Hybrid Ablation in Atrial Fibrillation: Bridging Mechanistic Understanding and Clinical Practice
Abstract
1. Introduction
2. Basic Mechanisms Underlying Atrial Fibrillation
2.1. The Triple Remodeling Driving Atrial Fibrillation Progression
2.2. Autonomic Nervous System Involvement in Atrial Fibrillation
3. Mechanistic Insights into Persistent Atrial Fibrillation and Implications for Ablation
4. Mechanistic Basis of Hybrid Ablation
Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
PVI | Pulmonary vein isolation |
RCT | Randomized controlled trial |
RF | Radiofrequency |
PVs | Pulmonary veins |
CB | Cryoballoon |
LAA | Left atrial appendage |
ANS | Autonomic nervous system |
ICANS | Intrinsic cardiac autonomic nervous system |
GP | Ganglionated plexi |
RA | Right atrium |
LA | Left atrium |
References
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The Clinical Profile and Pathophysiology of Atrial Fibrillation: Relationships Among Clinical Features, Epidemiology, and Mechanisms. Circ. Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef] [PubMed]
- Nattel, S.; Heijman, J.; Zhou, L.; Dobrev, D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ. Res. 2020, 127, 51–72. [Google Scholar] [CrossRef]
- Ravelli, F.; Masè, M. MicroRNAs: New Contributors to Mechano-Electric Coupling and Atrial Fibrillation. Prog. Biophys. Mol. Biol. 2021, 159, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Nishida, K.; Kato, T.; Nattel, S. Atrial Fibrillation Pathophysiology: Implications for Management. Circulation 2011, 124, 2264–2274. [Google Scholar] [CrossRef]
- Tzeis, S.; Gerstenfeld, E.P.; Kalman, J.; Saad, E.B.; Sepehri Shamloo, A.; Andrade, J.G.; Barbhaiya, C.R.; Baykaner, T.; Boveda, S.; Calkins, H.; et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Europace 2024, 26, euae043. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Cai, T.-Z.; Ma, H.-L. Cryoballoon versus Radiofrequency Ablation for Persistent Atrial Fibrillation: An Updated Systematic Review and Meta-analysis. Eur. J. Med. Res. 2025, 30, 639. [Google Scholar] [CrossRef]
- Marini, M.; Pannone, L.; Della Rocca, D.G.; Branzoli, S.; Bisignani, A.; Mouram, S.; Del Monte, A.; Monaco, C.; Gauthey, A.; Eltsov, I.; et al. Hybrid Ablation of Atrial Fibrillation: A Contemporary Overview. J. Cardiovasc. Dev. Dis. 2022, 9, 302. [Google Scholar] [CrossRef]
- Pannone, L.; Mouram, S.; Della Rocca, D.G.; Sorgente, A.; Monaco, C.; Del Monte, A.; Gauthey, A.; Bisignani, A.; Kronenberger, R.; Paparella, G.; et al. Hybrid Atrial Fibrillation Ablation: Long-Term Outcomes from a Single-Centre 10-Year Experience. Europace 2023, 25, euad114. [Google Scholar] [CrossRef]
- Winkle, R.A.; Mead, R.H.; Engel, G.; Salcedo, J.; Brodt, C.; Barberini, P.; Lebsack, C.; Kong, M.H.; Kalantarian, S.; Patrawala, R.A. Very Long Term Outcomes of Atrial Fibrillation Ablation. Heart Rhythm 2023, 20, 680–688. [Google Scholar] [CrossRef]
- Eranki, A.; Wilson-Smith, A.; Flynn, C.; Williams, M.; Manganas, C. Mid Term Freedom from Atrial Fibrillation Following Hybrid Ablation, a Systematic Review and Meta Analysis. J. Cardiothorac. Surg. 2023, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Aerts, L.; Kawczynski, M.J.; Bidar, E.; Luermans, J.G.L.; Chaldoupi, S.-M.; La Meir, M.; Kowalewski, M.; Maessen, J.G.; Heuts, S.; Maesen, B. Short- and Long-Term Outcomes in Isolated vs. Hybrid Thoracoscopic Ablation in Patients with Atrial Fibrillation: A Systematic Review and Reconstructed Individual Patient Data Meta-Analysis. Europace 2024, 26, euae232. [Google Scholar] [CrossRef]
- DeLurgio, D.B.; Crossen, K.J.; Gill, J.; Blauth, C.; Oza, S.R.; Magnano, A.R.; Mostovych, M.A.; Halkos, M.E.; Tschopp, D.R.; Kerendi, F.; et al. Hybrid Convergent Procedure for the Treatment of Persistent and Long-Standing Persistent Atrial Fibrillation: Results of CONVERGE Clinical Trial. Circ. Arrhythmia Electrophysiol. 2020, 13, e009288. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, C.A.J.; Weberndörfer, V.; Vroomen, M.; Luermans, J.G.; Chaldoupi, S.-M.; Bidar, E.; Vernooy, K.; Maessen, J.G.; Pison, L.; Van Kuijk, S.M.J.; et al. Hybrid Ablation Versus Repeated Catheter Ablation in Persistent Atrial Fibrillation. JACC Clin. Electrophysiol. 2023, 9, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Doll, N.; Weimar, T.; Kosior, D.A.; Bulava, A.; Mokracek, A.; Mönnig, G.; Sahu, J.; Hunter, S.; Wijffels, M.; Van Putte, B.; et al. Efficacy and Safety of Hybrid Epicardial and Endocardial Ablation versus Endocardial Ablation in Patients with Persistent and Longstanding Persistent Atrial Fibrillation: A Randomised, Controlled Trial. eClinicalMedicine 2023, 61, 102052. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Lammers, W.J.E.P.; Ravelli, F.; Disertori, M.; Antolini, R.; Furlanello, F.; Allessie, M.A. Variations in Human Atrial Flutter Cycle Length Induced by Ventricular Beats: Evidence of a Reentrant Circuit with a Partially Excitable Gap. J. Cardiovasc. Electrophysiol. 1991, 2, 375–387. [Google Scholar] [CrossRef]
- Allessie, M. Electrical, Contractile and Structural Remodeling during Atrial Fibrillation. Cardiovasc. Res. 2002, 54, 230–246. [Google Scholar] [CrossRef]
- Tsai, W.; Hung, T.-C.; Kusayama, T.; Han, S.; Fishbein, M.C.; Chen, L.S.; Chen, P.-S. Autonomic Modulation of Atrial Fibrillation. JACC Basic Transl. Sci. 2023, 8, 1398–1410. [Google Scholar] [CrossRef]
- Marazzato, J.; Blasi, F.; Golino, M.; Verdecchia, P.; Angeli, F.; De Ponti, R. Hypertension and Arrhythmias: A Clinical Overview of the Pathophysiology-Driven Management of Cardiac Arrhythmias in Hypertensive Patients. J. Cardiovasc. Dev. Dis. 2022, 9, 110. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Yang, S.Y.; Cha, M.-J.; Oh, H.J.; Cho, M.S.; Kim, J.; Nam, G.-B.; Choi, K.-J. Role of Non-Pulmonary Vein Triggers in Persistent Atrial Fibrillation. Int. J. Arrhythmia 2023, 24, 7. [Google Scholar] [CrossRef]
- Ravelli, F.; Masè, M.; Cristoforetti, A.; Marini, M.; Disertori, M. The Logical Operator Map Identifies Novel Candidate Markers for Critical Sites in Patients with Atrial Fibrillation. Prog. Biophys. Mol. Biol. 2014, 115, 186–197. [Google Scholar] [CrossRef]
- Allessie, M.A.; Lammers, W.J.E.P.; Bonke, F.I.M.; Hollen, S.J. Experimental Evaluation of Moe’s Multiple Wavelet Hypothesis of Atrial Fibrillation. In Cardiac Electrophysiology and Arrhythmias; Zipes, D.P., Jalife, J., Eds.; Grune & Stratton: New York, NY, USA, 1985; pp. 265–275. [Google Scholar]
- Berenfeld, O.; Jalife, J. Mechanisms of Atrial Fibrillation. Cardiol. Clin. 2014, 32, 495–506. [Google Scholar] [CrossRef]
- Ravelli, F.; Masè, M.; Cristoforetti, A.; Avogaro, L.; D’Amato, E.; Tessarolo, F.; Piccoli, F.; Graffigna, A. Quantitative Assessment of Transmural Fibrosis Profile in the Human Atrium: Evidence for a Three-Dimensional Arrhythmic Substrate by Slice-to-Slice Histology. Europace 2023, 25, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Maesen, B.; Zeemering, S.; Afonso, C.; Eckstein, J.; Burton, R.A.B.; Van Hunnik, A.; Stuckey, D.J.; Tyler, D.; Maessen, J.; Grau, V.; et al. Rearrangement of Atrial Bundle Architecture and Consequent Changes in Anisotropy of Conduction Constitute the 3-Dimensional Substrate for Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2013, 6, 967–975. [Google Scholar] [CrossRef]
- Nattel, S. Molecular and Cellular Mechanisms of Atrial Fibrosis in Atrial Fibrillation. JACC Clin. Electrophysiol. 2017, 3, 425–435. [Google Scholar] [CrossRef]
- Harada, M.; Nattel, S. Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Card. Electrophysiol. Clin. 2021, 13, 25–35. [Google Scholar] [CrossRef]
- Verheule, S.; Eckstein, J.; Linz, D.; Maesen, B.; Bidar, E.; Gharaviri, A.; Schotten, U. Role of Endo-Epicardial Dissociation of Electrical Activity and Transmural Conduction in the Development of Persistent Atrial Fibrillation. Prog. Biophys. Mol. Biol. 2014, 115, 173–185. [Google Scholar] [CrossRef]
- De Groot, N.M.S.; Houben, R.P.M.; Smeets, J.L.; Boersma, E.; Schotten, U.; Schalij, M.J.; Crijns, H.; Allessie, M.A. Electropathological Substrate of Longstanding Persistent Atrial Fibrillation in Patients with Structural Heart Disease: Epicardial Breakthrough. Circulation 2010, 122, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Ausma, J.; Wijffels, M.; Thoné, F.; Wouters, L.; Allessie, M.; Borgers, M. Structural Changes of Atrial Myocardium Due to Sustained Atrial Fibrillation in the Goat. Circulation 1997, 96, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, F. Mechano-Electric Feedback and Atrial Fibrillation. Prog. Biophys. Mol. Biol. 2003, 82, 137–149. [Google Scholar] [CrossRef]
- Eckstein, J.; Verheule, S.; De Groot, N.; Allessie, M.; Schotten, U. Mechanisms of Perpetuation of Atrial Fibrillation in Chronically Dilated Atria. Prog. Biophys. Mol. Biol. 2008, 97, 435–451. [Google Scholar] [CrossRef]
- Ravelli, F.; Allessie, M. Effects of Atrial Dilatation on Refractory Period and Vulnerability to Atrial Fibrillation in the Isolated Langendorff-Perfused Rabbit Heart. Circulation 1997, 96, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.B.; Sanders, P.; Vohra, J.K.; Sparks, P.B.; Morgan, J.G.; Spence, S.J.; Grigg, L.E.; Kalman, J.M. Effect of Chronic Right Atrial Stretch on Atrial Electrical Remodeling in Patients with an Atrial Septal Defect. Circulation 2003, 107, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, H.; Ng, M.; Brooks, A.G.; Kuklik, P.; Stiles, M.K.; Lau, D.H.; Antic, N.; Thornton, A.; Saint, D.A.; McEvoy, D.; et al. Atrial Remodeling in Obstructive Sleep Apnea: Implications for Atrial Fibrillation. Heart Rhythm 2012, 9, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.; Pannone, L.; Branzoli, S.; Tedoldi, F.; D’Onghia, G.; Fanti, D.; Sarao, E.; Guarracini, F.; Quintarelli, S.; Monaco, C.; et al. Left Atrial Function after Standalone Totally Thoracoscopic Left Atrial Appendage Exclusion in Atrial Fibrillation Patients with Absolute Contraindication to Oral Anticoagulation Therapy. Front. Cardiovasc. Med. 2022, 9, 1036574. [Google Scholar] [CrossRef]
- De Jong, A.M.; Maass, A.H.; Oberdorf-Maass, S.U.; Van Veldhuisen, D.J.; Van Gilst, W.H.; Van Gelder, I.C. Mechanisms of Atrial Structural Changes Caused by Stretch Occurring before and during Early Atrial Fibrillation. Cardiovasc. Res. 2011, 89, 754–765. [Google Scholar] [CrossRef]
- Disertori, M.; Masè, M.; Marini, M.; Mazzola, S.; Cristoforetti, A.; Del Greco, M.; Kottkamp, H.; Arbustini, E.; Ravelli, F. Electroanatomic Mapping and Late Gadolinium Enhancement MRI in a Genetic Model of Arrhythmogenic Atrial Cardiomyopathy. J. Cardiovasc. Electrophysiol. 2014, 25, 964–970. [Google Scholar] [CrossRef]
- Horrach, C.V.; Bevis, L.; Nwanna, C.; Zolotarev, A.M.; Ehnesh, M.; Misghina, S.B.; Al-Aidarous, S.; Honarbakhsh, S.; Roney, C.H. Atrial Fibrosis in Atrial Fibrillation: Mechanisms, Mapping Techniques and Clinical Applications. J. Physiol. 2025. ahead of print. [Google Scholar] [CrossRef]
- Masè, M.; Cristoforetti, A.; Pelloni, S.; Ravelli, F. Systematic In-Silico Evaluation of Fibrosis Effects on Re-Entrant Wave Dynamics in Atrial Tissue. Sci. Rep. 2024, 14, 11427. [Google Scholar] [CrossRef]
- Chaldoupi, S.-M.; Loh, P.; Hauer, R.N.W.; De Bakker, J.M.T.; Van Rijen, H.V.M. The Role of Connexin40 in Atrial Fibrillation. Cardiovasc. Res. 2009, 84, 15–23. [Google Scholar] [CrossRef]
- Guo, Y.-H.; Yang, Y.-Q. Atrial Fibrillation: Focus on Myocardial Connexins and Gap Junctions. Biology 2022, 11, 489. [Google Scholar] [CrossRef]
- Van Der Velden, H. Gap Junctional Remodeling in Relation to Stabilization of Atrial Fibrillation in the Goat. Cardiovasc. Res. 2000, 46, 476–486. [Google Scholar] [CrossRef]
- Kanagaratnam, P.; Cherian, A.; Stanbridge, R.D.L.; Glenville, B.; Severs, N.J.; Peters, N.S. Relationship Between Connexins and Atrial Activation During Human Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2004, 15, 206–216. [Google Scholar] [CrossRef]
- Schotten, U.; Neuberger, H.-R.; Allessie, M.A. The Role of Atrial Dilatation in the Domestication of Atrial Fibrillation. Prog. Biophys. Mol. Biol. 2003, 82, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-S.; Chen, L.S.; Fishbein, M.C.; Lin, S.-F.; Nattel, S. Role of the Autonomic Nervous System in Atrial Fibrillation: Pathophysiology and Therapy. Circ. Res. 2014, 114, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.B.; Malcolme-Lawes, L.C.; Stuber, T.; Wright, I.; Francis, D.P.; Davies, D.W.; Peters, N.S.; Kanagaratnam, P. Intrinsic Cardiac Autonomic Stimulation Induces Pulmonary Vein Ectopy and Triggers Atrial Fibrillation in Humans. J. Cardiovasc. Electrophysiol. 2011, 22, 638–646. [Google Scholar] [CrossRef]
- Armour, J.A. Potential Clinical Relevance of the ‘Little Brain’ on the Mammalian Heart. Exp. Physiol. 2008, 93, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.G.; Ashton, J.L.; Argent, L.P.; Cheyne, J.E.; Montgomery, J.M. Recording Plasticity in Neuronal Activity in the Rodent Intrinsic Cardiac Nervous System Using Calcium Imaging Techniques. Front. Synaptic Neurosci. 2023, 15, 1104736. [Google Scholar] [CrossRef]
- Ashton, J.L.; Prince, B.; Sands, G.; Argent, L.; Anderson, M.; Smith, J.E.G.; Tedoldi, A.; Ahmad, A.; Baddeley, D.; Pereira, A.G.; et al. Electrophysiology and 3D-imaging Reveal Properties of Human Intracardiac Neurons and Increased Excitability with Atrial Fibrillation. J. Physiol. 2025, 603, 1923–1939. [Google Scholar] [CrossRef]
- Haemers, P.; Hamdi, H.; Guedj, K.; Suffee, N.; Farahmand, P.; Popovic, N.; Claus, P.; LePrince, P.; Nicoletti, A.; Jalife, J.; et al. Atrial Fibrillation Is Associated with the Fibrotic Remodelling of Adipose Tissue in the Subepicardium of Human and Sheep Atria. Eur. Heart J. 2017, 38, 53–61. [Google Scholar] [CrossRef]
- Shimojo, K.; Morishima, I.; Morita, Y.; Kanzaki, Y.; Watanabe, N.; Yoshioka, N.; Shibata, N.; Arao, Y.; Ohi, T.; Goto, H.; et al. Changes in Epicardial Adipose Tissue Volume before and after Cryoballoon Ablation in Patients with Atrial Fibrillation: Supporting the “AF Begets EAT” Theory. Heart Rhythm 2025, 22, 1421–1428. [Google Scholar] [CrossRef]
- Eckstein, J.; Zeemering, S.; Linz, D.; Maesen, B.; Verheule, S.; Van Hunnik, A.; Crijns, H.; Allessie, M.A.; Schotten, U. Transmural Conduction Is the Predominant Mechanism of Breakthrough During Atrial Fibrillation: Evidence from Simultaneous Endo-Epicardial High-Density Activation Mapping. Circ. Arrhythmia Electrophysiol. 2013, 6, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.J.; Zhao, J.; Csepe, T.A.; Moore, B.T.; Li, N.; Jayne, L.A.; Kalyanasundaram, A.; Lim, P.; Bratasz, A.; Powell, K.A.; et al. Atrial Fibrillation Driven by Micro-Anatomic Intramural Re-Entry Revealed by Simultaneous Sub-Epicardial and Sub-Endocardial Optical Mapping in Explanted Human Hearts. Eur. Heart J. 2015, 36, 2390–2401. [Google Scholar] [CrossRef]
- De Groot, N.; Van Der Does, L.; Yaksh, A.; Lanters, E.; Teuwen, C.; Knops, P.; Van De Woestijne, P.; Bekkers, J.; Kik, C.; Bogers, A.; et al. Direct Proof of Endo-Epicardial Asynchrony of the Atrial Wall During Atrial Fibrillation in Humans. Circ. Arrhythmia Electrophysiol. 2016, 9, e003648. [Google Scholar] [CrossRef] [PubMed]
- Masè, M.; Ravelli, F. Automatic Reconstruction of Activation and Velocity Maps from Electro-Anatomic Data by Radial Basis Functions. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2608–2611. [Google Scholar] [CrossRef]
- Khoynezhad, A.; Ellenbogen, K.A.; Al-Atassi, T.; Wang, P.J.; Kasirajan, V.; Wang, X.; Edgerton, J.R. Hybrid Atrial Fibrillation Ablation: Current Status and a Look Ahead. Circ. Arrhythmia Electrophysiol. 2017, 10, e005263. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.L.; Churyla, A.; Malaisrie, S.C.; Kruse, J.; Pham, D.T.; Kislitsina, O.N.; McCarthy, P.M. When Is a Maze Procedure a Maze Procedure? Can. J. Cardiol. 2018, 34, 1482–1491. [Google Scholar] [CrossRef]
- Yen Ho, S.; Sanchez-Quintana, D.; Cabrera, J.A.; Anderson, R.H. Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 1999, 10, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Eltsov, I.; Pannone, L.; Della Rocca, D.G.; Marini, M.; Talevi, G.; Paparella, A.M.; Vergara, P.; Ströker, E.; Sieira, J.; Chierchia, G.-B.; et al. A Hybrid Minimally Invasive Atrial Fibrillation Ablation Procedure Using Unilateral Thoracoscopy and Endocardial Pulsed Field Ablation: An Early Feasibility Study. J. Cardiovasc. Dev. Dis. 2025, 12, 145. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravelli, F.; Branzoli, S.; Cristoforetti, A.; Quintarelli, S.; Coser, A.; Moggio, P.; La Meir, M.; de Asmundis, C.; Pannone, L.; Onorati, F.; et al. Hybrid Ablation in Atrial Fibrillation: Bridging Mechanistic Understanding and Clinical Practice. J. Cardiovasc. Dev. Dis. 2025, 12, 313. https://doi.org/10.3390/jcdd12080313
Ravelli F, Branzoli S, Cristoforetti A, Quintarelli S, Coser A, Moggio P, La Meir M, de Asmundis C, Pannone L, Onorati F, et al. Hybrid Ablation in Atrial Fibrillation: Bridging Mechanistic Understanding and Clinical Practice. Journal of Cardiovascular Development and Disease. 2025; 12(8):313. https://doi.org/10.3390/jcdd12080313
Chicago/Turabian StyleRavelli, Flavia, Stefano Branzoli, Alessandro Cristoforetti, Silvia Quintarelli, Alessio Coser, Paolo Moggio, Mark La Meir, Carlo de Asmundis, Luigi Pannone, Francesco Onorati, and et al. 2025. "Hybrid Ablation in Atrial Fibrillation: Bridging Mechanistic Understanding and Clinical Practice" Journal of Cardiovascular Development and Disease 12, no. 8: 313. https://doi.org/10.3390/jcdd12080313
APA StyleRavelli, F., Branzoli, S., Cristoforetti, A., Quintarelli, S., Coser, A., Moggio, P., La Meir, M., de Asmundis, C., Pannone, L., Onorati, F., Bonmassari, R., & Marini, M. (2025). Hybrid Ablation in Atrial Fibrillation: Bridging Mechanistic Understanding and Clinical Practice. Journal of Cardiovascular Development and Disease, 12(8), 313. https://doi.org/10.3390/jcdd12080313