Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions
Abstract
1. Introduction
1.1. Epidemiology: Prevalence and Incidence
1.2. Economic Burden and Clinical Challenges of HFpEF and HFrEF
1.3. Shared and Distinct Pathophysiologic Mechanisms
1.4. Limitations of Existing Pharmacologic and Device Therapies
1.5. Rationale for Neuromodulation and the Emerging Role of AI
1.6. Methods
- Peer-reviewed original research publications, clinical trials, and review papers.
- Studies with real subjects or appropriate preclinical models.
- Articles on neuromodulation, autonomic modulation, and AI integration in heart failure.
- Publications in English.
- Abstracts from conferences that are not available in full text.
- Editorials, commentaries, or opinion pieces that lack original data.
- Non-English language publications.
- Studies not connected to cardiovascular disease or neuromodulation.
2. Autonomic Dysregulation in HFpEF and HFrEF
2.1. Neurohormonal Activation in Heart Failure Progression
2.1.1. RAAS and SNS: Initial Compensatory Mechanisms
2.1.2. Chronic Neurohormonal Overdrive and Maladaptation
2.2. Contrasting Autonomic Profiles in Heart Failure Phenotypes
2.2.1. HFrEF: Sympathetic Predominance
2.2.2. HFpEF: Heterogeneous Syndrome with Vascular Stiffness and Chronotropic Incompetence
2.2.3. Comparative Analysis of Neurohormonal and Autonomic Imbalance
2.3. Therapeutic Rationale for Targeting Autonomic Pathways
2.3.1. Restoring Sympathovagal Balance
2.3.2. Phenotype-Specific Interventions
- Improving Chronotropic Responsiveness: Addressing impaired beta-adrenergic sensitivity or central autonomic control [34].
- Reducing Stiffness: Modulating sympathetic vascular outflow or other ANS pathways affecting vascular compliance [33].
- Managing Autonomic Comorbidities: Targeting conditions like hypertension or sleep apnea.
3. Neuromodulation Modalities: Mechanisms and Clinical Data
3.1. Vagus Nerve Stimulation (VNS)
3.2. Baroreceptor Activation Therapy (BAT)
3.3. Spinal Cord Stimulation (SCS)
- DEFEAT-HF (Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Heart Failure) [52]: Stimulation at T2-4 level for 12 h/day. Primary endpoint was difference in left ventricular end-systolic volume index after 6 months. Results: Thoracic (T2-4) SCS did not lead to changes in LV structural remodeling at 6 months.
- SCS-HEART (Spinal Cord Stimulation for HF) [53]: Stimulation at T1-3 level continuously. Results: High thoracic SCS can lead to improvements in LV function and exercise tolerance.
3.4. Renal Nerve Denervation (RND)
- REACH-HF [55]: A prospective, double-blinded, randomized, controlled study including 7 patients with chronic systolic heart failure on maximal tolerated therapy.
- SYMPLICITY-HF [56]: Enrolled 39 patients with chronic systolic HF (LVEF < 40%), NYHA class II-III, and renal impairment on stable medical therapy.
3.5. Cardiac Sympathetic Denervation (CSD)
3.6. Cardiac Contractility Modulation (CCM)
- FIX-HF-4 [61]: A double-blinded, prospective, double-crossover study conducted in Europe; 164 patients were randomized. Patients with heart failure on guideline-directed medical therapy received 12 weeks of CCM.
- FIX-HF-5 [62]: A prospective randomized controlled trial studying CCM efficacy in patients with NYHA III/IV, EF ≤ 35%. 428 patients with narrow QRS heart failure were enrolled and randomized to optimal medical therapy and CCM vs. optimal medical therapy alone.
- FIX-HF-5C [63]: A confirmatory study for the FIX-HF-5 trial, this was a prospective, randomized study including 160 people randomized 1:1 to receive optimal medical therapy and CCM vs. optimal medical therapy alone.
3.7. Emerging Neuromodulation Modalities
4. Role of Artificial Intelligence in Cardiovascular and Heart Failure Care
4.1. Machine Learning (ML)
4.2. Deep Learning (DL)
4.3. Reinforcement Learning (RL)
4.4. General Applications of Artificial Intelligence in Heart Failure
5. AI-Guided Neuromodulation: Concept and Implementation
5.1. AI-Driven Patient Selection for Neuromodulation
5.2. AI for Parameter Optimization and Closed-Loop Systems
5.3. Preclinical Foundations of AI-Guided Neuromodulation
5.4. Translational Aspects, Future Directions, and Challenges
6. Preclinical and Clinical Evidence for Autonomic Neuromodulation in Heart Failure
6.1. Preclinical Foundations of Neuromodulation
6.1.1. Vagus Nerve Stimulation (VNS) in Animal HF Models
6.1.2. Other Preclinical Neuromodulation Research
6.2. Translation to Human Heart Failure: Clinical Trials
6.2.1. VNS Clinical Trials: Key Findings
6.2.2. Baroreflex Activation Therapy (BAT) in HFrEF
6.3. Comparative Analysis of Neuromodulation Evidence Across HFpEF and HFrEF Populations
6.4. Interpretation of Outcome Metrics and Biomarker Trends in Neuromodulation Studies
6.4.1. Key Clinical Endpoints
6.4.2. Biomarker Dynamics
6.4.3. AI-Driven Personalized Outcome Prediction
7. Discussion
8. Challenges and Future Directions
8.1. Challenges and Limitations
8.2. Future Directions
- Conduct large-scale, phenotype-specific randomized controlled trials with AI-based patient selection to evaluate efficacy across both the HFpEF and HFrEF populations.
- Create standardized, AI-ready multicenter datasets that combine clinical, imaging, biomarker, and device-derived data to allow for robust and generalizable model building.
- Implement adaptive, closed-loop neuromodulation devices in clinical trials, allowing for real-time modification of stimulation parameters based on physiological feedback.
- Ensure algorithm transparency and interpretability to increase clinician trust, facilitate regulatory assessment, and promote safe clinical integration.
- To overcome technological, ethical, and cost-related difficulties, form interdisciplinary consortiums that include cardiologists, neurologists, biomedical engineers, data scientists, and ethicists.
- Develop post-market surveillance systems for AI-neuromodulation devices to ensure long-term safety, performance, and equitable patient access.
- These proposals aim to close existing evidence gaps, boost precision medicine techniques, and move AI-guided neuromodulation closer to common use in heart failure care.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottlieb, M.; Moyer, E.; Bernard, K. Epidemiology of heart failure presentations to United States emergency departments from 2016 to 2023. Am. J. Emerg. Med. 2024, 86, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.; Coats, A.J. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2022, 118, 3272–3287. [Google Scholar] [CrossRef]
- Seferović, P.M.; Vardas, P.; Jankowska, E.A.; Maggioni, A.P.; Timmis, A.; Milinković, I.; Polovina, M.; Gale, C.P.; Lund, L.H.; Lopatin, Y. The Heart Failure Association Atlas: Heart Failure Epidemiology and Management Statistics 2019. Eur. J. Heart Fail. 2021, 23, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.M.; Lund, L.H.; Coats, A.J.; Savarese, G. An update on global epidemiology in heart failure. Eur. Heart J. 2022, 43, 3005–3007. [Google Scholar] [CrossRef]
- Cheng, R.K.; Cox, M.; Neely, M.L.; Heidenreich, P.A.; Bhatt, D.L.; Eapen, Z.J.; Hernandez, A.F.; Butler, J.; Yancy, C.W.; Fonarow, G.C. Outcomes in patients with heart failure with preserved borderline reduced ejection fraction in the Medicare population. Am. Heart J. 2014, 168, 721–730. [Google Scholar] [CrossRef]
- Subramaniam, A.V.; Weston, S.A.; Killian, J.M.; Schulte, P.J.; Roger, V.L.; Redfield, M.M.; Blecker, S.B.; Dunlay, S.M. Development of Advanced Heart Failure: A Population-Based Study. Circ. Heart Fail. 2022, 15, e009218. [Google Scholar] [CrossRef]
- Gerber, Y.; Weston, S.A.; Redfield, M.M.; Chamberlain, A.M.; Manemann, S.M.; Jiang, R.; Killian, J.M.; Roger, V.L. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 2015, 175, 996–1004. [Google Scholar] [CrossRef]
- Weintraub, W.S.; Alva, M. The Societal Burden of Heart Failure with Preserved or Mid-Range Ejection Fraction. JACC Adv. 2024, 3, 101025. [Google Scholar] [CrossRef]
- Wei, C.; Heidenreich, P.A.; Sandhu, A.T. The economics of heart failure care. Prog. Cardiovasc. Dis. 2024, 82, 90–101. [Google Scholar] [CrossRef]
- Sun, L.A.; Dayer, V.W.; Hansen, R.N.; Du, Y.; Williamson, T.; Kong, S.X.; Singh, R.; Sullivan, S.D. Long-term outcomes of heart failure with preserved or mid-range ejection fraction in the United States. JACC Adv. 2024, 3, 101027. [Google Scholar] [CrossRef] [PubMed]
- Añonuevo, J.; Aquino, C.O.; Cunanan, E.; Encarnacion, P.J.; Llanes, E.J.; Orolfo, D.D.; Permejo, C.; Salvador DJr Taneo, M.J.; Villanueva, A.R.; Ong-Garcia, H.; et al. Cost-of-illness of heart failure with preserved and reduced ejection fraction in the Philippines. J. Med. Econ. 2025, 28, 814–822. [Google Scholar] [CrossRef]
- Kim, M.; Lee, C.J. Increasing Readmissions of HFpEF and the Burden They Cause. Int. J. Heart Fail. 2025, 7, 30. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Sharma, K.; Shah, S.J.; Ho, J.E. Heart failure with preserved ejection fraction: JACC scientific statement. J. Am. Coll. Cardiol. 2023, 81, 1810–1834. [Google Scholar] [CrossRef]
- Mahmood, A.; Dhall, E.; Primus, C.P.; Gallagher, A.; Zakeri, R.; Mohammed, S.F.; Chahal, A.A.; Ricci, F.; Aung, N.; Khanji, M.Y. Heart failure with preserved ejection fraction management: A systematic review of clinical practice guidelines and recommendations. Eur. Heart, J. Qual. Care Clin. Outcomes 2024, 10, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, A.U.; Eltony, M.; Prokop, L.J.; Koepp, K.E.; Borlaug, B.A.; Dasari, S.; Bois, M.C.; Margulies, K.B.; Maleszewski, J.J.; Wang, Y.; et al. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat. Rev. Cardiol. 2025, 22, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A. Cellular and molecular differences between HFpEF and HFrEF: A step ahead in an improved pathological understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A. The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2014, 11, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Fernández, A.; Fernández-Mora, Á.; Bernal-Ramírez, J.; Alves-Figueiredo, H.; Nieblas, B.; Salazar-Ramírez, F.; Maldonado-Ruiz, R.; Zazueta, C.; García, N.; Lozano, O.; et al. Distinguishing pathophysiological features of heart failure with reduced and preserved ejection fraction: A comparative analysis of two mouse models. J. Physiol. 2024. [Google Scholar] [CrossRef]
- Beghini, A.; Sammartino, A.M.; Papp, Z.; von Haehling, S.; Biegus, J.; Ponikowski, P.; Adamo, M.; Falco, L.; Lombardi, C.M.; Pagnesi, M.; et al. 2024 update in heart failure. ESC Heart Fail. 2025, 12, 8–42. [Google Scholar] [CrossRef]
- Bistola, V.; Farmakis, D.; Tromp, J.; Tay, W.T.; Ouwerkerk, W.; Angermann, C.E.; Cleland, J.G.F.; Dahlström, U.; Dickstein, K.; Ertl, G.; et al. Hospitalized advanced heart failure with preserved vs reduced left ventricular ejection fraction: A global perspective. Heart Fail. 2025, 13, 229–247. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Allen, N.B.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Bansal, N.; Beaton, A.Z.; et al. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2025, 151, e41–e660. [Google Scholar] [PubMed]
- Balestrieri, G.; Limonta, R.; Ponti, E.; Merlo, A.; Sciatti, E.; D’Isa, S.; Gori, M.; Casu, G.; Giannattasio, C.; Senni, M.; et al. The Therapy and Management of Heart Failure with Preserved Ejection Fraction: New Insights on Treatment. Card. Fail. Rev. 2024, 10, e05. [Google Scholar] [CrossRef]
- Desai, A.S.; Jhund, P.S.; Vaduganathan, M.; Claggett, B.L.; Cunningham, J.W.; Pabon, M.A.; Lam, C.S.P.; Senni, M.; Shah, S.; Voors, A.A.; et al. Mode of Death in Patients with Heart Failure with Mildly Reduced or Preserved Ejection Fraction: The FINEARTS-HF Randomized Clinical Trial. JAMA Cardiol. 2025. [Google Scholar] [CrossRef]
- Duncker, D.; Bauersachs, J. Current and future use of neuromodulation in heart failure. Eur. Heart, J. Suppl. 2022, 24, E28–E34. [Google Scholar] [CrossRef]
- Pahuja, M.; Akhtar, K.H.; Krishan, S.; Nasir, Y.M.; Généreux, P.; Stavrakis, S.; Dasari, T.W. Neuromodulation Therapies in Heart Failure: AState-of-the-Art Review. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101199. [Google Scholar]
- Stavrakis, S.; Elkholey, K.; Morris, L.; Niewiadomska, M.; Asad, Z.U.A.; Humphrey, M.B. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: Apilot randomized clinical trial. J. Am. Heart Assoc. 2022, 11, e023582. [Google Scholar] [CrossRef]
- Dusi, V.; Angelini, F.; Zile, M.R.; De Ferrari, G.M. Neuromodulation devices for heart failure. Eur. Heart J. Suppl. 2022, 24, E12–E27. [Google Scholar] [CrossRef]
- Lymperopoulos, A. Heart and brain interactions in heart failure: Pathophysiological mechanisms and clinical perspectives. Front. Cardiovasc. Med. 2024, 11, 1374567. [Google Scholar]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017, 14, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Toschi-Dias, E.; Rondon, M.U.P.B.; Cogliati, C.; Paolocci, N.; Tobaldini, E.; Montano, N. Contribution of Autonomic Reflexes to the Hyperadrenergic State in Heart Failure. Front. Neurosci. 2017, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Ter Maaten, J.M.; Damman, K.; van Veldhuisen, D.J. Neurohormonal Modulation in HFpEF. Card. Fail. Rev. 2016, 2, 80–84. [Google Scholar]
- Leite-Junior, J.; de Souza, L.A.P. The sympathetic nervous system in heart failure with preserved ejection fraction. Curr. Opin. Nephrol. Hypertens. 2024, 33, 459–465. [Google Scholar]
- Abudiab, M.M.; Borlaug, B.A. Haemodynamics of Heart Failure with Preserved Ejection Fraction. Card. Fail. Rev. 2015, 1, 90–95. [Google Scholar]
- Sarma, S.; Stoller, D.; Hendrix, J.; Howden, E.; Lawley, J.; Livingston, S.; Adams-Huet, B.; Holmes, C.; Goldstein, D.S.; Levine, B.D. Mechanisms of Chronotropic Incompetence in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2020, 13, e006673. [Google Scholar] [CrossRef] [PubMed]
- Florea, V.G.; Cohn, J.N. The autonomic nervous system and heart failure. Circ. Res. 2014, 114, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.R.; Lindenfeld, J.; Weaver, F.A.; Zannad, F.; Galle, E.; Rogers, T.; Abraham, W.T. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 2020, 76, 1–13. [Google Scholar] [CrossRef]
- De Ferrari, G.M.; Schwartz, P.J. Vagus nerve stimulation: From pre-clinical to clinical application for treating chronic heart failure. Curr. Cardiol. Rep. 2011, 13, 227–233. [Google Scholar]
- Libbus, I.; KenKnight, B.H. Vagus nerve stimulation for the treatment of heart failure. Cardiovasc. Innov. Appl. 2017, 2, 431–443. [Google Scholar]
- Gold, M.R.; Van Veldhuisen, D.J.; Hauptman, P.J.; Borggrefe, M.; Kubo, S.H.; Lieberman, R.A.; Milasinovic, G.; Berman, B.J.; Djordjevic, S.; Neelagaru, S.; et al. Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial. J. Am. Coll. Cardiol. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Premchand, R.K.; Sharma, K.; Mittal, S.; Monteiro, R.; Dixit, S.; Libbus, I.; DiCarlo, L.A.; Ardell, J.L.; Rector, T.S.; Amurthur, B.; et al. Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: The ANTHEM-HF study. J. Card. Fail. 2014, 20, 808–814. [Google Scholar] [CrossRef]
- Zannad, F.; De Ferrari, G.M.; Tuinenburg, A.E.; Wright, D.; Brugada, J.; Butter, C.; Klein, H.; Stolen, C.; Meyer, S.; Stein, K.; et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 2015, 36, 425–433. [Google Scholar] [CrossRef]
- Timmers, H.J.; Wieling, W.; Karemaker, J.M.; Lenders, J.W. Denervation of the carotid baro-and chemoreceptors in humans. J. Hypertens. 2009, 27, 1339–1345. [Google Scholar] [CrossRef]
- Gronda, E.; Francis, D.; Zannad, F.; Hamm, C.; Brugada, J.; Vanoli, E. Baroreflex activation therapy: A new approach to the treatment of heart failure. JACC Basic. Transl. Sci. 2017, 2, 621–631. [Google Scholar]
- Eckberg, D.L.; Drabinsky, M.; Braunwald, E. Defective baroreceptor reflex in patients with heart failure. N. Engl. J. Med. 1971, 285, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Zile, M.R.; Weaver, F.A.; Butter, C.; Ducharme, A.; Halbach, M.; Klug, D.; Lovett, E.G.; Müller-Ehmsen, J.; Schafer, J.E. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015, 3, 487–496. [Google Scholar] [CrossRef]
- Linderoth, B.; Foreman, R.D. Mechanisms of spinal cord stimulation in painful syndromes: Role of animal models. Pain. Med. 2006, 7 (Suppl. S1), S14–S26. [Google Scholar] [CrossRef]
- Mann, S.; Spark, J. Spinal cord stimulation for intractable angina. ANZ J. Surg. 2008, 78, 747–750. [Google Scholar]
- Ardell, J.L.; Cardinal, R.; Armour, J.A. Chronic spinal cord stimulation alters neural control of the heart: A study in a canine model of sudden cardiac death. Auton. Neurosci. 2000, 83, 48–59. [Google Scholar]
- Jespersen, M.C.; Bagger, J.P. Spinal cord stimulation in severe coronary artery disease. A review of the literature. Scand. Cardiovasc. J. 2006, 40, 132–137. [Google Scholar]
- Tse, H.F.; Turner, S.; Sanders, P.; Okuyama, Y.; Fujiu, K.; Cheung, C.W.; Russo, M.; Green, M.D.S.; Yiu, K.H.; Chen, P.; et al. Thoracic spinal cord stimulation for heart failure as a result of sympathetic activation. Circulation 2006, 113, 1966–1975. [Google Scholar]
- Deering, T.F.; Weiner, R.L. Spinal cord stimulation for the treatment of refractory angina. Curr. Treat. Options Cardiovasc. Med. 2011, 13, 1–10. [Google Scholar]
- Zipes, D.P.; Neuzil, P.; Theres, H.; Caraway, D.; Mann, D.L.; Mannheimer, C.; Van Buren, P.; Linde, C.; Linderoth, B.; Kueffer, F.; et al. Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Chronic Systolic Heart Failure: The DEFEAT-HF Study. JACC Heart Fail. 2016, 4, 129–136. [Google Scholar] [CrossRef]
- Tse, H.F.; Lau, C.P.; Ribas, M.A. High thoracic spinal cord stimulation for heart failure: The SCS-HEART study. Eur. J. Heart Fail. 2013, 15, 911–920. [Google Scholar]
- Mahfoud, F.; Böhm, M.; Schmieder, R.E. Renal denervation for treatment of hypertension. Herz 2011, 36, 661–669. [Google Scholar]
- Dimitriadis, K.; Iliakis, P.; Pyrpyris, N.; Tatakis, F.; Fragkoulis, C.; Mantziaris, V.; Plaitis, A.; Beneki, E.; Tsioufis, P.; Hering, D.; et al. Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. J. Clin. Med. 2024, 13, 6656. [Google Scholar] [CrossRef]
- Davies, J.E.; Manisty, C.H.; Petraco, R.; Barron, A.J.; Unsworth, B.; Mayet, J.; Hamady, M.; Hughes, A.D.; Sever, P.S.; Sobotka, P.A.; et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: Primary outcome from the SYMPLICITY-HF study. Int. J. Cardiol. 2013, 162, 189–192. [Google Scholar] [CrossRef]
- Chiamvimonvat, N.; DeMaria, A.N. Left Cardiac Sympathetic Denervation for Heart Failure: A Pilot Study. Circ. Heart Fail. 2012, 5, 220–227. [Google Scholar]
- Brunckhorst, C.B.; Shemer, I.; Mika, Y.; Ben Haim, S.A.; Burkhoff, D. Cardiac contractility modulation by non-excitatory currents: Studies in isolated cardiac muscle. Eur. J. Heart Fail. 2006, 8, 7–15. [Google Scholar] [CrossRef]
- Butter, C.; Wellnhofer, E. Cardiac contractility modulation: A novel approach for the treatment of heart failure. Herz 2007, 32, 213–219. [Google Scholar]
- Imai, M.; Saku, K.; Kishi, T.; Sunagawa, K. Cardiac contractility modulation: A novel approach for the treatment of heart failure. J. Cardiol. 2020, 75, 1–8. [Google Scholar]
- Stix, G.; Borggrefe, M.; Wolpert, C.; Hindricks, G.; Kottkamp, H.; Böcker, D.; Wichter, T.; Mika, Y.; Ben-Haim, S.; Burkhoff, D.; et al. Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur. Heart J. 2004, 25, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Kadish, A.; Nademanee, K.; Volosin, K.; Krueger, S.; Neelagaru, S.; Raval, N.; Obel, O.; Weiner, S.; Wish, M.; Carson, P.; et al. A randomized controlled trial of cardiac contractility modulation in heart failure. Am. Heart J. 2011, 161, 329–336. [Google Scholar] [CrossRef]
- Abraham, W.T.; Kuck, K.H.; Goldsmith, R.L.; Lindenfeld, J.; Reddy, V.Y.; Carson, P.E.; Mann, D.L.; Saville, B.; Parise, H.; Chan, R.; et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. 2018, 6, 874–883. [Google Scholar] [CrossRef]
- He, B.; Lu, Z.; He, W.; Yu, X.; Wang, S. Vagus nerve stimulation for atrial fibrillation: A perspective on the auricular branch of the vagus nerve. J. Thorac. Dis. 2016, 8, E121. [Google Scholar]
- Badran, B.W.; Mithoefer, O.J.; Summer, C.E.; LaBate, N.T.; Glusman, C.E.; Badran, A.W.; DeVries, W.H.; Summers, P.M.; Austelle, C.W.; McTeague, L.M.; et al. Short-term effects of transcutaneous auricular vagus nerve stimulation on heart rate variability: An exploratory, single-arm study. Brain Stimul. 2016, 9, 847–852. [Google Scholar]
- Stavrakis, S.; Humphrey, M.B.; Scherlag, B.J.; Hu, Y.; Jackman, W.M.; Nakagawa, H.; Lockwood, D.; Lazzara, R.; Po, S.S. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 2015, 65, 867–875. [Google Scholar] [CrossRef]
- Halbach, M.; Wappler, M.; Pagonas, N.; Bauer, F. Endovascular baroreflex activation for resistant hypertension. J. Clin. Med. 2020, 9, 2959. [Google Scholar]
- Abraham, W.T.; Jagielski, D.; Oldenburg, O.; Augostini, R.; Krueger, S.; Kolodziej, A.; Gutleben, K.J.; Khayat, R.; Merliss, A.; Harsch, M.R.; et al. Phrenic nerve stimulation for the treatment of central sleep apnea. JACC Heart Fail. 2016, 4, 361–369. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Yoon, M.; Park, J.J.; Hur, T.; Hua, C.H.; Hussain, M.; Lee, S.; Choi, D.J. Application potential of artificial intelligence in heart failure: Past present future. Int. J. Heart Fail. 2024, 6, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Kwon J-m Kim, K.-H.; Jeon, K.-H.; Lee, S.E.; Lee, H.-Y.; Cho, H.-J. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE 2020, 15, e0235805. [Google Scholar]
- Frizell, B.; Choi, Y.; Finkelstein, J. Accuracy of AI-based clinical decision support system for heart failure diagnosis: Systematic review. J. Med. Internet Res. 2022, 24, e36384. [Google Scholar]
- Shah, S.J.; Katz, D.H.; Selvaraj, S.; Burke, M.A.; Clyde, W.Y.; Mihai, G.; Robert, O.B.; Chiang-Ching, H.; Rahul, C. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 2015, 131, 269–279. [Google Scholar] [CrossRef]
- Kwon, J.M.; Kim, K.H.; Lee, M.; Choi, D.J. A deep learning algorithm for predicting mortality of patients with acute heart failure (DAHF). J. Clin. Med. 2021, 10, 2276. [Google Scholar]
- Shameer, K.; Johnson, K.W.; Glicksberg, B.S.; Dudley, J.T.; Chen, R. Machine learning in cardiovascular medicine: Are we there yet? Heart 2017, 103, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Feeny, A.K.; Rickard, J.; Patel, D.; Toro, S.; Trulock, K.M.; Park, C.J.; LaBarbera, M.A.; Varma, N.; Niebauer, M.J.; Sinha, S.; et al. Machine Learning to Predict Response to Cardiac Resynchronization Therapy. J. Am. Heart Assoc. 2021, 10, e019799. [Google Scholar]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A.; et al. Continuous wearable monitoring analytics predict heart failure hospitalization: The LINK-HF multicenter study. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; Wang, Z.; Aydar, M.; Baber, U.; Min, J.K.; Tang, W.H.W.; Halperin, J.L.; Narayan, S.M. Deep learning for cardiovascular medicine: Apractical primer. Eur. Heart J. 2019, 40, 2058–2073. [Google Scholar] [CrossRef] [PubMed]
- Idris-Agbabiaka, A.; Anjum, M.M.; Semy, M.; Rath, S.; Rizwan, M.; Victoria, O.O.; Anwar, A.; Abiodun, I.; Ashinze, P. AI-assisted heart failure management: A review of clinical applications, case studies, and future directions. Glob. Cardiol. Sci. Pract. 2025, 2025, 1–16. [Google Scholar] [CrossRef]
- Sarikhani, P.; Hsu, H.L.; Zeydabadinezhad, M.; Yao, Y.; Kothare, M.; Mahmoudi, B. Reinforcement learning for closed-loop regulation of cardiovascular system with vagus nerve stimulation: A computational study. J. Neural Eng. 2024, 21, 036027. [Google Scholar] [CrossRef]
- Wernisch, L.; Edwards, T.; Berthon, A.; Tessier-Lariviere, O.; Sarkans, E.; Stoukidi, M.; Fortier-Poisson, P.; Pinkney, M.; Thornton, M.; Hanley, C.; et al. Online bayesian optimization of nerve stimulation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Gautam, N.; Ghanta, S.N.; Mueller, J.; Mansour, M.; Chen, Z.; Puente, C.; Ha, Y.M.; Tarun, T.; Dhar, G.; Sivakumar, K.; et al. Artificial intelligence, wearables and remote monitoring for heart failure: Current and future applications. Diagnostics 2022, 12, 2964. [Google Scholar] [CrossRef]
- Abdin, A.; Lauder, L.; Fudim, M.; Abraham, W.T.; Anker, S.D.; Böhm, M.; Mahfoud, F. Neuromodulation interventions in the management of heart failure. Eur. J. Heart Fail. 2024, 26, 502–510. [Google Scholar] [CrossRef]
- Wu, Z.; Liao, J.; Liu, Q.; Zhou, S.; Chen, M. Chronic vagus nerve stimulation in patients with heart failure: Challenge or failed translation? Front. Cardiovasc. Med. 2023, 10, 1052471. [Google Scholar] [CrossRef]
- Ottaviani, M.M.; Vallone, F.; Micera, S.; Recchia, F.A. Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases: State of the art and future directions. Front. Cardiovasc. Med. 2022, 9, 866957. [Google Scholar] [CrossRef]
- Toni, L.; Pierantoni, L.; Verardo, C.; Romeni, S.; Micera, S. Characterization of Machine Learning-Based Surrogate Models of Neural Activation Under Electrical Stimulation. Bioelectromagnetics 2024, 46, e22535. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Petrů, J.; Málek, F.; Stylos, L.; Goedeke, S.; Neuzil, P. Novel neuromodulation approach to improve left ventricular contractility in heart failure: A first-in-human proof-of-concept study. Circ. Arrhythm. Electrophysiol. 2020, 13, e008407. [Google Scholar] [CrossRef]
- Li, M.; Zheng, C.; Sato, T.; Kawada, T.; Sugimachi, M.; Sunagawa, K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 2004, 109, 120–124. [Google Scholar] [CrossRef]
- Elamin, A.B.A.; Forsat, K.; Senok, S.S.; Goswami, N. Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. J. Clin. Med. 2023, 12, 1717. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, W.S.; Liao, S.Y.; Zhang, Y.; Au, K.W.; Shuto, C.; Hata, C.; Park, E.; Chen, P.; Siu, C.W.; et al. Thoracic spinal cord stimulation improves cardiac contractile function myocardial oxygen consumption in a porcine model of ischemic heart failure. J. Cardiovasc. Electrophysiol. 2012, 23, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.C.; Zhang, M.M.; Ren, J.H.; Sun, Y.; Liu, J.Z.; Wu, X.Q.; He, S.Y.; Li, Y.Q.; Zhang, J.B. Spinal cord stimulation reduces cardiac pain through microglial deactivation in rats with chronic myocardial ischemia. Mol. Med. Rep. 2021, 24, 835. [Google Scholar] [CrossRef]
- Conceição, G.; Heinonen, I.; Lourenço, A.P.; Duncker, D.J.; Falcão-Pires, I. Animal models of heart failure with preserved ejection fraction. Neth. Heart J. 2016, 24, 275–286. [Google Scholar] [CrossRef]
- Sant’Anna, L.B.; Couceiro, S.L.M.; Ferreira, E.A.; Sant’Anna, M.B.; Cardoso, P.R.; Mesquita, E.T.; Sant’Anna, G.M.; Sant’Anna, F.M. Vagal Neuromodulation in Chronic Heart Failure with Reduced Ejection Fraction: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 766676. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med. Inf. Decis. Mak. 2020, 20, 16. [Google Scholar] [CrossRef]
Autonomic Feature. | HFrEF Characteristics | HFpEF Characteristics |
---|---|---|
Global Sympathetic Activity | Markedly increased; hyperadrenergic state | Mild-moderately increased; often comorbidity-driven; less clear-cut |
Cardiac Sympathetic Activity | Significantly elevated; drives remodeling, arrhythmias | Less consistent evidence; not universally elevated; dysfunctional signaling possible |
Parasympathetic Tone | Markedly reduced | Variable; may be reduced, less consistently/severely; “intermediate phenotype” suggested |
Baroreflex Sensitivity (BRS) | Significantly blunted/impaired | Often impaired; contributes to imbalance |
Chemoreflex Sensitivity | Often hyperactive; fuels sympathetic drive, ventilatory instability | Less characterized; comorbidities (e.g., sleep apnea) may contribute |
Vascular Stiffness | May be present; less a primary hallmark | Prominent; key to diastolic dysfunction and impaired ventricular-vascular coupling |
Chronotropic Competence | Can be impaired; less defining than in HFpEF | Chronotropic incompetence (CI) common (30–50%); major contributor to exercise intolerance |
Key Neurohormones | Markedly elevated | Elevated in subsets (~67% one + biomarker); elevation generally less than HFrEF |
Response to Neurohormonal Blockade | Cornerstone therapy; significant prognostic benefit | Generally no significant prognostic benefit in broad population; potential benefit in HFmrEF |
Trial | Design/Randomization | Sample Size/Follow-Up | Primary Endpoint(s) | Key Secondary Endpoints |
---|---|---|---|---|
ANTHEM-HF [40] | Open-label, multicenter (2:1 ON/OFF) | 60 patients/6 months | LVEF, LVESV | 6MWT, MLHFQ, NYHA class, LVESD, Mean Heart Rate, HRV |
NECTAR-HF [41] | Randomized, sham-controlled (2:1 ON/OFF) | 96 patients/6 months | Change in LVESD | 6MWT, MLHFQ, NYHA class, LVESV, LVEF, NT-proBNP |
INOVATE-HF [39] | Multinational, randomized (3:2 ON/OFF) | 707 patients/16 months | Composite of all-cause mortality or HF hospitalization | 6MWT, KCCQ, NYHA class, LVESV |
Trial Acronym/Study | Neuromodulation Modality | Target Population (HF Phenotype, NYHA Class, LVEF) | AI Component (Actual or Potential/Needed) | Primary Endpoints (Examples) | Key Findings and Limitations (Re: Parameter Setting/Responder Variability) | Implications for AI-Guided Approaches |
---|---|---|---|---|---|---|
INOVATE-HF [39] | VNS | HFrEF, NYHA III, LVEF ≤ 40% | Manual titration; Potential for AI optimization | Composite: all-cause mortality or worsening HF | Did not meet primary endpoint. Questions re: optimal patient selection and stimulation parameters. | Highlights need for AI in patient selection, personalized parameter optimization, adaptive control. |
NECTAR-HF [41] | VNS | HFrEF, NYHA II-III, LVEF ≤ 35% | Manual titration; Potential for AI optimization | Change in LVESD index | No significant benefit on primary/secondary endpoints. Suboptimal parameter settings suspected. | Reinforces need for AI to overcome heuristic parameter setting limitations, address inter-patient variability. |
ANTHEM-HF [40] | VNS (right-sided) | HFrEF, NYHA II-III, LVEF ≤ 40% | Manual titration; Potential for AI optimization | LVEF, LVESV, 6MWT, MLWHFQ, NT-proBNP | Improvements in LVEF, symptoms, functional capacity. Smaller study; parameter optimization still challenging. | Suggests VNS potential; AI could enhance consistency/magnitude of benefit via optimized, adaptive therapy. |
BeAT-HF [36,45] | BAT | HFrEF, NYHA III (or II with recent III), LVEF ≤ 35% | Physician-programmed; Potential for AI personalization and adaptation | 6MWT, MLWHFQ score, NT-proBNP; MANCE rate | BAT safe; significantly improved QoL, exercise capacity, NT-proBNP. Durable QoL benefits (24mo). | Positive results form platform for AI to refine BAT (personalize, adapt). |
LINK-HF2 (Pilot) [83] | Intervention guided by AI | HF patients | AI analytics guide interventions | Workflow, communication, clinician beliefs, notification response | Clinicians responded to AI notifications; pilot guided main trial implementation. | Demonstrates feasibility of integrating AI analytics into clinical workflows. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, R.A.; Senapati, S.G.; Ahluwalia, V.; Panjwani, G.A.R.; Kaur, A.; Yerrapragada, G.; Jayapradhaban Kala, J.; Elangovan, P.; Karuppiah, S.S.; Asadimanesh, N.; et al. Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions. J. Cardiovasc. Dev. Dis. 2025, 12, 314. https://doi.org/10.3390/jcdd12080314
Ansari RA, Senapati SG, Ahluwalia V, Panjwani GAR, Kaur A, Yerrapragada G, Jayapradhaban Kala J, Elangovan P, Karuppiah SS, Asadimanesh N, et al. Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions. Journal of Cardiovascular Development and Disease. 2025; 12(8):314. https://doi.org/10.3390/jcdd12080314
Chicago/Turabian StyleAnsari, Rabiah Aslam, Sidhartha Gautam Senapati, Vibhor Ahluwalia, Gianeshwaree Alias Rachna Panjwani, Anmolpreet Kaur, Gayathri Yerrapragada, Jayavinamika Jayapradhaban Kala, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Naghmeh Asadimanesh, and et al. 2025. "Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions" Journal of Cardiovascular Development and Disease 12, no. 8: 314. https://doi.org/10.3390/jcdd12080314
APA StyleAnsari, R. A., Senapati, S. G., Ahluwalia, V., Panjwani, G. A. R., Kaur, A., Yerrapragada, G., Jayapradhaban Kala, J., Elangovan, P., Karuppiah, S. S., Asadimanesh, N., Muthyala, A., & Arunachalam, S. P. (2025). Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions. Journal of Cardiovascular Development and Disease, 12(8), 314. https://doi.org/10.3390/jcdd12080314