Design, Synthesis, and Antifungal/Anti-Oomycete Activities of Novel 1,2,4-Triazole Derivatives Containing Carboxamide Fragments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Synthetic Procedures
2.2.1. Synthesis of Compounds 5a–5n, 6a–6m, and 7a–7g
2.2.2. Synthesis of Mefentrifluconazole
2.3. In Vitro Target Compounds against Seven Phytopathogenic Fungi
2.4. Calculation Procedures for Molecular Docking Research
3. Results
3.1. Chemicals
3.2. In Vitro Antifungal/Anti-Oomycete Activities of Target Compounds 5a–5n, 6a–6m, and 7a–7g
3.3. Molecular Docking Research
4. Discussion
4.1. Synthesis
4.2. Structure–Activity Relationship (SAR) Analysis for the Antifungal/Anti-Oomycete Activity
4.3. Molecular Docking
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, L.; Jian, W.L.; Shang, J.B.; He, D.H. Synthesis and antifungal activities of novel thiophene-based stilbene derivatives bearing an 1,3,4-oxadiazole unit. Pest Manag. Sci. 2019, 75, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, S.; Song, D.; Cao, X.; Huang, W.; Ke, S. Discovery of γ-lactam alkaloid derivatives as potential fungicidal agents targeting steroid biosynthesis. J. Agric. Food Chem. 2020, 68, 14438–14451. [Google Scholar] [CrossRef]
- Leadbeater, A. Recent developments and challenges in chemical disease control. Plant Prot. Sci. 2015, 51, 163–169. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Heath, J.J.; Stireman, J.O. Dissecting the association between a gall midge, Asteromyia carbonifera, and its symbiotic fungus, Botryosphaeria dothidea. Entomol. Exp. Appl. 2010, 137, 36–49. [Google Scholar] [CrossRef]
- Tang, W.; Ding, Z.; Zhou, Z.Q.; Wang, Y.Z.; Guo, L.Y. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis. 2011, 96, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Fu, L.; Li, X.J.; Zhai, H.; Liu, L.; Qu, J.L. Susceptibility of Botryosphaeria dothiden to tebuconazole and virulence of its resistant mutants. Plant Prot. 2017, 43, 140–147. [Google Scholar] [CrossRef]
- Poester, V.R.; Mattei, A.S.; Mendes, J.F.; Klafke, G.B.; Ramis, I.B.; Sanchotene, K.O.; Xavier, M.O. Antifungal activity of diphenyl diselenide alone and in combination with itraconazole against Sporothrix brasiliensis. Med. Mycol. 2018, 57, 328–331. [Google Scholar] [CrossRef]
- Maksimov, A.Y.; Balandina, S.Y.; Topanov, P.A.; Mashevskaya, I.V.; Chaudhary, S. Organic antifungal drugs and targets of their action. Curr. Top. Med. Chem. 2021, 21, 705–736. [Google Scholar] [CrossRef]
- Donlin, M.J.; Meyers, M.J. Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discov. Today 2022, 27, 2008–2014. [Google Scholar] [CrossRef]
- Song, H.; Wang, S.; Cai, Q.; Chen, J. Research progress of triazole derivatives in the discovery of agricultural chemicals. J Heterocycl. Chem. 2023, 61, 365–386. [Google Scholar] [CrossRef]
- Wang, S.W.; Wang, X.N.; He, Q.; Lin, H.D.; Chang, H.; Liu, Y.P.; Sun, H.B.; Song, X.B. Analysis of the fungicidal efficacy, environmental fate, and safety of the application of a mefentrifluconazole and pyraclostrobin mixture to control mango anthracnose. J. Sci. Food Agric. 2023, 103, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Mair, W.J.; Deng, W.; Mullins, J.G.; West, S.; Wang, P.; Besharat, N.; Ellwood, S.R.; Oliver, R.P.; Lopez-Ruiz, F.J. Demethylase inhibitor fungicide resistance in Pyrenophora teres f. sp. teres associated with target site modification and inducible overexpression of CYP51. Front. Microbiol. 2016, 7, 1279. [Google Scholar] [CrossRef]
- Kelly, S.L.; Lamb, D.C.; Corran, A.J.; Baldwin, B.C.; Kelly, D.E. Mode of action and resistance to azole antifungals associated with the formation of 14α-methylergosta-8, 24(28)-dien-3β, 6α-diol. Biochem. Biophys. Res. Commun. 1995, 207, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.Z.; Yin, D.F.; Dawood, D.H.; Liu, X.; Chen, Y.; Ma, Z.H. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum. Fungal Genet. Biol. 2014, 68, 60–70. [Google Scholar] [CrossRef]
- Sombardier, A.; Dufour, M.C.; Blancard, D.; Corio-Costet, M.F. Sensitivity of Podosphaera aphanis isolates to DMI fungicides: Distribution and reduced cross-sensitivity. Pest Manag. Sci. 2010, 66, 35–43. [Google Scholar] [CrossRef]
- Koller, W.; Wubben, J.P. Variable resistance factors of fungicides acting as sterol demethylation inhibitors. Pestic. Sci. 1989, 26, 133–145. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; He, L.; Zhu, J.; Wu, B.; Liu, F.; Mu, W. Activity of the novel fungicide mefentrifluconazole against Colletotrichum scovillei. Plant Dis. 2021, 105, 1522–1530. [Google Scholar] [CrossRef]
- Li, L.S.; Sun, X.F.; Zhao, X.J.; Xiong, Y.D.; Gao, B.B.; Zhang, J.; Shi, H.Y.; Wang, M.H. Absolute configuration, enantioselective bioactivity, and degradation of the novel chiral triazole fungicide mefentrifluconazole. J. Agric. Food Chem. 2021, 69, 4960–4967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, X.H.; Li, X.B.; Duan, T.T.; Xu, J.; Dong, F.S.; Liu, X.G.; Guo, L.Y.; Zheng, Y.Q. A fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method for determining mefentrifluconazole in plant- and animal-derived foods. Food Addit. Contam. Part A 2019, 36, 1348–1357. [Google Scholar] [CrossRef]
- Ishii, H.; Bryson, P.K.; Kayamori, M.; Miyamoto, T.; Yamaoka, Y.; Schnabel, G. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. Pestic. Biochem. Physiol. 2020, 171, 104737. [Google Scholar] [CrossRef] [PubMed]
- Tesh, S.A.; Tesh, J.M.; Fegert, I.; Buesen, R.; Schneider, S.; Mentzel, T.; van Ravenzwaay, B.; Stinchcombe, S. Innovative selection approach for a new antifungal agent mefentrifluconazole (Revysol®) and the impact upon its toxicity profile. Regul. Toxicol. Pharm. 2019, 106, 152–168. [Google Scholar] [CrossRef] [PubMed]
- An, X.K.; Pan, X.L.; Li, R.N.; Jiang, D.D.; Dong, F.S.; Zhu, W.T.; Xu, J.; Liu, X.G.; Wu, X.H.; Zheng, Y.Q. Enantioselective monitoring chiral fungicide mefentrifluconazole in tomato, cucumber, pepper and its pickled products by supercritical fluid chromatography tandem mass spectrometry. Food Chem. 2022, 376, 131883. [Google Scholar] [CrossRef]
- Rich, P.R.; Maréchal, A. The mitochondrial respiratory chain. Essays Biochem. 2010, 47, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Xiong, L.; Li, H.; Song, X.Y.; Liu, J.J.; Yang, G.F. Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase. ChemMedChem 2014, 9, 1512–1521. [Google Scholar] [CrossRef]
- Luo, B.; Ning, Y.L. Comprehensive overview of carboxamide derivatives as succinate dehydrogenase inhibitors. J. Agric. Food Chem. 2022, 70, 957–975. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, T.; Wang, J.; Cheng, W.; Lu, T.; Yan, Y.; Tang, X. Design, synthesis, inhibitory activity, and molecular modeling of novel pyrazole-furan/thiophene carboxamide hybrids as potential pungicides targeting succinate dehydrogenase. J. Agric. Food Chem. 2023, 71, 729–738. [Google Scholar] [CrossRef]
- Wei, G.; Gao, M.Q.; Zhu, X.L.; Yang, G.F. Research progress on carboxamide fungicides targeting succinate dehydrogenase. Chin. J. Pestic. Sci. 2019, 21, 673–680. [Google Scholar] [CrossRef]
- Wu, Z.; Park, H.Y.; Xie, D.; Yang, J.; Hou, S.; Shahzad, N.; Kim, C.K.; Yang, S. Synthesis, biological evaluation, and 3D-QSAR studies of N-(Substituted pyridine-4-yl)-1-(substituted phenyl)-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives as potential succinate dehydrogenase inhibitors. J. Agric. Food Chem. 2021, 69, 1214–1223. [Google Scholar] [CrossRef]
- Dietz, J.; Riggs, R.; Boudet, N.; Lohmann, J.K.; Craig, I.R.; Haden, E.; Lauterwasser, E.M.W. Fungicidal Substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4] triazol-1-yl-ethanol Compounds. Patent EP2731935(A1), 21 May 2014. [Google Scholar]
- Gebhardt, J.; Saelinger, D.; Ehresmann, M. Method for Producing 2-[4-(4-chlorophenoxy)-2-(trif-luoromethyl) phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol. Patent WO2017102905, 22 June 2017. [Google Scholar]
- Lohmann, J.K. Composition Comprising a Triazole Compound and Their Use in Controlling Phytopathogenic fungi Known to Cause Plant Diseases. Patent WO2014095994, 26 June 2014. [Google Scholar]
- Nyongesa, B.O.; Bigirimana, J.; Were, B.A.; Murori, R. Virulence spectrum of populations of Pyricularia oryzae in irrigated rice ecosystems in Kenya. Eur. J. Plant Pathol. 2016, 146, 911–922. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, W.; Wang, Y.; Xia, D.; Yin, F.; Liu, Q.; Luo, H.; Li, M.; Zhang, C.; Cao, H.; et al. Novel pyrazolo[3,4-d]pyrimidin-4-one derivatives as potential antifungal agents: Design, synthesis, and biological evaluation. J. Agric. Food Chem. 2021, 69, 11395–11405. [Google Scholar] [CrossRef]
- Tian, J.; Chen, C.; Sun, H.; Wang, Z.; Steinkellner, S.; Feng, J.; Liang, Y. Proteomic analysis reveals the importance of exudates on sclerotial development in Sclerotinia sclerotiorum. J. Agric. Food Chem. 2021, 69, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Lemańczyk, G.; Kwaśna, H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur. J. Plant Pathol. 2012, 135, 187–200. [Google Scholar] [CrossRef]
- Lee, S.C.; Kim, S.H.; Hoffmeister, R.A.; Yoon, M.Y.; Kim, S.K. Novel peptide-based inhibitors for microtubule polymerization in Phytophthora capsici. Int. J. Mol. Sci. 2019, 20, 2641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.G.; Wang, L.; Mao, M.Z.; Wang, W.; Ning, B.K. A review of the synthesis of mefentrifluconazole. Agrochemicals 2019, 58, 457–477. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, Y.; Chu, K.; Gao, T.; Smith, Z.J. High-resolution low-power hyperspectral line-scan imaging of fast cellular dynamics using azo-enhanced Raman scattering probes. J. Am. Chem. Soc. 2022, 144, 15314–15323. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Wawrzak, Z.; Liu, J.; Nes, W.D.; Waterman, M.R.; Lepesheva, G.I. Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14α-demethylase (CYP51) from Leishmania infantum. J. Biol. Chem. 2011, 286, 26838–26848. [Google Scholar] [CrossRef]
- Zhao, H.P.; Liu, Y.X.; Cui, Z.P.; Beattie, D.; Gu, Y.C.; Wang, Q.M. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef]
- Seyedi, S.S.; Shukri, M.; Hassandarvish, P.; Oo, A.; Muthu, S.E.; Abubakar, S.; Zandi, K. Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci. Rep. 2016, 6, 24027. [Google Scholar] [CrossRef] [PubMed]
Compound | Inhibition Rate (%) | ||||||
---|---|---|---|---|---|---|---|
P.o. 2 | S.s. 2 | F.c. 2 | C.h. 2 | P.p. 2 | R.c. 2 | P.c. 2 | |
5a | 25 ± 3 | 57 ± 3 | 28 ± 3 | 5 ± 1 | 48 ± 2 | 17 ± 3 | 37 ± 2 |
5b | 25 ± 3 | 59 ± 2 | 14 ± 3 | 12 ± 2 | 54 ± 1 | 14 ± 2 | 59 ± 3 |
5c | 25 ± 3 | 52 ± 2 | 24 ± 3 | 0 ± 0 | 48 ± 2 | 21 ± 2 | 44 ± 1 |
5d | 25 ± 3 | 61 ± 1 | 8 ± 3 | 12 ± 2 | 48 ± 2 | 14 ± 2 | 59 ± 3 |
5e | 50 ± 3 | 63 ± 3 | 14 ± 3 | 10 ± 1 | 54 ± 1 | 18 ± 2 | 54 ± 2 |
5f | 13 ± 3 | 52 ± 2 | 14 ± 3 | 12 ± 2 | 48 ± 2 | 20 ± 3 | 24 ± 1 |
5g | 38 ± 3 | 50 ± 3 | 14 ± 3 | 7 ± 1 | 48 ± 2 | 17 ± 3 | 71 ± 2 |
5h | 50 ± 3 | 61 ± 1 | 18 ± 3 | 27 ± 1 | 35 ± 1 | 44 ± 3 | 54 ± 2 |
5i | 25 ± 3 | 37 ± 3 | 22 ± 3 | 2 ± 1 | 35 ± 1 | 20 ± 3 | 17 ± 2 |
5j | 44 ± 1 | 52 ± 2 | 24 ± 3 | 10 ± 1 | 37 ± 2 | 17 ± 3 | 90 ± 2 |
5k | 25 ± 3 | 50 ± 3 | 26 ± 3 | 24 ± 1 | 80 ± 2 | 40 ± 3 | 22 ± 3 |
5l | 50 ± 3 | 65 ± 2 | 28 ± 3 | 49 ± 1 | 44 ± 1 | 20 ± 3 | 68 ± 1 |
5m | 25 ± 3 | 44 ± 3 | 18 ± 3 | 10 ± 1 | 39 ± 2 | 28 ± 2 | 12 ± 2 |
5n | 13 ± 3 | 50 ± 3 | 18 ± 3 | 17 ± 2 | 51 ± 2 | 34 ± 2 | 22 ± 3 |
6a | 13 ± 3 | 46 ± 2 | 14 ± 3 | 12 ± 2 | 48 ± 2 | 34 ± 2 | 37 ± 2 |
6b | 25 ± 3 | 72 ± 2 | 16 ± 3 | 7 ± 1 | 48 ± 2 | 58 ± 2 | 17 ± 2 |
6c | 13 ± 3 | 65 ± 2 | 16 ± 3 | 7 ± 1 | 48 ± 2 | 25 ± 2 | 71 ± 2 |
6d | 63 ± 3 | 54 ± 1 | 12 ± 3 | 5 ± 1 | 48 ± 2 | 17 ± 3 | 32 ± 2 |
6e | 25 ± 3 | 37 ± 3 | 18 ± 3 | 17 ± 2 | 48 ± 2 | 26 ± 1 | 42 ± 3 |
6f | 25 ± 3 | 48 ± 1 | 24 ± 3 | 10 ± 1 | 46 ± 2 | 17 ± 3 | 22 ± 3 |
6g | 50 ± 3 | 37 ± 3 | 18 ± 3 | 0 ± 0 | 52 ± 1 | 26 ± 1 | 71 ± 2 |
6h | 25 ± 3 | 67 ± 1 | 30 ± 3 | 24 ± 1 | 92 ± 1 | 20 ± 3 | 24 ± 1 |
6i | 25 ± 3 | 48 ± 1 | 18 ± 3 | 7 ± 1 | 42 ± 1 | 31 ± 2 | 37 ± 2 |
6j | 13 ± 3 | 76 ± 2 | 12 ± 3 | 12 ± 2 | 39 ± 2 | 20 ± 3 | 44 ± 1 |
6k | 44 ± 1 | 63 ± 3 | 8 ± 3 | 7 ± 1 | 53 ± 2 | 17 ± 3 | 73 ± 2 |
6l | 38 ± 3 | 30 ± 1 | 12 ± 3 | 7 ± 1 | 44 ± 1 | 19 ± 1 | 61 ± 3 |
6m | 13 ± 3 | 22 ± 2 | 0 ± 0 | 5 ± 1 | 42 ± 1 | 17 ± 3 | 73 ± 2 |
7a | 38 ± 3 | 44 ± 3 | 14 ± 3 | 7 ± 1 | 54 ± 1 | 28 ± 2 | 24 ± 1 |
7b | 13 ± 3 | 44 ± 3 | 16 ± 3 | 2 ± 1 | 42 ± 1 | 20 ± 3 | 17 ± 2 |
7c | 6 ± 1 | 33 ± 2 | 14 ± 3 | 7 ± 1 | 48 ± 2 | 19 ± 1 | 32 ± 2 |
7d | 6 ± 1 | 44 ± 3 | 8 ± 3 | 5 ± 1 | 66 ± 1 | 17 ± 3 | 37 ± 2 |
7e | 50 ± 3 | 54 ± 1 | 12 ± 3 | 5 ± 1 | 54 ± 1 | 22 ± 1 | 46 ± 1 |
7f | 6 ± 1 | 37 ± 3 | 18 ± 3 | 24 ± 1 | 44 ± 1 | 46 ± 1 | 24 ± 1 |
7g | 6 ± 1 | 44 ± 3 | 8 ± 3 | 2 ± 1 | 48 ± 2 | 18 ± 2 | 24 ± 1 |
mefentrifluconazole | 100 | 96 ± 2 | 70 ± 3 | 78 ± 3 | 54 ± 1 | 100 | 32 ± 2 |
Strain | Compound | EC50 (μg/mL) | 95% Confidence Interval | Regression Equation | R2 |
---|---|---|---|---|---|
P. piricola | 6h | 13.095 | 11.423–15.026 | y = 3.762x − 4.203 | 0.988 |
mefentrifluconazole | 39.516 | 33.822–46.867 | y = 3.147x − 5.024 | 0.942 | |
P. capsici | 5j | 17.362 | 11.664–27.413 | y = 4.008x − 4.968 | 0.962 |
6k | 29.970 | 20.794–44.597 | y = 3.256x − 4.808 | 0.955 | |
6m | 33.152 | 28.925–38.217 | y = 3.745x − 5.694 | 0.984 | |
mefentrifluconazole | 75.433 | 62.167–96.948 | y = 3.000x − 5.632 | 0.980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shi, H.; Lu, A. Design, Synthesis, and Antifungal/Anti-Oomycete Activities of Novel 1,2,4-Triazole Derivatives Containing Carboxamide Fragments. J. Fungi 2024, 10, 160. https://doi.org/10.3390/jof10020160
Wang J, Shi H, Lu A. Design, Synthesis, and Antifungal/Anti-Oomycete Activities of Novel 1,2,4-Triazole Derivatives Containing Carboxamide Fragments. Journal of Fungi. 2024; 10(2):160. https://doi.org/10.3390/jof10020160
Chicago/Turabian StyleWang, Jiali, Haoran Shi, and Aidang Lu. 2024. "Design, Synthesis, and Antifungal/Anti-Oomycete Activities of Novel 1,2,4-Triazole Derivatives Containing Carboxamide Fragments" Journal of Fungi 10, no. 2: 160. https://doi.org/10.3390/jof10020160
APA StyleWang, J., Shi, H., & Lu, A. (2024). Design, Synthesis, and Antifungal/Anti-Oomycete Activities of Novel 1,2,4-Triazole Derivatives Containing Carboxamide Fragments. Journal of Fungi, 10(2), 160. https://doi.org/10.3390/jof10020160