The Preliminary Chronic Effects of Electromagnetic Radiation from Mobile Phones on Heart Rate Variability, Cardiac Function, Blood Profiles, and Semen Quality in Healthy Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. EMR Exposure
2.3. Experimental Designs
2.4. Experimental Procedure and Analysis
2.4.1. Ambulatory Holter Monitoring
2.4.2. Electrocardiography Recording
2.4.3. Echocardiography
2.4.4. Blood Pressure Measurement
2.4.5. Hematology and Biochemistry Profiles and Cardiac Biomarker (cTnI) Analysis
2.4.6. Body Surface Temperature Measurement
2.4.7. Semen Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Heart Rate Variability (HRV)
3.2. Cardiac Function and Biomarkers
3.2.1. Electrocardiography
3.2.2. Echocardiography
3.2.3. Blood Pressure Measurement
3.2.4. Cardiac Biomarker (cTnI)
3.3. Complete Blood Count (CBC) and Plasma Biochemistry Profiles
3.4. Body Surface Temperature
3.5. Semen Quality
3.5.1. Semen Volume
3.5.2. Total Sperm Count
3.5.3. Sperm Morphology
3.5.4. Sperm Motility and Viability and DNA Integrity
4. Discussion
4.1. Heart Rate Variability
4.2. Cardiac Function and Biomarkers
4.3. Hematology and Biochemistry
4.4. Body Surface Temperature
4.5. Semen Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACS. Cellular (Cell) Phones. Available online: https://www.cancer.org/cancer/cancer-causes/radiation-exposure/cellular-phones.html#references (accessed on 1 October 2021).
- Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R. Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz. Phys. Med. Biol. 2004, 49, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ahmad, M.; Sharma, A. Harmful effects of mobile phone waves on blood tissues of the human body. East. J. Med. 2010, 15, 80–89. [Google Scholar]
- Belpomme, D.; Hardell, L.; Belyaev, I.; Burgio, E.; Carpenter, D. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ. Pollut. 2018, 242, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Christopher, B.; Mary, Y.; Khandaker, M.; John, J. Empirical study on specific absorption rate of head tissues due to induced heating of 4G cell phone radiation. Radiat. Phys. Chem. 2021, 178, 108910. [Google Scholar] [CrossRef]
- Saikhedkar, N.; Bhatnagar, M.; Jain, A.; Sukhwal, P.; Sharma, C.; Jaiswal, N. Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol. Res. 2014, 36, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Alkis, M.E.; Bilgin, H.M.; Akpolat, V.; Dasdag, S.; Yegin, K.; Yavas, M.C.; Akdag, M.Z. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn. Biol. Med. 2019, 38, 32–47. [Google Scholar] [CrossRef]
- Mohamed, F.; Ahmed, A.; El-Kafoury, B.; Lasheen, N. Study of the cardiovascular effects of exposure to electromagnetic field. Life Sci. J. 2011, 8, 260–274. [Google Scholar]
- Türedi, S.; Hancı, H.; Topal, Z.; Ünal, D.; Mercantepe, T.; Bozkurt, İ.; Kaya, H.; Odacı, E. The effects of prenatal exposure to a 900-MHz electromagnetic field on the 21-day-old male rat heart. Electromagn. Biol. Med. 2014, 34, 390–397. [Google Scholar] [CrossRef]
- Ozguner, F.; Altinbas, A.; Ozaydin, M.; Dogan, A.; Vural, H.; Kisioglu, A.N.; Cesur, G.; Yildirim, N.G. Mobile phone-induced myocardial oxidative stress: Protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol. Ind. Health. 2005, 21, 223–230. [Google Scholar] [CrossRef]
- Jbireal, J.; Azab, A.; Elsayed, A. Disturbance in haematological parameters induced by exposure to electromagnetic fields. Am. J. Hematol. 2018, 6, 242–251. [Google Scholar] [CrossRef]
- Malik, M. Guidelines, Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health. 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrzejak, R.; Poreba, R.; Poreba, M.; Derkacz, A.; Skalik, R.; Gac, P.; Beck, B.; Steinmetz-Beck, A.; Pilecki, W. The influence of the call with a mobile phone on heart rate variability parameters in healthy volunteers. Ind. Health. 2008, 46, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Al-hazimi, A. Effects of the call with the mobile phone on heart rate variability parameters of healthy young people. J. Chem. Pharm. Res. 2011, 3, 734–740. [Google Scholar]
- Kodavanji, B.; Mantur, V.; Kumar, N.; Pai, S. A pilot study on long term effects of mobile phone usage on heart rate variability in healthy young adult males. J. Clin. Diagn. Res. 2012, 6, 346–349. [Google Scholar]
- Ekici, B.; Tanindi, A.; Ekici, G.; Diker, E. The effects of the duration of mobile phone use on heart rate variability parameters in healthy subjects. Anatol. J. Cardiol. 2016, 16, 833–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepehrimanesh, M.; Azarpira, N.; Saeb, M.; Nazifi, S.; Kazemipour, N.; Koohi, O. Pathological changes associated with experimental 900-MHz electromagnetic wave exposure in rats. Comp. Clin. Pathol. 2014, 23, 1629–1631. [Google Scholar] [CrossRef]
- Babuin, L.; Jaffe, A.S. Troponin: The biomarker of choice for the detection of cardiac injury. Can. Med. Assoc. J. 2005, 173, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Umar, Z.U.; Abubakar, M.B.; Ige, J.; Igbokwe, U.V.; Mojiminiyi, F.B.O.; Isezuo, S.A. Effect of mobile phone radiofrequency electromagnetic fields on cardiovascular parameters in apparently healthy individuals. Niger J. Physiol. Sci. 2014, 29, 137–140. [Google Scholar]
- Tamer, A.; Gunduz, H.; Özyıldırım, S. The cardiac effects of a mobile phone positioned closest to the heart. Anatol. J. Cardiol. 2009, 9, 380–384. [Google Scholar]
- Colak, C.; Parlakpınar, H.; Ermis, N.; Tagluk, M.; Colak, C.; Sarihan, E.; Dilek, Ö.; Turan, B.; Bakir, S.; Acet, A. Effects of electromagnetic radiation from 3G mobile phone on heart rate, blood pressure and ECG parameters in rats. Toxicol. Ind. Health. 2012, 28, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Islam, M.R. Biochemical and histopathological effects of mobile phone radiation on the liver of Swiss albino mice. Eur. J. Anat. 2020, 24, 257–261. [Google Scholar]
- Adebayo, E.; Adeeyo, A.O.; Ogundiran, M.A.; Olabisi, O. Bio-physical effects of radiofrequency electromagnetic radiation (RF-EMR) on blood parameters, spermatozoa, liver, kidney and heart of albino rats. J. King Saud. Univ. Sci. 2019, 31, 813–821. [Google Scholar] [CrossRef]
- Kismali, G.; Ozgur, E.; Guler, G.; Akcay, A.; Sel, T.; Seyhan, N. The influence of 1800 MHz GSM-like signals on blood chemistry and oxidative stress in non-pregnant and pregnant rabbits. Int. J. Radiat. Biol. 2012, 88, 414–419. [Google Scholar] [CrossRef]
- Christopher, B.; Mary, Y.; Khandaker, M.; Bradley, D.; Chew, M.T.; John, J. Effects of mobile phone radiation on certain hematological parameters. Radiat. Phys. Chem. 2020, 166, 108443. [Google Scholar] [CrossRef]
- Salama, N.; Kishimoto, T.; Kanayama, H.O. Effects of exposure to a mobile phone on testicular function and structure in adult rabbit. Int. J. Androl. 2010, 33, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-G.; Agresti, M.; Bruce, T.; Yan, Y.; Granlund, A.; Matloub, H. Effect of cellular phone emissions on sperm motility in rats. Fertil. Steril. 2007, 88, 957–964. [Google Scholar] [CrossRef]
- Dasdag, S.; Zulkuf Akdag, M.; Aksen, F.; Yilmaz, F.; Bashan, M.; Mutlu Dasdag, M.; Salih Celik, M. Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes. Bioelectromagnetics 2003, 24, 182–188. [Google Scholar] [CrossRef]
- Yilmaz, F.; Dasdag, S.; Akdag, M.Z.; Kilinc, N. Whole-body exposure of radiation emitted from 900 MHz mobile phones does not seem to affect the levels of anti-apoptotic bcl-2 protein. Electromagn. Biol. Med. 2008, 27, 65–72. [Google Scholar] [CrossRef]
- Lee, H.J.; Pack, J.K.; Kim, T.H.; Kim, N.; Choi, S.Y.; Lee, J.S.; Kim, S.H.; Lee, Y.S. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics 2010, 31, 528–534. [Google Scholar] [CrossRef]
- NRC. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011; p. 246. [Google Scholar]
- Samsung.com. SAR Information. Available online: https://www.samsung.com/sar/sarMain?site_cd=africa_en&prd_mdl_name=GT-E3309I (accessed on 27 July 2021).
- Pirintr, P.; Saengklub, N.; Limprasutr, V.; Sawangkoon, S.; Kijtawornrat, A. Sildenafil improves heart rate variability in dogs with asymptomatic myxomatous mitral valve degeneration. Thai. J. Vet. Med. 2017, 44, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirintr, P.; Saengklub, N.; Limprasutr, V.; Kijtawornrat, A. Long-term effects of repeated oral dose of ivabradine on heart rate variability in dogs with asymptomatic degenerative mitral valve disease. Thai. J. Vet. Med. 2018, 48, 423–431. [Google Scholar]
- Pirintr, P.; Chansaisakorn, W.; Trisiriroj, M.; Kalandakanond-Thongsong, S.; Buranakarl, C. Heart rate variability and plasma norepinephrine concentration in diabetic dogs at rest. Vet. Res. Commun. 2012, 36, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, R.L.; Kijtawornrat, A.; Keene, B.W. How many cardiac cycles must be measured to permit accurate RR, QT, and QTc estimates in conscious dogs? J. Pharmacol. Toxicol. Methods. 2004, 50, 103–108. [Google Scholar] [CrossRef]
- Van de Water, A.; Verheyen, J.; Xhonneux, R.; Reneman, R.S. An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. J. Pharmacol. Methods. 1989, 22, 207–217. [Google Scholar] [CrossRef]
- Saengklub, N.; Pirintr, P.; Nampimoon, T.; Kijtawornrat, A.; Chaiyabutr, N. Short-term effects of sacubitril/valsartan on echocardiographic parameters in dogs with symptomatic myxomatous mitral valve disease. Front. Vet. Sci. 2021, 8, 700230. [Google Scholar] [CrossRef]
- Thomas, W.P.; Gaber, C.E.; Jacobs, G.J.; Kaplan, P.M.; Lombard, C.W.; Moise, N.S.; Moses, B.L. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. J. Vet. Intern. Med. 1993, 7, 247–252. [Google Scholar] [CrossRef]
- Boon, J.A. The M-mode and Doppler examination. In Veterinary Echocardiography, 2nd ed.; Wiley-Blackwell: Ames, IA, USA, 2011; pp. 139–205. [Google Scholar]
- Cornell, C.C.; Kittleson, M.D.; Della Torre, P.; Häggström, J.; Lombard, C.W.; Pedersen, H.D.; Vollmar, A.; Wey, A. Allometric scaling of M-mode cardiac measurements in normal adult dogs. J. Vet. Intern. Med. 2004, 18, 311–321. [Google Scholar] [CrossRef]
- Tei, C. New non-invasive index for combined systolic and diastolic ventricular function. J. Cardiol. 1995, 26, 135–136. [Google Scholar]
- Tharasanit, T.; Tiptanavattana, N.; Oravetdilok, K.; Tuangsintanakul, T.; Sirithanyakul, P.; Tanvetthayanont, P. Optimal concentration of Rho-associated coiled-coil kinase (ROCK) inhibitor improved sperm membrane functionality and fertilizing ability of cryopreserved-thawed feline sperm. Theriogenology 2020, 144, 27–32. [Google Scholar] [CrossRef]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence diagram of physiological and environmental factors affecting heart rate variability: An extended literature overview. Heart. Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef] [PubMed]
- Usman, J.D.; Isyaku, M.U.; Fasanmade, A.A. Evaluation of heart rate variability, blood pressure and lipid profile alterations from dual transceiver mobile phone radiation exposure. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Misek, J.; Veterník, M.; Tonhajzerova, I.; Jakusova, V.; Janousek, L.; Jakus, J. Radiofrequency electromagnetic field affects heart rate variability in rabbits. Physiol. Res. 2020, 69, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Oyama, M.A.; Sisson, D.D. Cardiac troponin-I concentration in dogs with cardiac disease. J. Vet. Intern. Med. 2004, 18, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.P.; Mellanby, R.J.; Drury, N.; Archer, J. Cardiac troponin I: Evaluation I of a biomarker for the diagnosis of heart disease in the dog. J. Small Anim. Pract. 2005, 46, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Surachetpong, S.; Vichit, P.; Hunprasit, V. Measurements of cardiac troponin I and creatine kinase myocardium isoform in dogs with diabetic ketoacidosis. Comp. Clin. Pathol. 2016, 25, 1185–1191. [Google Scholar] [CrossRef]
- Tahvanainen, K.; Niño, J.; Halonen, P.; Kuusela, T.; Laitinen, T.; Länsimies, E.; Hartikainen, J.; Hietanen, M.; Lindholm, H. Cellular phone use does not acutely affect blood pressure or heart rate of humans. Bioelectromagnetics 2004, 25, 73–83. [Google Scholar] [CrossRef]
- Devasani, K.; Razdan, R. Exploring the impact of 900 and 1800 MHz radio frequency electromagnetic radiation on blood pressure and haematological parameters. Toxicol. Int. 2017, 24, 150–156. [Google Scholar] [CrossRef]
- Alghamdi, M.; El-Ghazaly, N. Effects of exposure to electromagnetic field on some hematological parameters in mice. Open J. Med. Chem. 2012, 2, 30–42. [Google Scholar] [CrossRef] [Green Version]
- El-Bediwi, A.; Saad, M.; El-kott, A.; Eid, E. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats. Cell Biochem. Biophys. 2013, 65, 297–300. [Google Scholar] [CrossRef]
- Aydin, B.; Akar, A. Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Arch. Med. Res. 2011, 42, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Sekeroğlu, V.; Akar, A.; Sekeroğlu, Z.A. Cytotoxic and genotoxic effects of high-frequency electromagnetic fields (GSM 1800 MHz) on immature and mature rats. Ecotoxicol. Environ. Saf. 2012, 80, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Ozguner, M.; Koyu, A.; Cesur, G.; Ural, M.; Ozguner, F.; Gokcimen, A.; Delibas, N. Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi. Med. J. 2005, 26, 405–410. [Google Scholar] [PubMed]
- Dasdag, S.; Akdag, M.Z.; Ulukaya, E.; Uzunlar, A.K.; Yegin, D. Mobile phone exposure does not induce apoptosis on spermatogenesis in rats. Arch. Med. Res. 2008, 39, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Sheiner, E.K.; Sheiner, E.; Hammel, R.D.; Potashnik, G.; Carel, R. Effect of occupational exposures on male fertility: Literature review. Ind. Health. 2003, 41, 55–62. [Google Scholar] [CrossRef]
- Kumar, S. Occupational exposure associated with reproductive dysfunction. J. Occup. Health. 2004, 46, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fejes, I.; Závaczki, Z.; Szöllosi, J.; Koloszár, S.; Daru, J.; Kovács, L.; Pál, A. Is there a relationship between cell phone use and semen quality? Arch. Androl. 2005, 51, 385–393. [Google Scholar] [CrossRef]
Parameters | Baseline | Week 2 | Week 4 | Week 6 | Week 8 | Week 10 |
---|---|---|---|---|---|---|
Time-Domain Parameters | ||||||
NNA (ms) | 719.6 ± 88.6 | 726.8 ± 89.0 | 711.2 ± 98.4 | 782.9 ± 113.8 * | 767.8 ± 115.7 | 749.3 ± 108.2 |
SDNN (ms) | 278.0 ± 43.3 | 272.4 ± 57.0 | 262.0 ± 59.6 | 298.3 ± 71.2 | 281.2 ± 73.2 | 274.2 ± 55.2 |
SDANN (ms) | 83.5 ± 25.7 | 89.1 ± 18.8 | 67.2 ± 7.7 | 93.1 ± 21.9 | 91.6 ± 22.2 | 82.4 ± 16.0 |
SDNN index (ms) | 264.5 ± 45.0 | 256.2 ± 58.1 | 254.3 ± 62.7 | 282.7 ± 70.5 | 264.5 ± 72.7 | 260.8 ± 55.1 |
rMSSD (ms) | 288.5 ± 97.3 | 285.5 ± 94.4 | 286.3 ± 101.2 | 327.1 ± 108.3 | 301.9 ± 108.7 | 313.3 ± 88.0 |
pNN50 (%) | 72.2 ± 8.9 | 72.6 ± 7.1 | 73.8 ± 10.6 | 76.2 ± 8.8 | 75.1 ± 8.5 | 75.6 ± 10.2 |
Frequency-Domain Parameters | ||||||
ULF (ms2) | 2732.5 ± 1067.1 | 2683.8 ± 795.7 | 2905.6 ± 1605.2 | 2688.8 ± 888.5 | 2605.0 ± 950.3 | 2649.8 ± 572.4 |
VLF (ms2) | 9704.0 ± 3563.0 | 10,142.2 ± 3259.6 | 11,175.1 ± 6806.4 | 10,881.0 ± 5533.4 | 10,629.2 ± 5231.8 | 9498.3 ± 3162.1 |
LF (ms2) | 7470.5 ± 1924.3 | 7381.5 ± 2889.7 | 10,802.6 ± 12,455.8 | 9789.5 ± 5190.5 | 8725.1 ± 5284.0 | 6725.1 ± 2395.6 |
HF (ms2) | 46,195.1 ± 20,388.7 | 43,781.7 ± 24,415.9 | 45,621.2 ± 27,983.4 | 56,424.6 ± 33,653.3 | 50,087.8 ± 35,977.0 | 44,644.9 ± 22,207.1 |
TP (ms2) | 66,102.0 ± 25,515.7 | 63,989.1 ± 30,693.2 | 70,504.6 ± 47,330.6 | 79,784.0 ± 44,745.7 | 72,047.1 ± 47,126.1 | 63,518.1 ± 27,644.1 |
LF/HF | 0.18 ± 0.05 | 0.19 ± 0.05 | 0.21 ± 0.10 | 0.19 ± 0.04 | 0.19 ± 0.04 | 0.17 ± 0.04 |
LF nu | 0.15 ± 0.04 | 0.16 ± 0.03 | 0.17 ± 0.06 | 0.16 ± 0.03 | 0.16 ± 0.03 | 0.14 ± 0.03 |
HF nu | 0.85 ± 0.04 | 0.84 ± 0.03 | 0.83 ± 0.06 | 0.84 ± 0.03 | 0.84 ± 0.03 | 0.86 ± 0.03 |
Parameters | Baseline | Week 5 | Week 10 |
---|---|---|---|
RR (ms) | 462.2 ± 100.3 | 557.5 ± 106.2 *** | 478.5 ± 60.0 |
PQ (ms) | 84.0 ± 8.8 | 84.6 ± 8.3 | 85.5 ± 7.3 |
QRS (ms) | 41.0 ± 2.7 | 41.4 ± 3.1 | 41.1 ± 2.2 |
QT (ms) | 175.1 ± 9.5 | 191.1 ± 14.2 ** | 180.6 ± 10.7 |
QTc (ms) | 221.9 ± 8.0 | 229.6 ± 13.1 | 226.0 ± 10.5 |
Parameters | Baseline | Week 5 | Week 10 |
---|---|---|---|
LA/Ao | 1.28 ± 0.09 | 1.28 ± 0.07 | 1.33 ± 0.11 |
IVSd (cm) | 0.86 ± 0.12 | 0.92 ± 0.08 | 0.97 ± 0.17 |
IVSs (cm) | 1.08 ± 0.12 | 1.12 ± 0.15 | 1.26 ± 0.22 |
LVIDDN (cm) | 1.41 ± 0.10 | 1.41 ± 0.15 | 1.38 ± 0.18 |
LVIDSN (cm) | 0.84 ± 0.04 | 0.80 ± 0.10 | 0.78 ± 0.14 |
LVPWd (cm) | 0.80 ± 0.08 | 0.85 ± 0.08 | 0.93 ± 0.15 |
LVPWs (cm) | 1.15 ± 0.09 | 1.17 ± 0.13 | 1.20 ± 0.14 |
FS (%) | 37.1 ± 3.9 | 39.7 ± 4.8 | 40.6 ± 5.0 |
HR (bpm) | 117 ± 25.8 | 104 ± 22.7 | 122 ± 11.2 |
EDVI (mL/m2) | 37.7 ± 7.9 | 37.1 ± 6.2 | 37.2 ± 6.3 |
ESVI (mL/m2) | 9.3 ± 2.4 | 8.2 ± 2.7 | 8.8 ± 2.7 |
SV (mL) | 15.6 ± 4.1 | 15.9 ± 2.9 | 16.0 ± 3.2 |
CO (L/min) | 1.8 ± 0.6 | 1.6 ± 0.3 | 1.9 ± 0.4 |
EF (%) | 75.3 ± 3.2 | 78.4 ± 3.8 | 76.5 ± 4.9 |
E/A | 1.8 ± 0.3 | 1.9 ± 0.3 | 1.7 ± 0.3 |
AV PG max (mmHg) | 6.4 ± 3.4 | 5.0 ± 2.8 | 6.6 ± 1.6 |
IVRT (ms) | 45.3 ± 15.7 | 44.1 ± 7.8 | 40.9 ± 10.6 |
IVCT (ms) | 36.7 ± 9.2 | 36.7 ± 6.6 | 33.9 ± 7.6 |
LVET (ms) | 155.3 ± 20.9 | 155.6 ± 10.8 | 157.7 ± 18.5 |
Tei index | 0.54 ± 0.22 | 0.52 ± 0.07 | 0.47 ± 0.09 |
Parameters | Baseline | Week 5 | Week 10 | Normal Range |
---|---|---|---|---|
Complete Blood Count | ||||
RBC (106/µL) | 6.6 ± 0.4 | 6.5 ± 0.6 | 6.8 ± 0.7 | 5.1–8.5 |
Hemoglobin (g/dL) | 15.4 ± 1.0 | 15.3 ± 1.3 | 15.4 ± 1.6 | 11.0–19.0 |
Hematocrit (%) | 41.5 ± 2.8 | 41.4 ± 3.3 | 43.6 ± 4.4 | 33.0–56.0 |
MCV (fL) | 62.5 ± 2.4 | 64.2 ± 1.6 | 64.7 ± 1.1 | 60.0–76.0 |
MCH (pg) | 23.2 ± 0.7 | 23.7 ± 0.6 | 22.9 ± 1.1 | 20.0–27.0 |
MCHC (g/dL) | 37.1 ± 1.0 | 37.0 ± 0.8 | 35.4 ± 1.4 * | 30.0–38.0 |
Platelets (103/µL) | 227.4 ± 42.4 | 173.7 ± 102.4 | 227.7 ± 43.6 | 117.0–490.0 |
WBC (103/µL) | 11.0 ± 1.9 | 10.9 ± 3.0 | 7.3 ± 1.3 *** | 6.0–17.0 |
Neutrophils (103/µL) | 6.0 ± 0.9 | 5.6 ± 1.3 | 3.8 ± 0.8 *** | 3.62–12.30 |
Lymphocytes (103/µL) | 3.5 ± 1.3 | 3.5 ± 1.7 | 2.7 ± 0.9 | 0.83–4.91 |
Monocytes (103/µL) | 1.0 ± 0.3 | 1.2 ± 0.4 | 0.7 ± 0.1 | 0.14–1.97 |
Eosinophils (103/µL) | 0.48 ± 0.13 | 0.51 ± 0.22 | 0.11 ± 0.04 *** | 0.04–1.62 |
Basophils (103/µL) | 0.041 ± 0.025 | 0.029 ± 0.019 | 0.004 ± 0.005 *** | 0.00–0.12 |
Plasma Chemistry | ||||
ALT (U/L) | 49.6 ± 11.1 | 50.4 ± 7.9 | 46.6 ± 8.6 | 4.0–91.0 |
AST (U/L) | 22.4 ± 3.2 | 28.0 ± 4.9 ** | 33.9 ± 7.9 ** | 10.0–59.0 |
ALP (U/L) | 92.4 ± 37.7 | 93.6 ± 48.0 | 92.1 ± 44.5 | 3.0–61.0 |
BUN (mg/dL) | 10.5 ± 3.9 | 18.9 ± 3.8 *** | 18.9 ± 5.4 ** | 7.0–30.0 |
Creatinine (mg/dL) | 0.6 ± 0.1 | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.6–2.0 |
Total protein (g/dL) | 5.2 ± 0.1 | 5.5 ± 0.3 * | 5.8 ± 0.3 *** | 5.8–8.8 |
Albumin (g/dL) | 2.34 ± 0.08 | 2.44 ± 0.15 | 2.59 ± 0.12 *** | 2.6–4.3 |
Parameters | Baseline | Week 5 | Week 10 |
---|---|---|---|
Morning temperature (°F) | 97.22 ± 0.82 | 97.54 ± 0.12 | 97.50 ± 0.27 |
Afternoon temperature (°F) | 97.91 ± 0.52 | 97.86 ± 0.41 | 97.79 ± 0.31 |
∆ temperature (°F) | 0.69 ± 0.64 | 0.33 ± 0.47 | 0.29 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, V.N.K.; Tantisuwat, L.; Setthawong, P.; Tharasanit, T.; Sutayatram, S.; Kijtawornrat, A. The Preliminary Chronic Effects of Electromagnetic Radiation from Mobile Phones on Heart Rate Variability, Cardiac Function, Blood Profiles, and Semen Quality in Healthy Dogs. Vet. Sci. 2022, 9, 201. https://doi.org/10.3390/vetsci9050201
Dong VNK, Tantisuwat L, Setthawong P, Tharasanit T, Sutayatram S, Kijtawornrat A. The Preliminary Chronic Effects of Electromagnetic Radiation from Mobile Phones on Heart Rate Variability, Cardiac Function, Blood Profiles, and Semen Quality in Healthy Dogs. Veterinary Sciences. 2022; 9(5):201. https://doi.org/10.3390/vetsci9050201
Chicago/Turabian StyleDong, Van Nhut Khanh, Lalida Tantisuwat, Piyathip Setthawong, Theerawat Tharasanit, Saikaew Sutayatram, and Anusak Kijtawornrat. 2022. "The Preliminary Chronic Effects of Electromagnetic Radiation from Mobile Phones on Heart Rate Variability, Cardiac Function, Blood Profiles, and Semen Quality in Healthy Dogs" Veterinary Sciences 9, no. 5: 201. https://doi.org/10.3390/vetsci9050201
APA StyleDong, V. N. K., Tantisuwat, L., Setthawong, P., Tharasanit, T., Sutayatram, S., & Kijtawornrat, A. (2022). The Preliminary Chronic Effects of Electromagnetic Radiation from Mobile Phones on Heart Rate Variability, Cardiac Function, Blood Profiles, and Semen Quality in Healthy Dogs. Veterinary Sciences, 9(5), 201. https://doi.org/10.3390/vetsci9050201