landrock, K.K.; Wang, C. High-Resolution Melting Curve FRET-qPCR Rapidly Distinguishes Streptococcus equi Subsp. equi and zooepidemicus. Microbiol. Spectr. 2025, 13, e0152925. [Google Scholar] [CrossRef]
- Zhang, D.; Zhuang, L.; Jiang, Y.; Yang, Y.; Xu, M.; Dou, X.; Gong, J. Efficient Differentiation between Salmonella Pullorum and Salmonella Gallinarum by a fimH-Based PCR-HRM. Avian Pathol. 2025, 54, 450–454. [Google Scholar] [CrossRef]
- Garg, J.; Tilak, R.; Garg, A.; Prakash, P.; Gulati, A.K.; Nath, G. Rapid Detection of Dermatophytes from Skin and Hair. BMC Res. Notes 2009, 2, 60. [Google Scholar] [CrossRef] [PubMed]
- Farrar, J.S.; Reed, G.H.; Wittwer, C.T. High-Resolution Melting Curve Analysis for Molecular Diagnostics. In Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2010; pp. 229–245. ISBN 978-0-12-374537-8. [Google Scholar]
- Kenjar, A.; MRaj, J.R.; Bhandary, J.; Girisha, B.S.; Chakraborty, G.; Karunasagar, I. Development of a Rapid and Low-Cost Method for the Extraction of Dermatophyte DNA. Indian J. Dermatol. 2021, 66, 668–673. [Google Scholar] [CrossRef]
- Kupsch, C.; Ohst, T.; Pankewitz, F.; Nenoff, P.; Uhrlaß, S.; Winter, I.; Gräser, Y. The Agony of Choice in Dermatophyte Diagnostics—Performance of Different Molecular Tests and Culture in the Detection of Trichophyton rubrum and Trichophyton interdigitale. Clin. Microbiol. Infect. 2016, 22, 735.e11–735.e17. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Nolan, T. Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. J. Biomol. Tech. 2004, 15, 155–166. [Google Scholar]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New Primers to Amplify the Fungal ITS2 Region—Evaluation by 454-Sequencing of Artificial and Natural Communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Van Holm, W.; Ghesquière, J.; Boon, N.; Verspecht, T.; Bernaerts, K.; Zayed, N.; Chatzigiannidou, I.; Teughels, W. A Viability Quantitative PCR Dilemma: Are Longer Amplicons Better? Appl. Environ. Microbiol. 2021, 87, e0265320. [Google Scholar] [CrossRef]
- Pieper, J.B.; Bowden, D.G.; Berger, D.J.; Noxon, J.O.; Grable, S.L.; Campbell, K.L. Trichophyton mentagrophytes Complex: A Retrospective Study of 64 Dogs from the Central United States (1997–2020). Vet. Dermatol. 2023, 34, 310–317. [Google Scholar] [CrossRef]
- Oladzad, V.; Nasrollahi Omran, A.; Haghani, I.; Nabili, M.; Seyedmousavi, S.; Hedayati, M.T. Multi-drug resistance Trichophyton indotineae in a stray dog. Res. Vet. Sci. 2024, 166, 105105. [Google Scholar] [CrossRef] [PubMed]
- Švarcová, M.; Kolařík, M.; Li, Y.; Tsui, C.K.M.; Hubka, V. Resolving Phylogenetic Relationships Within the Trichophyton mentagrophytes Complex: A RADseq Genomic Approach Challenges Status of “Terbinafine-Resistant” Trichophyton indotineae as Distinct Species. Mycoses 2025, 68, e70050. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, M.; Yang, Y.; Ding, X.; Yang, P.; Huang, K.; Hu, X.; Zhang, M.; Liu, X.; Yu, H. Structures and mechanism of chitin synthase and its inhibition by antifungal drug Nikkomycin Z. Cell Discov. 2022, 8, 129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirhendi, H.; Makimura, K.; de Hoog, G.S.; Rezaei-Matehkolaei, A.; Najafzadeh, M.J.; Umeda, Y.; Ahmadi, B. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med. Mycol. 2015, 53, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.O.; Grosso, K.M.; Carrion, M.E. Multilocus phylogeny of the Trichophyton mentagrophytes species complex and the application of matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia 2018, 110, 118–130. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iduu, N.V.; Kantzler, R.; Raiford, D.; Bixler, B.; Chenoweth, K.; Wang, C. Dual-Emission FRET-PCR Outperforms SYBR Green and EvaGreen for Accurate Discrimination of Primary Canine Dermatophytes: Microsporum canis, Nannizzia gypsea, and Trichophyton mentagrophytes. J. Fungi 2025, 11, 708. https://doi.org/10.3390/jof11100708
Iduu NV, Kantzler R, Raiford D, Bixler B, Chenoweth K, Wang C. Dual-Emission FRET-PCR Outperforms SYBR Green and EvaGreen for Accurate Discrimination of Primary Canine Dermatophytes: Microsporum canis, Nannizzia gypsea, and Trichophyton mentagrophytes. Journal of Fungi. 2025; 11(10):708. https://doi.org/10.3390/jof11100708
Chicago/Turabian StyleIduu, Nneka Vivian, Rae Kantzler, Donna Raiford, Brenda Bixler, Kelly Chenoweth, and Chengming Wang. 2025. "Dual-Emission FRET-PCR Outperforms SYBR Green and EvaGreen for Accurate Discrimination of Primary Canine Dermatophytes: Microsporum canis, Nannizzia gypsea, and Trichophyton mentagrophytes" Journal of Fungi 11, no. 10: 708. https://doi.org/10.3390/jof11100708
APA StyleIduu, N. V., Kantzler, R., Raiford, D., Bixler, B., Chenoweth, K., & Wang, C. (2025). Dual-Emission FRET-PCR Outperforms SYBR Green and EvaGreen for Accurate Discrimination of Primary Canine Dermatophytes: Microsporum canis, Nannizzia gypsea, and Trichophyton mentagrophytes. Journal of Fungi, 11(10), 708. https://doi.org/10.3390/jof11100708