Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = baroreflex activation therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2015 KB  
Review
The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers
by Dwaipayan Saha, Preyangsee Dutta and Abhijit Chakraborty
Immuno 2025, 5(4), 45; https://doi.org/10.3390/immuno5040045 - 3 Oct 2025
Viewed by 1950
Abstract
Cardiomyopathies affect over 3 million individuals globally, with conventional treatments exhibiting up to 60% resistance and 25% 30-day readmission rates. This review synthesizes the current evidence on the role of neuro-immune interactions in the pathogenesis of cardiomyopathy and evaluates emerging therapies targeting this [...] Read more.
Cardiomyopathies affect over 3 million individuals globally, with conventional treatments exhibiting up to 60% resistance and 25% 30-day readmission rates. This review synthesizes the current evidence on the role of neuro-immune interactions in the pathogenesis of cardiomyopathy and evaluates emerging therapies targeting this axis. We systematically examined clinical trials and mechanistic and multi-omics data across cardiomyopathy phenotypes, focusing on autonomic-immune dysregulation. Sympathetic overactivation, present in approximately 85% of patients, correlates with elevated pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and contributes significantly to therapeutic non-response. Concurrent parasympathetic withdrawal impairs cholinergic anti-inflammatory pathways, as reflected by reduced heart rate variability and baroreflex sensitivity. At the molecular level, shared mechanisms include inflammasome activation, neuroimmune synaptic signaling, and neurogenic inflammation. Emerging therapies targeting this axis are promising. Vagus nerve stimulation, as demonstrated in the INOVATE-HF trial, improves functional outcomes, whereas IL-1β antagonists reduce cardiovascular events by 15–20% in the context of inflammatory diseases. Bioelectronic interventions, such as transcutaneous vagal nerve stimulation and baroreflex activation therapy, offer noninvasive dual-modulatory strategies that address both neural and immune pathways, positioning the neuroimmune axis as a central driver of cardiomyopathy, regardless of etiology. The integration of genetic and metabolomic profiling may enable precision therapies targeting neuroimmune circuits, thereby overcoming the limitations of hemodynamic-focused care. This mechanistic framework shifts the therapeutic paradigm from symptomatic relief to targeted modulation of pathogenic pathways, with implications for millions of patients with cardiomyopathy and broader inflammatory cardiovascular disorders. Full article
Show Figures

Figure 1

28 pages, 1440 KB  
Review
Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions
by Rabiah Aslam Ansari, Sidhartha Gautam Senapati, Vibhor Ahluwalia, Gianeshwaree Alias Rachna Panjwani, Anmolpreet Kaur, Gayathri Yerrapragada, Jayavinamika Jayapradhaban Kala, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Naghmeh Asadimanesh, Anjani Muthyala and Shivaram P. Arunachalam
J. Cardiovasc. Dev. Dis. 2025, 12(8), 314; https://doi.org/10.3390/jcdd12080314 - 19 Aug 2025
Cited by 1 | Viewed by 2188
Abstract
Heart failure, a significant global health burden, is divided into heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF), characterized by systolic dysfunction and diastolic stiffness, respectively. While HFrEF benefits from pharmacological and device-based therapies, HFpEF lacks effective treatments, with [...] Read more.
Heart failure, a significant global health burden, is divided into heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF), characterized by systolic dysfunction and diastolic stiffness, respectively. While HFrEF benefits from pharmacological and device-based therapies, HFpEF lacks effective treatments, with both conditions leading to high rehospitalization rates and reduced quality of life, especially in older adults with comorbidities. This review explores the role of artificial intelligence (AI) in advancing autonomic neuromodulation for heart failure management. AI enhances patient selection, optimizes stimulation strategies, and enables adaptive, closed-loop systems. In HFrEF, vagus nerve stimulation and baroreflex activation therapy improve functional status and biomarkers, while AI-driven models adjust stimulation dynamically based on physiological feedback. In HFpEF, AI aids in deep phenotyping to identify responsive subgroups for neuromodulatory interventions. Clinical tools support remote monitoring, risk assessment, and symptom detection. However, challenges like data integration, ethical oversight, and clinical adoption limit real-world application. Algorithm transparency, bias minimization, and equitable access are critical for success. Interdisciplinary collaboration and ethical innovation are essential to develop personalized, data-driven, patient-centered heart failure treatment strategies through AI-guided neuromodulation. Full article
Show Figures

Figure 1

24 pages, 921 KB  
Review
Neuromodulation of the Cardiac Autonomic Nervous System for Arrhythmia Treatment
by Benjamin Wong, Yuki Kuwabara and Siamak Salavatian
Biomedicines 2025, 13(7), 1776; https://doi.org/10.3390/biomedicines13071776 - 21 Jul 2025
Cited by 1 | Viewed by 6084
Abstract
This review explores current and emerging neuromodulation techniques targeting the cardiac autonomic nervous system for the treatment and prevention of atrial and ventricular arrhythmias. Arrhythmias remain a significant cause of morbidity and mortality, with the autonomic nervous system playing a crucial role in [...] Read more.
This review explores current and emerging neuromodulation techniques targeting the cardiac autonomic nervous system for the treatment and prevention of atrial and ventricular arrhythmias. Arrhythmias remain a significant cause of morbidity and mortality, with the autonomic nervous system playing a crucial role in arrhythmogenesis. Interventions span surgical, pharmacological, and bioelectronic methods. We discuss the range of neuromodulation methods targeting the stellate ganglion, the spinal region, the parasympathetic system, and other promising methods. These include stellate ganglion block, stellate ganglion ablation, cardiac sympathetic denervation, subcutaneous electrical stimulation, thoracic epidural anesthesia, spinal cord stimulation, dorsal root ganglion stimulation, vagus nerve stimulation, baroreflex activation therapy, carotid body ablation, renal denervation, ganglionated plexi ablation, acupuncture, and transcutaneous magnetic stimulation. Both preclinical and clinical studies are presented as evidence for arrhythmia management. Full article
Show Figures

Figure 1

17 pages, 1048 KB  
Article
Heart Rate Variability Biofeedback in Adults with a Spinal Cord Injury: A Laboratory Framework and Case Series
by Jacob Schoffl, Mohit Arora, Ilaria Pozzato, Candice McBain, Dianah Rodrigues, Elham Vafa, James Middleton, Glen M. Davis, Sylvia Maria Gustin, John Bourke, Annette Kifley, Andrei V. Krassioukov, Ian D. Cameron and Ashley Craig
J. Clin. Med. 2023, 12(24), 7664; https://doi.org/10.3390/jcm12247664 - 13 Dec 2023
Cited by 2 | Viewed by 3086
Abstract
Heart rate variability biofeedback (HRV-F) is a neurocardiac self-regulation therapy that aims to regulate cardiac autonomic nervous system activity and improve cardiac balance. Despite benefits in various clinical populations, no study has reported the effects of HRV-F in adults with a spinal cord [...] Read more.
Heart rate variability biofeedback (HRV-F) is a neurocardiac self-regulation therapy that aims to regulate cardiac autonomic nervous system activity and improve cardiac balance. Despite benefits in various clinical populations, no study has reported the effects of HRV-F in adults with a spinal cord injury (SCI). This article provides an overview of a neuropsychophysiological laboratory framework and reports the impact of an HRV-F training program on two adults with chronic SCI (T1 AIS A and T3 AIS C) with different degrees of remaining cardiac autonomic function. The HRV-F intervention involved 10 weeks of face-to-face and telehealth sessions with daily HRV-F home practice. Physiological (HRV, blood pressure variability (BPV), baroreflex sensitivity (BRS)), and self-reported assessments (Fatigue Severity Scale, Generalised Anxiety Disorder Scale, Patient Health Questionnaire, Appraisal of Disability and Participation Scale, EuroQol Visual Analogue Scale) were conducted at baseline and 10 weeks. Participants also completed weekly diaries capturing mood, anxiety, pain, sleep quality, fatigue, and adverse events. Results showed some improvement in HRV, BPV, and BRS. Additionally, participants self-reported some improvements in mood, fatigue, pain, quality of life, and self-perception. A 10-week HRV-F intervention was feasible in two participants with chronic SCI, warranting further investigation into its autonomic and psychosocial effects. Full article
(This article belongs to the Special Issue Spinal Cord Injuries: Advances in Rehabilitation)
Show Figures

Figure 1

25 pages, 3684 KB  
Review
Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction
by Sabina Andreea Leancă, Irina Afrăsânie, Daniela Crișu, Iulian Theodor Matei, Ștefania Teodora Duca, Alexandru Dan Costache, Viviana Onofrei, Ionuţ Tudorancea, Ovidiu Mitu, Minerva Codruța Bădescu, Lăcrămioara Ionela Șerban and Irina Iuliana Costache
Life 2023, 13(4), 1000; https://doi.org/10.3390/life13041000 - 13 Apr 2023
Cited by 8 | Viewed by 9484
Abstract
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients [...] Read more.
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients. Full article
Show Figures

Graphical abstract

15 pages, 604 KB  
Review
Novel Therapeutic Devices in Heart Failure
by Mateusz Guzik, Szymon Urban, Gracjan Iwanek, Jan Biegus, Piotr Ponikowski and Robert Zymliński
J. Clin. Med. 2022, 11(15), 4303; https://doi.org/10.3390/jcm11154303 - 25 Jul 2022
Cited by 6 | Viewed by 3396
Abstract
Heart failure (HF) constitutes a significant clinical problem and is associated with a sizeable burden for the healthcare system. Numerous novel techniques, including device interventions, are investigated to improve clinical outcome. A review of the most notable currently studied devices targeting pathophysiological processes [...] Read more.
Heart failure (HF) constitutes a significant clinical problem and is associated with a sizeable burden for the healthcare system. Numerous novel techniques, including device interventions, are investigated to improve clinical outcome. A review of the most notable currently studied devices targeting pathophysiological processes in HF was performed. Interventions regarding autonomic nervous system imbalance, i.e., baroreflex activation therapy; vagus, splanchnic and cardiopulmonary nerves modulation; respiratory disturbances, i.e., phrenic nerve stimulation and synchronized diaphragmatic therapy; decongestion management, i.e., the Reprieve system, transcatheter renal venous decongestion system, Doraya, preCardia, WhiteSwell and Aquapass, are presented. Each segment is divided into subsections: potential pathophysiological target, existing evidence and weaknesses or unexplained issues. Novel therapeutic devices represent great potential in HF therapy management; however, further evidence is necessary to fully evaluate their utility. Full article
Show Figures

Figure 1

13 pages, 1009 KB  
Article
Loss of Group II Metabotropic Glutamate Receptor Signaling Exacerbates Hypertension in Spontaneously Hypertensive Rats
by Julia Chu-Ning Hsu, Shinichi Sekizawa, Ryota Tochinai and Masayoshi Kuwahara
Life 2021, 11(7), 720; https://doi.org/10.3390/life11070720 - 20 Jul 2021
Cited by 3 | Viewed by 3791
Abstract
High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel [...] Read more.
High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel therapeutic strategy to control hypertension. We infused a group II metabotropic glutamate receptor (mGluR) antagonist (LY341495, 0.40 μg/day), using a mini-osmotic pump, into the dorsal medulla oblongata in young spontaneously hypertensive rats (SHRs), as this area is adjacent to the nucleus tractus solitarius (NTS), of which the neurons are involved in baroreflex pathways with glutamatergic transmission. Blood pressure was recorded for conscious rats with the tail cuff method. A 6-week antagonist treatment from 6 to 12 weeks of age slightly but significantly increased systolic blood pressure by >30 mmHg, compared to that in SHRs without treatment. Moreover, the effect continued even 3 weeks after the treatment ended, and concurred with an increase in blood catecholamine concentration. However, heart rate variability analysis revealed that LY341495 treatment had little effect on autonomic activity. Meanwhile, mRNA expression level of mGluR subtype 2, but not subtype 3 in the brainstem was significantly enhanced by the antagonist treatment in SHRs, possibly compensating the lack of mGluR signaling. In conclusion, mGluR2 signaling in the dorsal brainstem is crucial for preventing the worsening of hypertension over a relatively long period in SHRs, through a mechanism of catecholamine secretion. This may be a specific drug target for hypertension therapy. Full article
(This article belongs to the Special Issue Glutamate Receptors)
Show Figures

Figure 1

18 pages, 1237 KB  
Review
Role of Neuroendocrine, Immune, and Autonomic Nervous System in Anorexia Nervosa-Linked Cardiovascular Diseases
by Nikola Sekaninova, Lucia Bona Olexova, Zuzana Visnovcova, Igor Ondrejka and Ingrid Tonhajzerova
Int. J. Mol. Sci. 2020, 21(19), 7302; https://doi.org/10.3390/ijms21197302 - 2 Oct 2020
Cited by 19 | Viewed by 6470
Abstract
Anorexia nervosa represents a severe mental disorder associated with food avoidance and malnutrition. In patients suffering from anorexia nervosa, cardiovascular complications are the main reason leading to morbidity and mortality. However, the origin and pathological mechanisms leading to higher cardiovascular risk in anorexia [...] Read more.
Anorexia nervosa represents a severe mental disorder associated with food avoidance and malnutrition. In patients suffering from anorexia nervosa, cardiovascular complications are the main reason leading to morbidity and mortality. However, the origin and pathological mechanisms leading to higher cardiovascular risk in anorexia nervosa are still unclear. In this aspect, the issue of exact pathological mechanisms as well as sensitive biomarkers for detection of anorexia nervosa-linked cardiovascular risk are discussed. Therefore, this review synthesised recent evidence of dysfunction in multiple neuroendocrine axes and alterations in the immune system that may represent anorexia nervosa-linked pathological mechanisms contributing to complex cardiovascular dysregulation. Further, this review is focused on identification of non-invasive biomarkers for the assessment of increased cardiovascular risk in anorexia nervosa that can be linked to a clinical application. Complex non-invasive assessment of cardiovascular autonomic regulation—cardiac vagal control (heart rate variability), sympathetic vascular activity (blood pressure variability), and cardiovascular reflex control (baroreflex sensitivity)—could represent a promising tool for early diagnosis, personalized therapy, and monitoring of therapeutic interventions in anorexia nervosa particularly at a vulnerable adolescent age. Full article
Show Figures

Figure 1

15 pages, 1786 KB  
Article
Syndecan-4 as a Marker of Endothelial Dysfunction in Patients with Resistant Hypertension
by Mark Lipphardt, Hassan Dihazi, Jens-Holger Maas, Ann-Kathrin Schäfer, Saskia I. Amlaz, Brian B. Ratliff, Michael J. Koziolek and Manuel Wallbach
J. Clin. Med. 2020, 9(9), 3051; https://doi.org/10.3390/jcm9093051 - 22 Sep 2020
Cited by 16 | Viewed by 3572
Abstract
(1) Background: Arterial hypertension (HTN) is one of the most relevant cardiovascular risk factors. Nowadays multiple pharmaceutical treatment options exist with novel interventional methods (e.g., baroreflex activation therapy (BAT)) as a last resort to treat patients with resistant HTN. Although pathophysiology behind resistant [...] Read more.
(1) Background: Arterial hypertension (HTN) is one of the most relevant cardiovascular risk factors. Nowadays multiple pharmaceutical treatment options exist with novel interventional methods (e.g., baroreflex activation therapy (BAT)) as a last resort to treat patients with resistant HTN. Although pathophysiology behind resistant HTN is still not fully understood. There is evidence that selected biomarkers may be involved in the pathophysiology of HTN. (2) Methods: We investigated serum SDC4-levels in patients suffering from resistant HTN before and 6 months after BAT implantation. We collected 19 blood samples from patients with resistant HTN and blood pressure above target and measured serum SDC4-levels. (3) Results: Our results showed high serum SDC4-levels in patients with resistant HTN as compared to a healthy population. Patients with both, resistant HTN and diabetes mellitus type II, demonstrated higher serum SDC4-levels. β-blockers had lowering effects on serum SDC4-levels, whereas calcium channel blockers were associated with higher levels of serum SDC4. BAT implantation did not lead to a significant difference in serum SDC4-levels after 6 months of therapy. (4) Conclusion: Based on our results we propose SDC4 is elevated in patients suffering from resistant HTN. Thus, SDC4 might be a potential marker for endothelial dysfunction in patients with resistant hypertension. Full article
Show Figures

Figure 1

Back to TopTop