PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Frozen Semen Quality
2.3. Sperm DNA Fragmentation
2.4. Sperm PRM Deficiency Assay
2.5. PRM1 Gene Expression Analysis
2.6. PRM1 Protein Assay
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verberckmoes, S.; Van Soom, A.; de Kruif, A. Intra-uterine insemination in farm animals and humans. Reprod. Domest. Anim. 2004, 39, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Pardede, B.P.; Supriatna, I.; Yudi, Y.; Agil, M. Decreased bull fertility: Age-related changes in sperm motility and DNA fragmentation. E3S Web Conf. 2020, 151, 01010. [Google Scholar] [CrossRef]
- BSN. National Standardization of Bull Frozen Semen Part 1. SNI No. 4869.1; Badan Standardisasi Nasional: Central Jakarta, Indonesia, 2017.
- Rosyada, Z.N.A.; Ulum, M.F.; Tumbelaka, L.I.T.A.; Purwantara, B. Sperm protein markers for Holstein bull fertility at National Artificial Insemination Centers in Indonesia. Vet. World 2020, 13, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Pardede, B.P.; Agil, M.; Yudi, Y.; Supriatna, I. Relationship of frozen-thawed semen quality with the fertility rate after being distributed in the Brahman Cross Breeding Program. Vet. World 2020, 13, 2649–2657. [Google Scholar] [CrossRef] [PubMed]
- Diskin, M.G. Achieving High Reproductive Performance in Beef Herds; Teagasc Agriculture and Food Development Authority: Grange, Ireland, 2014. [Google Scholar]
- Mishra, C.; Palai, T.K.; Sarangi, L.N.; Prusty, B.R.; Maharana, B.R. Candidate gene markers for sperm quality and fertility in bulls. Vet. World 2013, 6, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Özbek, M.; Hitit, M.; Kaya, A.; Jousan, F.D.; Memili, E. Sperm functional genome associated with bull fertility. Front. Vet. Sci. 2021, 8, 610888. [Google Scholar] [CrossRef]
- Staub, C.; Johnson, L. Review: Spermatogenesis in the bull. Animal 2018, 12, s27–s35. [Google Scholar] [CrossRef] [Green Version]
- Pardede, B.P.; Agil, M.; Supriatna, I. Protamine and other proteins in sperm and seminal plasma as molecular markers of bull fertility. Vet. World 2020, 13, 556–562. [Google Scholar] [CrossRef]
- Moura, A.A.; Memili, E. Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim. Reprod. 2016, 13, 191–199. [Google Scholar] [CrossRef]
- Feugang, J.M.; Rodriguez-Osorio, N.; Kaya, A.; Wang, H.; Page, G.; Ostermeier, G.C.; Topper, E.K.; Memili, E. Transcriptome analysis of bull spermatozoa:Implications for male fertility. Reprod. Biomed. Online 2010, 21, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Dogan, S.; Vargovic, P.; Oliveira, R.; Belser, L.E.; Kaya, A.; Moura, A.; Sutovsky, P.; Parrish, J.; Topper, E.; Memili, E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol. Reprod. 2015, 92, 92. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.S. Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 2010, 16, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, J.; Bedford, M.T. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016, 151, R55–R70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Gao, H.; Li, W.; Liu, C. Essential role of histone replacement and modifications in male fertility. Front. Genet. 2019, 10, 962. [Google Scholar] [CrossRef]
- O’Donnell, L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 2015, 4, e979623. [Google Scholar] [CrossRef] [Green Version]
- Bower, P.A.; Yelick, P.C.; Hecht, N.B. Both P1 and P2 protamine genes are expressed in mouse, hamster, and rat. Biol. Reprod. 1987, 37, 479–488. [Google Scholar] [CrossRef]
- Corzett, M.; Mazrimas, J.; Balhorn, R. Protamine 1: Protamine 2 stoichiometry in the sperm of eutherian mammals. Mol. Reprod. Dev. 2002, 61, 519–527. [Google Scholar] [CrossRef]
- Pardede, B.P.; Maulana, T.; Kaiin, E.M.; Agil, M.; Karja, N.W.K.; Sumantri, C.; Supriatna, I. The potential of sperm bovine protamine as a protein marker of semen production and quality at the National Artificial Insemination Center of Indonesia. Vet. World 2021, 14, 2473–2481. [Google Scholar] [CrossRef]
- Maier, W.M.; Nussbaum, G.; Domenjoud, L.; Klemm, U.; Engel, W. The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res. 1990, 18, 1249–1254. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, M.A.M.; Simoes, R.; Barros, F.O.; Millazzoto, M.P.; Visintin, J.A.; Assumpcao, M.E.O.D. Gene expression profle of protamines and transition nuclear proteins in bovine testis. Braz. J. Vet. Res. Anim. Sci. 2013, 50, 316–322. [Google Scholar] [CrossRef]
- Champroux, A.; Torres-Carreira, J.; Gharagozloo, P.; Drevet, J.R.; Kocer, A. Mammalian sperm nuclear organization: Resiliencies and vulnerabilities. Basic Clin. Androl. 2016, 26, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champroux, A.; Cocquet, J.; Henry-Berger, J.; Drevet, J.R.; Kocer, A. A decade of exploring the mammalian sperm epigenome: Paternal epigenetic and transgenerational inheritance. Front. Cell. Dev. Biol. 2018, 6, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortes, M.R.; Satake, N.; Corbet, D.H.; Corbet, N.J.; Burns, B.M.; Moore, S.S.; Boe-Hansen, G.B. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology 2014, 2, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Francism, S.; Yelumalai, S.; Jones, C.; Coward, K. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum. Fertil. 2014, 17, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, I.; Gaur, G.K.; Kumar, S.; Mandal, D.K.; Kumar, M.; Singh, U.; Kumar, S.; Sharma, A. Differential expression of protamine 1 and 2 genes in mature spermatozoa of normal and motility impaired semen producing crossbred Frieswal (HF×Sahiwal) bulls. Res. Vet. Sci. 2013, 94, 256–262. [Google Scholar] [CrossRef]
- Aoki, V.W.; Liu, L.; Jones, K.P.; Hatasaka, H.H.; Gibson, M.; Peterson, C.M.; Carrell, D.T. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil. Steril. 2006, 86, 1408–1415. [Google Scholar] [CrossRef]
- Takeda, N.; Yoshinaga, K.; Furushima, K.; Takamune, K.; Li, Z.; Abe, S.; Aizawa, S.; Yamamura, K. Viable offspring obtained from Prm1-deficient sperm in mice. Sci. Rep. 2016, 6, 27409. [Google Scholar] [CrossRef] [Green Version]
- Nemati, H.; Sadeghi, M.; Nazeri, M.; Mohammadi, M. Evaluation of the association between polymorphisms of PRM1 and PRM2 and the risk of male infertility: A systematic review, meta-analysis, and meta-regression. Sci. Rep. 2020, 10, 17228. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, H. Evaluation of frozen semen: Traditional and new approaches. In Topics in Bull Fertility; Chenoweth, P.J., Ed.; International Veterinary Information Service: Ithaca, NY, USA, 2000. [Google Scholar]
- Jeyendran, R.S.; Van der Ven, H.H.; Perez-Pelaez, M.; Crabo, B.G.; Zaneveld, L.J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 1984, 70, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, E.E.; Mosad, E.; Zahran, A.M.; Hameed, D.A.; Taha, E.A.; Mohamed, M.A. Acridine orange and flow cytometry: Which is better to measure the effect of varicocele on sperm DNA integrity? Adv. Urol. 2015, 2015, 814150. [Google Scholar] [CrossRef] [Green Version]
- García-Macías, V.; de Paz, P.; Martinez-Pastor, F.; Alvarez, M.; Gomes-Alves, S.; Bernardo, J.; Anel, E.; Anel, L. DNA fragmentation assessment by flow cytometry and Sperm-Bos-Halomax (bright-field microscopy and fluorescence microscopy) in bull sperm. Int. J. Androl. 2007, 30, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Abdillah, D.A.; Setyawan, E.M.N.; Oh, H.J.; Ra, K.; Lee, S.H.; Kim, M.J.; Lee, B.C. Iodixanol supplementation during sperm cryopreservation improves protamine level and reduces reactive oxygen species of canine sperm. J. Vet. Sci. 2019, 20, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Allouche, L.; Madani, T.; Mechmeche, M.; Clement, L.; Bouchemal, A. Bull fertility and its relation with density gradient selected sperm. Int. J. Fertil. Steril. 2017, 11, 55–62. [Google Scholar] [PubMed]
- Butler, M.L.; Bormann, J.M.; Weaber, R.L.; Grieger, D.M.; Rolf, M.M. Selection for bull fertility: A review. Transl. Anim. Sci. 2019, 4, 423–441. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.W.; Williams, E.J.; Evans, A.C. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 2011, 123, 127–138. [Google Scholar] [CrossRef]
- Chenoweth, P.J. Influence of the male on embryo quality. Theriogenology 2007, 63, 308–315. [Google Scholar] [CrossRef]
- Parkinson, T.J. Evaluation of fertility and infertility in natural service bulls. Vet. J. 2004, 168, 215–229. [Google Scholar] [CrossRef]
- Zewdie, E.; Deneke, N.; Fikre-Mariam, D.; Chaka, E.; Haile-Mariam, D.; Mussa, A. Guidelines and Procedures on Bovine Semen Production; NAIC: Addis Ababa, Indonesia, 2005. [Google Scholar]
- Butler, S. Dairy Cow Reproduction; Teagasc Agriculture and Food Development Authority: Grange, Ireland, 2014. [Google Scholar]
- Henkel, R. Sperm preparation: State-of-the-art--physiological aspects and application of advanced sperm preparation methods. Asian J. Androl. 2012, 14, 260–269. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, C. Attributes of fertile spermatozoa: An update. J. Androl. 1999, 20, 463–473. [Google Scholar]
- Rosati, L.; Di Fiore, M.M.; Prisco, M.; Di Giacomo Russo, F.; Venditti, M.; Andreuccetti, P.; Chieffi Baccari, G.; Santillo, A. Seasonal expression and cellular distribution of star and steroidogenic enzymes in quail testis. J. Exp. Zool. B Mol. Dev. Evol. 2019, 332, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Mileo, A.; Laforgia, V.; De Falco, M.; Rosati, L. Alkyphenol exposure alters steroidogenesis in male lizard Podarcis siculus. Animals 2021, 11, 1003. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, P.J. Genetic sperm defects. Theriogenology 2005, 64, 457–468. [Google Scholar] [CrossRef]
- Okabe, M.; Ikawa, M.; Ashkenas, J. Male infertility and the genetics of spermatogenesis. Am. J. Hum. Genet. 1998, 62, 1274–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Stratton, C.J.; Morozumi, K.; Jin, J.; Yanagimachi, R.; Yan, W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc. Natl. Acad. Sci. USA 2007, 104, 6852–6857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zini, A.; Libman, J. Sperm DNA damage: Importance in the era of assisted reproduction. Curr. Opin. Urol. 2006, 16, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.C.; Michael, S.D. Proposed mechanism for sperm chromatin condensation/decondensation in the male rat. Reprod. Biol. Endocrinol. 2003, 1, 20. [Google Scholar] [CrossRef] [Green Version]
- Carrell, D.T.; Liu, L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J. Androl. 2001, 22, 604–610. [Google Scholar]
- Shamsi, M.B.; Kumar, K.; Dada, R. Genetic and epigenetic factors: Role in male infertility. Indian J. Urol. 2011, 27, 110–120. [Google Scholar]
- Schulte, R.T.; Ohl, D.A.; Sigman, M.; Smith, G.D. Sperm DNA damage in male infertility: Etiologies, assays, and outcomes. J. Assist. Reprod. Genet. 2010, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Evenson, D.P. The Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim. Reprod. Sci. 2016, 169, 56–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourmasumi, S.; Nazari, A.; Fagheirelahee, N.; Sabeti, P. Cytochemical tests to investigate sperm DNA damage: Assessment and review. J. Fam. Med. Prim. Care 2019, 8, 1533–1539. [Google Scholar]
- Simon, L.; Castillo, J.; Oliva, R.; Lewis, S.E. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod. Biomed. Online 2011, 23, 724–734. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.; Jung-Ha, H.; Willis, W.D.; Goulding, E.H.; Stein, P.; Xu, Z.; Schultz, R.M.; Hecht, N.B.; Eddy, E.M. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol. Reprod. 2003, 69, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Boe-Hansen, G.B.; Christensen, P.; Vibjerg, D.; Nielsen, M.B.; Hedeboe, A.M. Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 2008, 69, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, P.G.; Manicardi, G.C.; Urner, F.; Campana, A.; Sakkas, D. Chromatin packaging and morphology in ejaculated human spermatozoa: Evidence of hidden anomalies in normal spermatozoa. Mol. Hum. Reprod. 1996, 2, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Tavalaee, M.; Kiani, A.; Arbabian, M.; Deemeh, M.R.; Esfahani, M.H.N. Flow cytometry: A new approach for indirect assessment of sperm protamine deficiency. Int. J. Fertil. Steril. 2010, 3, 177–184. [Google Scholar]
- Fathi, Z.; Tavalaee, M.; Kiani, A.; Deemeh, M.R.; Modaresi, M.; Nasr-Esfahani, M.H. Flow Cytometry: A Novel Approach for Indirect Assessment of Protamine Deficiency by CMA3 Staining, Taking into Account the Presence of M540 or Apoptotic Bodies. Int. J. Fertil. Steril. 2011, 5, 128–133. [Google Scholar]
- Bianchi, P.G.; Manicardi, G.C.; Bizzaro, D.; Bianchi, U.; Sakkas, D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol. Reprod. 1993, 49, 1083–1088. [Google Scholar] [CrossRef]
- Esterhuizen, A.D.; Franken, D.R.; Lourens, J.G.; Prinsloo, E.; van Rooyen, L.H. Sperm chromatin packaging as an indication of in-vitro fertilization rates. Hum. Reprod. 2000, 15, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Nasr-Esfahani, M.H.; Razavi, S.; Mozdarani, H.; Mardani, M.; Azvagi, H. Relationship between protamine deficiency with fertilization rate and incidence of sperm premature chromosomal condensation post-ICSI. Andrologia 2004, 36, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Zandemami, M.; Qujeq, D.; Akhondi, M.M.; Kamali, K.; Raygani, M.; Lakpour, N.; Shiraz, E.S.; Sadeghi, M.R. Correlation of CMA3 staining with sperm quality and protamine deficiency. Science 2012, 43, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Carreira, J.T.; Trevizan, J.T.; Carvalho, I.R.; Kipper, B.; Rodrigues, L.H.; Silva, C.; Perri, S.H.V.; Drevet, J.R.; Koivisto, M.B. Does sperm quality and DNA integrity differ in cryopreserved semen samples from young, adult, and aged Nellore bulls? Basic Clin. Androl. 2017, 27, 12. [Google Scholar] [CrossRef] [Green Version]
- Olivia, R. Protamines and male infertility. Hum. Reprod. Update 2006, 12, 417–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, R.V.; Dogan, S.; Belser, L.E.; Kaya, A.; Topper, E.; Moura, A.; Thibaudeau, G.; Memili, E. Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility. Reproduction 2013, 146, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Carrell, D.T.; Emery, B.R.; Hammoud, S. Altered protamine expression and diminished spermatogenesis: What is the link? Hum. Reprod. Update 2007, 13, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Aoki, V.W.; Carrell, D.T. Human protamines and the developing spermatid: Their structure, function, expression and relationship with male infertility. Asian J. Androl. 2003, 5, 315–324. [Google Scholar]
- Aoki, V.W.; Liu, L.; Carrell, D.T. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol. Hum. Reprod. 2006, 12, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; San Gabriel, M.; Zini, A. Sperm nuclear histone to protamine ratio in fertile and infertile men: Evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J. Androl. 2006, 27, 414–420. [Google Scholar] [CrossRef]
- Cho, C.; Willis, W.D.; Goulding, E.H.; Jung-Ha, H.; Choi, Y.C.; Hecht, N.B.; Eddy, E.M. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat. Genet. 2001, 8, 82–86. [Google Scholar] [CrossRef]
- Steger, K.; Failing, K.; Klonisch, T.; Behre, H.M.; Manning, M.; Weidner, W.; Hertle, L.; Bergmann, M.; Kliesch, S. Round spermatids from infertile men exhibit decreased protamine-1 and -2 mRNA. Hum. Reprod. 2001, 16, 709–716. [Google Scholar] [CrossRef]
- Steger, K.; Fink, L.; Failing, K.; Bohle, R.M.; Kliesch, S.; Weidner, W.; Bergmann, M. Decreased protamine-1 transcript levels in testes from infertile men. Mol. Hum. Reprod. 2003, 9, 331–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balhorn, R.; Reed, S.; Tanphaichitr, N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 1988, 44, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Belokopytova, I.A.; Kostyleva, E.I.; Tomilin, A.N.; Vorob’ev, V.I. Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol. Reprod. Dev. 1993, 34, 53–57. [Google Scholar] [CrossRef]
- Steger, K.; Wilhelm, J.; Konrad, L.; Stalf, T.; Greb, R.; Diemer, T.; Kliesch, S.; Bergmann, M.; Weidner, W. Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men. Hum. Reprod. 2008, 23, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosterhuis, G.J.; Vermes, I. Apoptosis in human ejaculated spermatozoa. J. Biol. Regul. Homeost. Agents 2004, 18, 115–119. [Google Scholar] [PubMed]
Parameter | Breed | HF Bulls Mean (±SD) | LF Bulls Mean (±SD) | ||
---|---|---|---|---|---|
Fertility score (%CR) | Limousin | 80.13 | (±0.82) * | 55.44 | (±3.53) |
Holstein | 80.87 | (±1.44) * | 54.75 | (±2.88) | |
Ongole Grade | 78.17 | (±0.97) * | 60.71 | (±2.42) | |
Progressive Motility (%) | Limousin | 56.01 | (±3.39) * | 48.56 | (±2.29) |
Holstein | 53.26 | (±2.77) * | 45.40 | (±1.50) | |
Ongole Grade | 49.85 | (±3.01) * | 44.29 | (±1.97) | |
Sperm Viability (%) | Limousin | 78.73 | (±3.32) * | 71.67 | (±1.53) |
Holstein | 80.30 | (±2.99) * | 72.16 | (±3.71) | |
Ongole Grade | 74.80 | (±3.68) * | 68.47 | (±2.64) | |
Plasma Membran Integrity (%) | Limousin | 79.10 | (±3.55) * | 71.87 | (±1.23) |
Holstein | 79.70 | (±1.79) * | 72.93 | (±3.21) | |
Ongole Grade | 74.80 | (±3.47) * | 68.57 | (±2.41) |
Breed | Parameter | Correlation Coefficient | p-Value |
---|---|---|---|
Limousin | %CR vs. PM (%) | 0.786 | <0.000 |
%CR vs. viability (%) | 0.821 | <0.000 | |
%CR vs. PMI (%) | 0.810 | <0.000 | |
%CR vs. AO (%) | −0.776 | <0.000 | |
%CR vs. Halomax test (%) | −0.694 | <0.001 | |
%CR vs. CMA3+ (%) | −0.818 | <0.000 | |
%CR vs. PRM1 gene | 0.894 | <0.000 | |
%CR vs. PRM1 protein (pg/mL) | 0.595 | <0.009 | |
Holstein | %CR vs. PM (%) | 0.872 | <0.000 |
%CR vs. viability (%) | 0.784 | <0.000 | |
%CR vs. PMI (%) | 0.809 | <0.000 | |
%CR vs. AO (%) | −0.725 | <0.000 | |
%CR vs. Halomax test (%) | −0.671 | <0.002 | |
%CR vs. CMA3+ (%) | −0.753 | <0.000 | |
%CR vs. PRM1 gene | 0.939 | <0.000 | |
%CR vs. PRM1 protein (pg/mL) | 0.737 | <0.000 | |
Ongole Grade | %CR vs. PM (%) | 0.707 | <0.000 |
%CR vs. viability (%) | 0.681 | <0.000 | |
%CR vs. PMI (%) | 0.704 | <0.000 | |
%CR vs. AO (%) | −0.834 | <0.000 | |
%CR vs. Halomax test (%) | −0.769 | <0.000 | |
%CR vs. CMA3+ (%) | −0.826 | <0.000 | |
%CR vs. PRM1 gene | 0.931 | <0.000 | |
%CR vs. PRM1 protein (pg/mL) | 0.884 | <0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardede, B.P.; Agil, M.; Karja, N.W.K.; Sumantri, C.; Supriatna, I.; Purwantara, B. PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls. Vet. Sci. 2022, 9, 111. https://doi.org/10.3390/vetsci9030111
Pardede BP, Agil M, Karja NWK, Sumantri C, Supriatna I, Purwantara B. PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls. Veterinary Sciences. 2022; 9(3):111. https://doi.org/10.3390/vetsci9030111
Chicago/Turabian StylePardede, Berlin Pandapotan, Muhammad Agil, Ni Wayan Kurniani Karja, Cece Sumantri, Iman Supriatna, and Bambang Purwantara. 2022. "PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls" Veterinary Sciences 9, no. 3: 111. https://doi.org/10.3390/vetsci9030111
APA StylePardede, B. P., Agil, M., Karja, N. W. K., Sumantri, C., Supriatna, I., & Purwantara, B. (2022). PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls. Veterinary Sciences, 9(3), 111. https://doi.org/10.3390/vetsci9030111