Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy
Abstract
:1. Prevalence and Aetiology
2. Histology and Grading
3. Diagnosis
3.1. Clinical Signs and Differential Diagnosis
3.2. Diagnostic Procedures and Staging
3.3. Recent Advances in Diagnostic Techniques for UC
3.3.1. BRAF Mutation
3.3.2. Bladder Tumour-Associated Antigen Test (BTA)
3.3.3. Basic Fibroblast Growth Factor (bFGF)
3.3.4. Chromosomal Copy Number Aberrations (CNAs)
3.3.5. Microsatellite Instability
3.3.6. MicroRNAs (miRNAs)
3.3.7. Telomerase
3.3.8. Calgranulins
3.3.9. Proteomics
3.3.10. Metabolomics
3.3.11. Lipidomics
3.3.12. Survivin
3.3.13. EGFR
3.3.14. HER-2
3.3.15. VEGFR2, PDGFR-β, c-KIT
3.3.16. Granzyme B, CD3
3.3.17. P63, Ki67, β-Catenin
3.3.18. UIII, CK 7, CK 20, COX-2, Activated Caspase 3, GATA-3
4. Therapies for UC
4.1. Surgical Approaches
4.2. Radiation Therapy
4.3. Chemotherapy/Systemic Medical Therapy
4.4. Localised Therapies
4.5. Epigenetic-Based Therapies
4.6. Other Emerging Targeted Therapies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knapp, D.W.; McMillan, S.K. Tumors of the urinary system. In Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Withrow, S.J., Vail, D.M., Eds.; Elsevier–Saunders: St. Louis, MO, USA, 2013; pp. 572–582. [Google Scholar]
- Meuten, D.J.; Meuten, T.L. Tumors of the urinary system. In Tumors in Domestic Animals, 5th ed.; Meuten, D.J., Ed.; John Willey & Sons Inc.: Ames, IA, USA, 2016; pp. 632–688. [Google Scholar]
- Schwarz, P.D.; Greene, R.W.; Patnaik, A.K. Urinary bladder tumors in the cat: A review of 27 cases. J. Am. Anim. Hosp. Assoc. 1985, 21, 237–245. [Google Scholar]
- Wilson, H.M.; Chun, R.; Larson, V.S.; Kurzman, I.D.; Vail, D.M. Clinical signs, treatments, and outcome in cats with transitional cell carcinoma of the urinary bladder: 20 cases (1990–2004). J. Am. Vet. Med. Assoc. 2007, 231, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Norris, A.M.; Laing, E.J.; Valli, V.E.O.; Withrow, S.J.; Macy, D.W.; Ogilvie, G.K.; Tomlinson, J.; McCaw, D.; Pidgeon, G.; Jacobs, R.M. Canine Bladder and Urethral Tumors: A Retrospective Study of 115 Cases (1980–1985). J. Vet. Intern. Med. 1992, 6, 145–153. [Google Scholar] [CrossRef]
- Mutsaers, A.J.; Widmer, W.R.; Knapp, D.W. Canine Transitional Cell Carcinoma. J. Vet. Intern. Med. 2003, 17, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.W.; Glickman, N.W.; DeNicola, D.B.; Bonney, P.L.; Lin, T.L.; Glickman, L.T. Naturally-occurring canine transitional cell carcinoma of the urinary bladder A relevant model of human invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2000, 5, 47–59. [Google Scholar] [CrossRef]
- Glickman, L.T.; Schofer, F.S.; McKee, L.J.; Reif, J.S.; Goldschmidt, M. Epidemiologic study of insecticide exposures, obesity, and risk of bladder cancer in household dogs. J. Toxicol. Environ. Health Part A 1989, 28, 407–414. [Google Scholar] [CrossRef]
- Glickman, L.T.; Raghavan, M.; Knapp, D.W.; Bonney, P.L.; Dawson, M.H. Herbicide exposure and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. J. Am. Vet. Med. Assoc. 2004, 224, 1290–1297. [Google Scholar] [CrossRef] [Green Version]
- Gil da Costa, R.; Bastos, M.; Oliveira, P.; Lopes, C. Bracken-associated human and animal health hazards: Chemical, biological and pathological evidence. J. Hazard. Mater. 2012, 203–204, 1–12. [Google Scholar] [CrossRef]
- Somvanshi, R. Papillomatosis in Buffaloes: A Less-Known Disease. Transbound. Emerg. Dis. 2011, 58, 327–332. [Google Scholar] [CrossRef]
- Rosenberger, G.; Heeschen, W. Adler-farn (Pteris aquiline)—Die ursache des sog. Dtsch. Tierarztl. Wochenschr. 1960, 67, 201–208. [Google Scholar]
- Rosenberger, G. Längere aufnahme von adlerfarn (Pteris aquilina)—Die ursache der chronischen vesikalen haematurie des rindes. Wien. Tierarztl. Monatsschr. 1965, 52, 415–421. [Google Scholar]
- Evans, I.A.; Mason, J. Carcinogenic Activity of Bracken. Nature 1965, 208, 913–914. [Google Scholar] [CrossRef]
- Pamukcu, A.M.; Price, J.M. Induction of Intestinal and Urinary Bladder Cancer in Rats by Feeding Bracken Fern (Pteris aquilina). JNCI J. Natl. Cancer Inst. 1969, 43, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Hirono, I.; Ogino, H.; Fujimoto, M.; Yamada, K.; Yoshida, Y.; Ikagawa, M.; Okumura, M. Induction of Tumors in ACI Rats Given a Diet Containing Ptaquiloside, a Bracken Carcinogen2. JNCI J. Natl. Cancer Inst. 1987, 79, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- da Gil Costa, R.M.; Oliveira, P.A.; Vilanova, M.; Bastos, M.M.; Lopes, C.C.; Lopes, C. Ptaquiloside-induced, B-cell lymphoproliferative and early-stage urothelial lesions in mice. Toxicon 2011, 58, 543–549. [Google Scholar] [CrossRef]
- da Gil Costa, R.M.; Oliveira, P.A.; Bastos, M.M.S.M.; Lopes, C.C.; Lopes, C. Ptaquiloside-induced early-stage urothelial lesions show increased cell proliferation and intact β-catenin and E-cadherin expression. Environ. Toxicol. 2012, 29, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Ojika, M.; Wakamatsu, K.; Niwa, H.; Yamada, K. Ptaquiloside, a potent carcinogen isolated from bracken fern var: Structure elucidation based on chemical and spectral evidence, and reactions with amino acids, nucleosides, and nucleotides. Tetrahedron 1987, 43, 5261–5274. [Google Scholar] [CrossRef]
- Pereira, L.O.; Bicalho, L.S.; Lopes, M.C.-D.; De Sousa, T.M.M.; Báo, S.N.; Santos, M.D.F.M.A.; Fonseca, M.J.P. DNA damage and apoptosis induced by Pteridium aquilinum aqueous extract in the oral cell lines HSG and OSCC-3. J. Oral Pathol. Med. 2008, 38, 441–447. [Google Scholar] [CrossRef] [PubMed]
- da Gil Costa, R.M.; Coelho, P.; Sousa, R.; Bastos, M.M.; Porto, B.; Teixeira, J.P.; Malheiro, I.; Lopes, C. Multiple genotoxic activities of ptaquiloside in human lymphocytes: Aneugenesis, clastogenesis and induction of sister chromatid exchange. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 747, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Latorre, A.O.; Furlan, M.S.; Sakai, M.; Fukumasu, H.; Hueza, I.M.; Haraguchi, M.; Górniak, S.L. Immunomodulatory effects of Pteridium aquilinumon natural killer cell activity and select aspects of the cellular immune response of mice. J. Immunotoxicol. 2009, 6, 104–114. [Google Scholar] [CrossRef]
- Caniceiro, B.D.; Latorre, A.O.; Fukumasu, H.; Sanches, D.S.; Haraguchi, M.; Górniak, S. Immunosuppressive effects of Pteridium aquilinumenhance susceptibility to urethane-induced lung carcinogenesis. J. Immunotoxicol. 2014, 12, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, C.; Ferreirinha, P.; Sousa, H.; Ribeiro, J.; Bastos, M.M.; Neto, T.; Oliveira, P.A.; Medeiros, R.; Vilanova, M.; da Gil Costa, R.M. Ptaquiloside from bracken (Pteridium spp.) inhibits tumour-infiltrating CD8+ T cells in HPV-16 transgenic mice. Food Chem. Toxicol. 2016, 97, 277–285. [Google Scholar] [CrossRef] [PubMed]
- da Gil Costa, R.M.; Lopes, C.; Oliveira, P.A.; Bastos, M.M.S.M. Illudane-Type Sesquiterpenes: Challenginges and Opportunities for Toxicology and Chemotherapy. In New Development in Terpene Research; Hu, J., Ed.; Nova Publishers, Inc.: New York, NY, USA, 2014; pp. 135–184. ISBN 978-1-62948-760-1. [Google Scholar]
- Micheloud, J.F.; Caro, L.A.C.; Martínez, O.G.; Gimeno, E.J.; Ribeiro, D.D.S.F.; Blanco, B.S. Bovine enzootic haematuria from consumption of Pteris deflexa and Pteris plumula in northwestern Argentina. Toxicon 2017, 134, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.K.; Sharma, R.; Kumari, A.; Rasmussen, L.H.; Patil, R.D.; Bhar, R. Survey of ferns and clinico-pathological studies on the field cases of Enzootic bovine haematuria in Himachal Pradesh, a north-western Himalayan state of India. Toxicon 2017, 138, 31–36. [Google Scholar] [CrossRef]
- Roperto, S.; Russo, V.; Ozkul, A.; Sepici-Dincel, A.; Maiolino, P.; Borzacchiello, G.; Marcus, I.; Esposito, I.; Riccardi, M.G.; Roperto, F. Bovine papillomavirus type 2 infects the urinary bladder of water buffalo (Bubalus bubalis) and plays a crucial role in bubaline urothelial carcinogenesis. J. Gen. Virol. 2013, 94, 403–408. [Google Scholar] [CrossRef]
- Roperto, F.; Russo, V.; Leonardi, L.; Martano, M.; Corrado, F.; Riccardi, M.G.; Roperto, F. Bovine Papillomavirus Type 13 Expression in the Urothelial Bladder Tumours of Cattle. Transbound. Emerg. Dis. 2016, 63, 628–634. [Google Scholar] [CrossRef]
- Roperto, S.; Munday, J.S.; Corrado, F.; Goria, M.; Roperto, F. Detection of bovine papillomavirus type 14 DNA sequences in urinary bladder tumors in cattle. Vet. Microbiol. 2016, 190, 1–4. [Google Scholar] [CrossRef]
- Gil Da Costa, R.M.; Medeiros, R. Bovine papillomavirus: Opening new trends for comparative pathology. Arch. Virol. 2013, 159, 191–198. [Google Scholar] [CrossRef]
- Corteggio, A.; Di Geronimo, O.; Roperto, S.; Roperto, F.; Borzacchiello, G. Activated platelet-derived growth factor β receptor and Ras–mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas. Vet. J. 2012, 191, 393–395. [Google Scholar] [CrossRef]
- Gil Da Costa, R.M.; Peleteiro, M.C.; Pires, M.A.; DiMaio, D. An Update on Canine, Feline and Bovine Papillomaviruses. Transbound. Emerg. Dis. 2016, 64, 1371–1379. [Google Scholar] [CrossRef]
- Gil Da Costa, R.M.; Oliveira, P.A.; Vasconcelos-Nóbrega, C.; Arantes-Rodrigues, R.; Pinto-Leite, R.; Colaço, A.A.; De La Cruz, L.F.; Lopes, C. Altered expression of CKs 14/20 is an early event in a rat model of multistep bladder carcinogenesis. Int. J. Exp. Pathol. 2015, 96, 319–325. [Google Scholar] [CrossRef]
- Volkmer, J.-P.; Sahoo, D.; Chin, R.K.; Ho, P.L.; Tang, C.; Kurtova, A.V.; Willingham, S.B.; Pazhanisamy, S.K.; Contreras-Trujillo, H.; Storm, T.A.; et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc. Natl. Acad. Sci. USA 2012, 109, 2078–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.; Czerniak, B.; Ochoa, A.; Su, X.; Siefker-Radtke, A.; Dinney, C.P.N.; McConkey, D.J. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer. Nat. Rev. Urol. 2014, 11, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Lim, A.; Odegaard, J.I.; Honeycutt, J.D.; Kawano, S.; Hsieh, M.H.; Beachy, P.A. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat. Cell Biol. 2014, 16, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2018, 174, 1033. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.G.; Raghunath, S.; Williams, C.; Motsinger-Reif, A.; Cullen, J.M.; Liu, T.; Albertson, D.; Ruvolo, M.; Lucas, A.B.; Jin, J.; et al. Canine urothelial carcinoma: Genomically aberrant and comparatively relevant. Chromosom. Res. 2015, 23, 311–331. [Google Scholar] [CrossRef] [Green Version]
- John, B.A.; Said, N. Insights from animal models of bladder cancer: Recent advances, challenges, and opportunities. Oncotarget 2017, 8, 57766–57781. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.A.; Vasconcelos-Nóbrega, C.; da Gil Costa, R.M.; Arantes-Rodrigues, R. The N-butyl-N-4-hydroxybutyl nitrosamine mouse urinary bladder cancer model. In Urothelial Carcinoma: Methods and Protocols; Schulz, W.A., Hoffmann, M.J., Niegisch, G., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1655, pp. 155–167. [Google Scholar] [CrossRef]
- Carvalho, T.; Pinto, C.; Peleteiro, M. Urinary Bladder Lesions in Bovine Enzootic Haematuria. J. Comp. Pathol. 2006, 134, 336–346. [Google Scholar] [CrossRef]
- Cheng, L.; MacLennan, G.T.; Lopez-Beltran, A. Histologic grading of urothelial carcinoma: A reappraisal. Hum. Pathol. 2012, 43, 2097–2108. [Google Scholar] [CrossRef]
- Grassinger, J.M.; Merz, S.; Aupperle-Lellbach, H.; Erhard, H.; Klopfleisch, R. Correlation of BRAF Variant V595E, Breed, Histological Grade and Cyclooxygenase-2 Expression in Canine Transitional Cell Carcinomas. Vet. Sci. 2019, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Chun, R.; Garrett, L.D. Urogenital and mammary gland tumors. In Textbook of Veterinary Internal Medicine: Diseases of the Dog and the Cat, 7th ed.; Ettinger, S.J., Feldman, E.C., Eds.; Saunders Elsevier: St. Louis, MI, USA, 2010; pp. 2208–2212. [Google Scholar]
- Heilmann, R.M.; Wright, Z.M.; Lanerie, D.J.; Suchodolski, J.S.; Steiner, J.M. Measurement of urinary canine S100A8/A9 and S100A12 concentrations as candidate biomarkers of lower urinary tract neoplasia in dogs. J. Vet. Diagn. Investig. 2014, 26, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cota, J.; Peleteiro, M.C.; Petti, L.; Tavares, L.; Duarte, A. Detection and quantification of bovine papillomavirus type 2 in urinary bladders and lymph nodes in cases of Bovine Enzootic Hematuria from the endemic region of Azores. Vet. Microbiol. 2015, 178, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Borjesson, D.L.; DeJong, K. Urinary tract. In Canine and Feline Cytology: A Color Atlas and Interpretation Guide, 3rd ed.; Raskin, R.E., Meyer, D.J., Eds.; Saunders Elsevier: St. Louis, MI, USA, 2016; pp. 288–294. [Google Scholar]
- Anderson, W.I.; Dunham, B.M.; King, J.M.; Scott, D.W. Presumptive subcutaneous surgical transplantation of a urinary bladder transitional cell carcinoma in a dog. Cornell Vet. 1989, 79, 263–266. [Google Scholar]
- Nyland, T.G.; Wallack, S.T.; Wisner, E.R. Needle-tract implantation following us-guided fine-needle aspiration biopsy of transitional cell carcinoma of the bladder, urethra, and prostate. Vet. Radiol. Ultrasound 2002, 43, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, M.; Rossi, F.; Chierici, C.; Terragni, R.; De Lorenzi, D.; Stanga, M.; Olivero, D. Needle tract implantation after fine needle aspiration biopsy (FNAB) of transitional cell carcinoma of the urinary bladder and adenocarcinoma of the lung. Schweiz. Arch. Tierheilkd. 2007, 149, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Burcham, G.N.; Childress, M.O.; Rohleder, J.J.; Bonney, P.L.; Ramos-Vara, J.A.; Knapp, D.W. Characterization and treatment of transitional cell carcinoma of the abdominal wall in dogs: 24 cases (1985–2010). J. Am. Vet. Med. Assoc. 2013, 242, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, R.; Shimosato, Y.; Yoshikawa, R.; Goto, S.; Yoshida, K.; Murakami, M.; Kawabe, M.; Sakai, H.; Mori, T. Survival analysis in dogs with urinary transitional cell carcinoma that underwent whole-body computed tomography at diagnosis. Vet. Comp. Oncol. 2019, 17, 385–393. [Google Scholar] [CrossRef]
- Owen, L.N.; World Health Organization. TNM Classification of tumours in domestic animals. In Veterinary Public Health Unit & WHO Collaborating Center for Comparative Oncology; World Health Organization: Geneva, Switzerland, 1980; 52p, Available online: http://www.who.int/iris/handle/10665/68618 (accessed on 18 November 2021).
- Mochizuki, H.; Shapiro, S.G.; Breen, M. Detection of Copy Number Imbalance in Canine Urothelial Carcinoma with Droplet Digital Polymerase Chain Reaction. Vet. Pathol. 2015, 53, 764–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinall, R.L.; Kent, M.S.; White, R.W.D. Expression of microRNAs in urinary bladder samples obtained from dogs with grossly normal bladders, inflammatory bladder disease, or transitional cell carcinoma. Am. J. Vet. Res. 2012, 73, 1626–1633. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, S.; Liu, L.; Gowda, G.N.; Bonney, P.; Stewart, J.; Knapp, D.W.; Raftery, D. NMR-based metabolomics study of canine bladder cancer. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2012, 1822, 1807–1814. [Google Scholar] [CrossRef] [Green Version]
- Decker, B.; Parker, H.G.; Dhawan, D.; Kwon, E.M.; Karlins, E.; Davis, B.W.; Ramos-Vara, J.A.; Bonney, P.L.; McNiel, E.A.; Knapp, D.W.; et al. Homologous Mutation to Human BRAF V600E Is Common in Naturally Occurring Canine Bladder Cancer—Evidence for a Relevant Model System and Urine-Based Diagnostic Test. Mol. Cancer Res. 2015, 13, 993–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, H.; Kennedy, K.; Shapiro, S.G.; Breen, M. BRAF Mutations in Canine Cancers. PLoS ONE 2015, 10, e0129534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, H.; Shapiro, S.G.; Breen, M. Detection of BRAF Mutation in Urine DNA as a Molecular Diagnostic for Canine Urothelial and Prostatic Carcinoma. PLoS ONE 2015, 10, e0144170. [Google Scholar] [CrossRef]
- Parker, H.G.; Dhawan, D.; Harris, A.C.; Ramos-Vara, J.A.; Davis, B.W.; Knapp, D.W.; Ostrander, E.A. RNAseq expression patterns of canine invasive urothelial carcinoma reveal two distinct tumor clusters and shared regions of dysregulation with human bladder tumors. BMC Cancer 2020, 20, 251. [Google Scholar] [CrossRef]
- Gedon, J.; Kehl, A.; Aupperle-Lellbach, H.; von Bomhard, W.; Schmidt, J.M. BRAF mutation status and its prognostic significance in 79 canine urothelial carcinomas: A retrospective study (2006–2019). Vet. Comp. Oncol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, M.; Tambo, N.; Maezawa, M.; Tomihari, M.; Watanabe, K.-I.; Inokuma, H.; Miyahara, K. Quantitative analysis of the BRAF V595E mutation in plasma cell-free DNA from dogs with urothelial carcinoma. PLoS ONE 2020, 15, e0232365. [Google Scholar] [CrossRef]
- Antech Diagnostics. CADET® BRAF and CADET® BRAF PLUS [Brochure on the Internet]; Antech Diagnostics, Inc.: Fountain Valley, CA, USA, 2021; Available online: https://www.antechdiagnostics.com/laboratory-diagnostics/molecular-diagnostics/cadet-braf-plus (accessed on 14 November 2021).
- Rossman, P.; Zabka, T.S.; Ruple, A.; Tuerck, D.; Ramos-Vara, J.A.; Liu, L.; Mohallem, R.; Merchant, M.; Franco, J.; Fulkerson, C.M.; et al. Phase I/II Trial of Vemurafenib in Dogs with Naturally Occurring, BRAF-mutated Urothelial Carcinoma. Mol. Cancer Ther. 2021, 20, 2177–2188. [Google Scholar] [CrossRef]
- Marconato, L.; Sabattini, S.; Marisi, G.; Rossi, F.; Leone, V.F.; Casadei-Gardini, A. Sorafenib for the Treatment of Unresectable Hepatocellular Carcinoma: Preliminary Toxicity and Activity Data in Dogs. Cancers 2020, 12, 1272. [Google Scholar] [CrossRef]
- Jung, H.; Bae, K.; Lee, J.Y.; Kim, J.-H.; Han, H.-J.; Yoon, H.-Y.; Yoon, K.-A. Establishment of Canine Transitional Cell Carcinoma Cell Lines Harboring BRAF V595E Mutation as a Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 9151. [Google Scholar] [CrossRef]
- Henry, C.J.; Tyler, J.W.; McEntee, M.C.; Stokol, T.; Rogers, K.S.; Chun, R.; Garrett, L.D.; McCaw, D.L.; Higginbotham, M.L.; Flessland, K.A.; et al. Evaluation of a bladder tumor antigen test as a screening test for transitional cell carcinoma of the lower urinary tract in dogs. Am. J. Vet. Res. 2003, 64, 1017–1020. [Google Scholar] [CrossRef]
- Polymedco. V-BTA Test; Package Insert on the Internet; Polymedco, Inc.: Cortland Manor, NY, USA, 2010; Available online: https://www.vetbta.com/veterinarians (accessed on 14 November 2021).
- Borjesson, D.L.; Christopher, M.M.; Ling, G.V. Detection of canine transitional cell carcinoma using a bladder tumor antigen urine dipstick test. Vet. Clin. Pathol. 1999, 28, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Billet, J.-P.H.; Moore, A.H.; Holt, P.E. Evaluation of a bladder tumor antigen test for the diagnosis of lower urinary tract malignancies in dogs. Am. J. Vet. Res. 2002, 63, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Sotirakopoulos, A.; Armstrong, P.; Heath, L.; Madrill, N.; McNiel, E. Evaluation of Microsatellite Instability in Urine for the Diagnosis of Transitional Cell Carcinoma of the Lower Urinary Tract in Dogs. J. Vet. Intern. Med. 2010, 24, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.K.; Waters, D.J.; Knapp, D.W.; Kuczek, T. High Urine Concentrations of Basic Fibroblast Growth Factor in Dogs with Bladder Cancer. J. Vet. Intern. Med. 1996, 10, 231–234. [Google Scholar] [CrossRef] [PubMed]
- R&D Systems. Quantikine® HS ELISA—Human FGF Basic Immunoassay; Package Insert on the Internet; R&D Systems, Inc.: Minneapolis, MN, USA, 2020; Available online: https://www.rndsystems.com/products/human-fgf-basic-quantikine-hs-elisa-kit_hsfb00d (accessed on 18 November 2021).
- Creative Diagnostics. Canine Basic Fibroblast Growth Factor ELISA Kit; Package Insert on the Internet; Creative Diagnostics: Shirley, NY, USA, 2021; Available online: https://www.creative-diagnostics.com/FGF2-EIA-Kit-246601-463.htm (accessed on 18 November 2021).
- Genorise Scientific, Inc. Nori® Canine FGF Basic ELISA Kit—DataSheet; Package Insert on the Internet; Genorise Scientific, Inc.: Glen Mills, PA, USA, 2021; Available online: http://www.genorise.com/Canine-FGF-ELISA-Kits.html (accessed on 18 November 2021).
- Mohammed, S.I.; Bennett, P.F.; Craig, B.A.; Glickman, N.W.; Mutsaers, A.J.; Snyder, P.W.; Widmer, W.R.; de Gortari, A.E.; Bonney, P.L.; Knapp, D.W. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res. 2002, 15, 356–358. Available online: http://cancerres.aacrjournals.org/content/62/2/356.abstract (accessed on 23 September 2020).
- Mohammed, S.I.; Craig, B.A.; Mutsaers, A.J.; Glickman, N.W.; Snyder, P.W.; De Gortari, A.E.; Schlittler, D.L.; Coffman, K.T.; Bonney, P.L.; Knapp, D.W. Effects of the cyclooxygenase inhibitor, piroxicam, in combination with chemotherapy on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Mol. Cancer Ther. 2003, 2, 183–188. Available online: https://mct.aacrjournals.org/content/2/2/183 (accessed on 23 September 2020).
- Abbott Laboratories. UroVysion Bladder Cancer Kit; Package Insert on the Internet; Abbott Molecular, Inc.: Des Plaines, IL, USA, 2021; Available online: https://www.molecular.abbott/us/en/products/oncology/urovysion-bladder-cancer-kit (accessed on 18 November 2021).
- Kent, M.S.; Zwingenberger, A.; Westropp, J.L.; Barrett, L.E.; Durbin-Johnson, B.P.; Ghosh, P.; Vinall, R.L. MicroRNA profiling of dogs with transitional cell carcinoma of the bladder using blood and urine samples. BMC Vet. Res. 2017, 13, 339. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.D.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef]
- McCleary-Wheeler, A.L.; Williams, L.E.; Hess, P.R.; Suter, S.E. Evaluation of an in vitro telomeric repeat amplification protocol assay to detect telomerase activity in canine urine. Am. J. Vet. Res. 2010, 71, 1468–1474. [Google Scholar] [CrossRef]
- Heilmann, R.M.; McNiel, E.A.; Grützner, N.; Lanerie, D.J.; Suchodolski, J.S.; Steiner, J.M. Diagnostic performance of the urinary canine calgranulins in dogs with lower urinary or urogenital tract carcinoma. BMC Vet. Res. 2017, 13, 112. [Google Scholar] [CrossRef] [Green Version]
- Bracha, S.; McNamara, M.; Hilgart, I.; Milovancev, M.; Medlock, J.; Goodall, C.; Wickramasekara, S.; Maier, C.S. A multiplex biomarker approach for the diagnosis of transitional cell carcinoma from canine urine. Anal. Biochem. 2014, 455, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dill, A.L.; Ifa, D.R.; Manicke, N.E.; Costa, A.B.; Ramos-Vara, J.A.; Knapp, D.W.; Cooks, R.G. Lipid Profiles of Canine Invasive Transitional Cell Carcinoma of the Urinary Bladder and Adjacent Normal Tissue by Desorption Electrospray Ionization Imaging Mass Spectrometry. Anal. Chem. 2009, 81, 8758–8764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, G.B. Urinary Lipid Biomarkers for Detecting Canine Transitional Cell Carcinoma Pilot Study. Bachelor’s Thesis, Oregon State University, Corvallis, OR, USA, 2016. Available online: http://ir.library.oregonstate.edu/concern/undergraduate_thesis_or_projects/bn999c19c (accessed on 20 September 2020).
- Rankin, W.V.; Henry, C.J.; Turnquist, S.E.; Turk, J.R.; Beissenherz, M.E.; Tyler, J.W.; Green, J.A. Comparison of distributions of survivin among tissues from urinary bladders of dogs with cystitis, transitional cell carcinoma, or histologically normal urinary bladders. Am. J. Vet. Res. 2008, 69, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Hanazono, K.; Fukumoto, S.; Kawamura, Y.; Endo, Y.; Kadosawa, T.; Iwano, H.; Uchide, T. Epidermal growth factor receptor expression in canine transitional cell carcinoma. J. Vet. Med. Sci. 2015, 77, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Millanta, F.; Impellizeri, J.; McSherry, L.; Rocchigiani, G.; Aurisicchio, L.; Lubas, G. Overexpression of HER-2 via immunohistochemistry in canine urinary bladder transitional cell carcinoma—A marker of malignancy and possible therapeutic target. Vet. Comp. Oncol. 2017, 16, 297–300. [Google Scholar] [CrossRef]
- Walters, L.; Martin, O.; Price, J.; Sula, M.M. Expression of receptor tyrosine kinase targets PDGFR-β, VEGFR2 and KIT in canine transitional cell carcinoma. Vet. Comp. Oncol. 2017, 16, E117–E122. [Google Scholar] [CrossRef]
- Korec, D.I.; Louke, D.S.; Breitbach, J.T.; Geisler, J.A.; Husbands, B.D.; Fenger, J.M. Characterization of receptor tyrosine kinase activation and biological activity of toceranib phosphate in canine urothelial carcinoma cell lines. BMC Vet. Res. 2021, 17, 320. [Google Scholar] [CrossRef]
- London, C.A.; Hannah, A.L.; Zadovoskaya, R.; Chien, M.B.; Kollias-Baker, C.; Rosenberg, M.; Downing, S.; Post, G.; Boucher, J.; Shenoy, N.; et al. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin. Cancer Res. 2003, 9, 2755–2768. [Google Scholar]
- Rippy, S.B.; Gardner, H.L.; Nguyen, S.M.; Warry, E.E.; Portela, R.A.; Drost, W.T.; Hostnik, E.T.; Green, E.M.; Chew, D.J.; Peng, J.; et al. A pilot study of toceranib/vinblastine therapy for canine transitional cell carcinoma. BMC Vet. Res. 2016, 12, 257. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, T.L.; Biller, B. Use of Toceranib Phosphate in the Treatment of Canine Bladder Tumors: 37 Cases. J. Am. Anim. Hosp. Assoc. 2019, 55, 243–248. [Google Scholar] [CrossRef]
- Inoue, A.; Maeda, S.; Kinoshita, R.; Tsuboi, M.; Yonezawa, T.; Matsuki, N. Density of tumor-infiltrating granzyme B-positive cells predicts favorable prognosis in dogs with transitional cell carcinoma. Vet. Immunol. Immunopathol. 2017, 190, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Hanazono, K.; Nishimori, T.; Fukumoto, S.; Kawamura, Y.; Endo, Y.; Kadosawa, T.; Uchide, T. Immunohistochemical expression of p63, Ki67 andβ-catenin in canine transitional cell carcinoma and polypoid cystitis of the urinary bladder. Vet. Comp. Oncol. 2016, 14, 263–269. [Google Scholar] [CrossRef]
- Barbareschi, M.; Pecciarini, L.; Cangi, M.G.; Macrì, E.; Rizzo, A.; Viale, G.; Doglioni, C. p63, a p53 Homologue, Is a Selective Nuclear Marker of Myoepithelial Cells of the Human Breast. Am. J. Surg. Pathol. 2001, 25, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Signoretti, S.; Waltregny, D.; Dilks, J.; Isaac, B.; Lin, D.; Garraway, L.; Yang, A.; Montironi, R.; McKeon, F.; Loda, M. p63 Is a Prostate Basal Cell Marker and Is Required for Prostate Development. Am. J. Pathol. 2000, 157, 1769–1775. [Google Scholar] [CrossRef] [Green Version]
- Di Como, C.J.; Urist, M.J.; Babayan, I.; Drobnjak, M.; Hedvat, C.V.; Teruya-Feldstein, J.; Pohar, K.; Hoos, A.; Cordon-Cardo, C. p63 expression profiles in human normal and tumor tissues. Clin. Cancer Res. 2002, 8, 494–501. Available online: http://clincancerres.aacrjournals.org/content/8/2/494.long (accessed on 20 September 2018).
- Urist, M.J.; DiComo, C.; Lu, M.-L.; Charytonowicz, E.; Verbel, D.; Crum, C.P.; Ince, T.A.; McKeon, F.D.; Cordon-Cardo, C. Loss of p63 Expression Is Associated with Tumor Progression in Bladder Cancer. Am. J. Pathol. 2002, 161, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Koga, F.; Kawakami, S.; Fujii, Y.; Saito, K.; Ohtsuka, Y.; Iwai, A.; Ando, N.; Takizawa, T.; Kageyama, Y.; Kihara, K. Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin. Cancer Res. 2003, 9, 5501–5507. [Google Scholar]
- Nishimori, T.; Hanazono, K.; Matsuda, K.; Kawamura, Y.; Kadosawa, T.; Endo, Y.; Uchide, T. Prognostic role of and ΔNp63 expression in canine transitional cell carcinoma of the urinary bladder. Open Vet. J. 2021, 11, 700. [Google Scholar] [CrossRef]
- Wu, X.; Lin, J.; Walz, T.; Häner, M.; Yu, J.; Aebi, U.; Sun, T. Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J. Biol. Chem. 1994, 269, 13716–13724. [Google Scholar] [CrossRef]
- Ramos-Vara, J.A.; Miller, M.A.; Boucher, M.; Roudabush, A.; Johnson, G.C. Immunohistochemical Detection of Uroplakin III, Cytokeratin 7, and Cytokeratin 20 in Canine Urothelial Tumors. Vet. Pathol. 2003, 40, 55–62. [Google Scholar] [CrossRef]
- Sledge, D.G.; Patrick, D.J.; Fitzgerald, S.D.; Xie, Y.; Kiupel, M. Differences in Expression of Uroplakin III, Cytokeratin 7, and Cyclooxygenase-2 in Canine Proliferative Urothelial Lesions of the Urinary Bladder. Vet. Pathol. 2014, 52, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Grivas, P.; Lalani, A.-K.A.; Pond, G.R.; Nagy, R.J.; Faltas, B.; Agarwal, N.; Gupta, S.V.; Drakaki, A.; Vaishampayan, U.N.; Wang, J.; et al. Circulating Tumor DNA Alterations in Advanced Urothelial Carcinoma and Association with Clinical Outcomes: A Pilot Study. Eur. Urol. Oncol. 2020, 3, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Chibuk, J.; Flory, A.; Kruglyak, K.M.; Leibman, N.; Nahama, A.; Dharajiya, N.; Boom, D.V.D.; Jensen, T.J.; Friedman, J.S.; Shen, M.R.; et al. Horizons in Veterinary Precision Oncology: Fundamentals of Cancer Genomics and Applications of Liquid Biopsy for the Detection, Characterization, and Management of Cancer in Dogs. Front. Vet. Sci. 2021, 8, 235. [Google Scholar] [CrossRef]
- Kruglyak, K.M.; Chibuk, J.; McLennan, L.; Nakashe, P.; Hernandez, G.E.; Motalli-Pepio, R.; Fath, D.M.; Tynan, J.A.; Holtvoigt, L.E.; Chorny, I.; et al. Blood-Based Liquid Biopsy for Comprehensive Cancer Genomic Profiling Using Next-Generation Sequencing: An Emerging Paradigm for Non-invasive Cancer Detection and Management in Dogs. Front. Vet. Sci. 2021, 8, 704835. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bae, H.; Ahn, S.; Shin, S.; Cho, A.; Cho, K.-W.; Jung, D.-I.; Yu, D. Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Dogs with Tumors. Front. Vet. Sci. 2021, 8, 735682. [Google Scholar] [CrossRef] [PubMed]
- Lawes, D.; SenGupta, S.; Boulos, P. The clinical importance and prognostic implications of microsatellite instability in sporadic cancer. Eur. J. Surg. Oncol. (EJSO) 2003, 29, 201–212. [Google Scholar] [CrossRef]
- Cowland, J.B.; Hother, C.; Grønbæk, K. MicroRNAs and cancer. APMIS 2007, 115, 1090–1106. [Google Scholar] [CrossRef]
- Santos, J.M.; Gil da Costa, R.; Medeiros, R. Dysregulation of cellular microRNAs by human oncogenic viruses—Implications for tumorigenesis. Biochim. Biophys. Acta 2018, 1861, 95–105. [Google Scholar] [CrossRef]
- Knapp, D.W.; Ramos-Vara, J.A.; Moore, G.E.; Dhawan, D.; Bonney, P.L.; Young, K.E. Urinary Bladder Cancer in Dogs, a Naturally Occurring Model for Cancer Biology and Drug Development. ILAR J. 2014, 55, 100–118. [Google Scholar] [CrossRef]
- Lamarca, A.; Barriuso, J. Urine Telomerase for Diagnosis and Surveillance of Bladder Cancer. Adv. Urol. 2012, 2012, 693631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, Q.N.; Veenstra, T.D.; Issaq, H.J. Metabolic Profiling for the Detection of Bladder Cancer. Curr. Urol. Rep. 2010, 12, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Mizushima, T.; Fujita, K.; Meliti, A.; Ide, H.; Yamaguchi, S.; Fushimi, H.; Netto, G.J.; Nonomura, N.; Miyamoto, H. GATA3 immunohistochemistry in urothelial carcinoma of the upper urinary tract as a urothelial marker and a prognosticator. Hum. Pathol. 2017, 64, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Rana, C.; Agarwal, H.; Babu, S.; Kumar, M.; Singhai, A.; Shankhwar, S.N.; Singh, V.; Sinha, R.J. Diagnostic utility of GATA3 immunohistochemical expression in urothelial carcinoma. Indian J. Pathol. Microbiol. 2019, 62, 244–250. [Google Scholar] [CrossRef]
- Vitti Gambim, V.; Laufer-Amorim, R.; Fonseca Alves, R.H.; Grieco, V.; Fonseca-Alves, C.E. A comparative meta-analysis and in silico analysis of differentially expressed genes and proteins in canine and human bladder cancer. Front. Vet. Sci. 2020, 7, 558978. Available online: https://www.frontiersin.org/articles/10.3389/fvets.2020.558978/full (accessed on 29 January 2022). [CrossRef]
- Fulkerson, C.M.; Knapp, D.W. Management of transitional cell carcinoma of the urinary bladder in dogs: A review. Vet. J. 2015, 205, 217–225. [Google Scholar] [CrossRef]
- Molnár, T.; Vajdovich, P. Clinical factors determining the efficacy of urinary bladder tumour treatments in dogs: Surgery, chemotherapy or both? Acta Vet. Hung. 2012, 60, 55–68. [Google Scholar] [CrossRef]
- Robat, C.; Burton, J.; Thamm, D.; Vail, D. Retrospective evaluation of doxorubicin-piroxicam combination for the treatment of transitional cell carcinoma in dogs. J. Small Anim. Pract. 2013, 54, 67–74. [Google Scholar] [CrossRef]
- Cannon, C.; Allstadt, S.D. Lower Urinary Tract Cancer. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 807–824. [Google Scholar] [CrossRef]
- Saeki, K.; Fujita, A.; Fujita, N.; Nakagawa, T.; Nishimura, R. Total cystectomy and subsequent urinary diversion to the prepuce or vagina in dogs with transitional cell carcinoma of the trigone area: A report of 10 cases (2005–2011). Can. Vet. J. La Rev. Vet. Can. 2015, 56, 73–80. [Google Scholar]
- Weisse, C.; Berent, A.; Todd, K.; Clifford, C.; Solomon, J. Evaluation of palliative stenting for management of malignant urethral obstructions in dogs. J. Am. Vet. Med. Assoc. 2006, 229, 226–234. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.K.; Knapp, D.W.; Ramos-Vara, J.A.; Bonney, P.L.; Adams, L.G. Outcome of urethral stent placement for management of urethral obstruction secondary to transitional cell carcinoma in dogs: 19 cases (2007–2010). J. Am. Vet. Med. Assoc. 2012, 241, 1627–1632. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A. Urethral Stenting for Obstructive Uropathy Utilizing Digital Radiography for Guidance: Feasibility and Clinical Outcome in 26 Dogs. J. Vet. Intern. Med. 2017, 31, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Stone, E.A.; Withrow, S.J.; Page, R.L.; Schwarz, P.D.; Wheeler, S.L.; Seim, H.B., III. Ureterocolonlc Anastomosis in Ten Dogs with Transitional Cell Carcinoma. Vet. Surg. 1988, 17, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Huppes, R.R.; De Nardi, A.B.; Lima, B.R.; Cintra, C.A.; Castro, J.L.C.; Adin, C.A.; Crivellenti, L.Z. Radical Cystectomy and Cutaneous Ureterostomy in 4 Dogs with Trigonal Transitional Cell Carcinoma: Description of Technique and Case Series. Vet. Surg. 2016, 46, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Prządka, P.; Liszka, B.; Lachowska, S.; Dzimira, S.; Ciaputa, R.; Tunikowska, J.; Juźwiak, Ł.; Kucharski, P.; Rudno-Rudzińska, J.; Kiełbowicz, Z. Case report laparoscopy-assisted pre-pubic urethrostomy as a palliative procedure for resection of distal urethral tumor in a female dog. BMC Vet. Res. 2021, 17, 309. [Google Scholar] [CrossRef]
- Liptak, J.M.; Brutscher, S.P.; Monnet, E.; Dernell, W.S.; Twedt, D.C.; Kazmierski, K.J.; Walter, C.U.; Mullins, M.N.; LaRue, S.M.; Withrow, S.J. Transurethral Resection in the Management of Urethral and Prostatic Neoplasia in 6 Dogs. Vet. Surg. 2004, 33, 505–516. [Google Scholar] [CrossRef]
- Upton, M.L.; Tangner, C.H.; Payton, M.E. Evaluation of carbon dioxide laser ablation combined with mitoxantrone and piroxicam treatment in dogs with transitional cell carcinoma. J. Am. Vet. Med. Assoc. 2006, 228, 549–552. [Google Scholar] [CrossRef]
- Cerf, D.J.; Lindquist, E.C. Palliative ultrasound-guided endoscopic diode laser ablation of transitional cell carcinomas of the lower urinary tract in dogs. J. Am. Vet. Med. Assoc. 2012, 240, 51–60. [Google Scholar] [CrossRef]
- Poirier, V.J.; Forrest, L.J.; Adams, W.M.; Vail, D.M. Piroxicam, Mitoxantrone, and Coarse Fraction Radiotherapy for the Treatment of Transitional Cell Carcinoma of the Bladder in 10 Dogs: A Pilot Study. J. Am. Anim. Hosp. Assoc. 2004, 40, 131–136. [Google Scholar] [CrossRef]
- Nolan, M.W.; Kogan, L.; Griffin, L.R.; Custis, J.T.; Harmon, J.F.; Biller, B.J.; LaRue, S.M. Intensity-Modulated and Image-Guided Radiation Therapy for Treatment of Genitourinary Carcinomas in Dogs. J. Vet. Intern. Med. 2012, 26, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Nieset, J.R.; Harmon, J.F.; Johnson, T.E.; LaRue, S.M. Comparison of adaptive radiotherapy techniques for external radiation therapy of canine bladder cancer. Vet. Radiol. Ultrasound 2014, 55, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.; Fidel, J. Tolerability and tumor response of a novel low-dose palliative radiation therapy protocol in dogs with transitional cell carcinoma of the bladder and urethra. Vet. Radiol. Ultrasound 2016, 57, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Malfassi, L.; Fidanzio, F.; Sala, M.; Marcarini, S.; Mazza, G.; Carrara, N.; Pavesi, S.; Gnudi, G.; Urso, G.; Dolera, M. A combined protocol with piroxicam, chemotherapy, and whole pelvic irradiation with simultaneous boost volumetric modulated arc radiotherapy for muscle-invasive canine urinary transitional cell carcinoma: First clinical experience. J. Vet. Med. Sci. 2021, 83, 695–704. [Google Scholar] [CrossRef]
- Chun, R.; Knapp, D.W.; Widmer, W.R.; DelNicola, D.B.; Glickman, N.W.; Kuczek, T.; DeGortari, A.; Han, C.M. Phase II Clinical Trial of Carboplatin in Canine Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 1997, 11, 279–283. [Google Scholar] [CrossRef]
- Allstadt, S.; Rodriguez, C.; Boostrom, B.; Rebhun, R.; Skorupski, K. Randomized Phase III Trial of Piroxicam in Combination with Mitoxantrone or Carboplatin for First-Line Treatment of Urogenital Tract Transitional Cell Carcinoma in Dogs. J. Vet. Intern. Med. 2015, 29, 261–267. [Google Scholar] [CrossRef]
- Chun, R.; Knapp, D.W.; Widmer, W.R.; Glickman, N.W.; DeNicola, D.B.; Bonney, P.L. Cisplatin treatment of transitional cell carcinoma of the urinary bladder in dogs: 18 cases (1983–1993). J. Am. Vet. Med. Assoc. 1996, 209. [Google Scholar]
- Knapp, D.; Henry, C.; Widmer, W.; Tan, K.; Moore, G.; Ramos-Vara, J.; Lucroy, M.; Greenberg, C.; Greene, S.; Abbo, A.; et al. Randomized Trial of Cisplatin versus Firocoxib versus Cisplatin/Firocoxib in Dogs with Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 2012, 27, 126–133. [Google Scholar] [CrossRef]
- Marconato, L.; Zini, E.; Lindner, D.; Suslak-Brown, L.; Nelson, V.; Jeglum, A.K. Toxic effects and antitumor response of gemcitabine in combination with piroxicam treatment in dogs with transitional cell carcinoma of the urinary bladder. J. Am. Vet. Med. Assoc. 2011, 238, 1004–1010. [Google Scholar] [CrossRef]
- Henry, C.J.; McCaw, D.L.; Turnquist, S.E.; Tyler, J.W.; Bravo, L.; Sheafor, S.; Straw, R.C.; Dernell, W.S.; Madewell, B.R.; Jorgensen, L.; et al. Clinical evaluation of mitoxantrone and piroxicam in a canine model of human invasive urinary bladder carcinoma. Clin. Cancer Res. 2003, 9, 906–911. [Google Scholar]
- Arnold, E.; Childress, M.; Fourez, L.; Tan, K.; Stewart, J.; Bonney, P.; Knapp, D. Clinical Trial of Vinblastine in Dogs with Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 2011, 25, 1385–1390. [Google Scholar] [CrossRef]
- Knapp, D.W.; Ruple-Czerniak, A.; Ramos-Vara, J.A.; Naughton, J.F.; Fulkerson, C.M.; Honkisz, S.I. A Nonselective Cyclooxygenase Inhibitor Enhances the Activity of Vinblastine in a Naturally-Occurring Canine Model of Invasive Urothelial Carcinoma. Bladder Cancer 2016, 2, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, M.E.; Weißhaar, K.; Lawrence, J.A.; Thamm, D.H. Vinorelbine rescue therapy for dogs with primary urinary bladder carcinoma. Vet. Comp. Oncol. 2013, 13, 443–451. [Google Scholar] [CrossRef]
- Schrempp, D.R.; Childress, M.O.; Stewart, J.C.; Leach, T.N.; Tan, K.M.; Abbo, A.H.; de Gortari, A.E.; Bonney, P.L.; Knapp, D.W. Metronomic administration of chlorambucil for treatment of dogs with urinary bladder transitional cell carcinoma. J. Am. Vet. Med. Assoc. 2013, 242, 1534–1538. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, A.; Mohammed, S.I.; DeNicola, D.; Snyder, P.; Glickman, N.; Bennett, P.; De Gortari, A.; Bonney, P.; Knapp, D. Pretreatment tumor prostaglandin E2 concentration and cyclooxygenase-2 expression are not associated with the response of canine naturally occurring invasive urinary bladder cancer to cyclooxygenase inhibitor therapy. Prostaglandins Leukot. Essent. Fat. Acids 2005, 72, 181–186. [Google Scholar] [CrossRef]
- Knapp, D.W.; Richardson, R.C.; Chan, T.C.; Bottoms, G.D.; Widmer, W.R.; DeNicola, D.B.; Teclaw, R.; Bonney, P.L.; Kuczek, T. Piroxicam Therapy in 34 Dogs with Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 1994, 8, 273–278. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.K.; Boria, P.; Moore, G.E.; Widmer, W.R.; Bonney, P.L.; Knapp, D.W. Antitumor effects of deracoxib treatment in 26 dogs with transitional cell carcinoma of the urinary bladder. J. Am. Vet. Med. Assoc. 2011, 239, 1084–1089. [Google Scholar] [CrossRef]
- Abbo, A.; Jones, D.; Masters, A.; Stewart, J.; Fourez, L.; Knapp, D. Phase I Clinical Trial and Pharmacokinetics of Intravesical Mitomycin C in Dogs with Localized Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 2010, 24, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Alhunaidi, O.; Zlotta, A.R. The use of intravesical BCG in urothelial carcinoma of the bladder. Ecancermedicalscience 2019, 13, 905. [Google Scholar] [CrossRef] [Green Version]
- Bloomberg, S.D.; Brosman, S.A.; Hausman, M.S.; Cohen, A.; Battenberg, J.D. The effects of BCG on the dog bladder. Investig. Urol. 1975, 12, 423–427. Available online: https://pubmed.ncbi.nlm.nih.gov/1091593/ (accessed on 30 January 2022).
- Sim, G.C.; Radvanyi, L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014, 25, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Konietschke, U.; Teske, E.; Jurina, K.; Stockhaus, C. Palliative intralesional interleukin-2 treatment in dogs with urinary bladder and urethral carcinomas. In Vivo 2012, 26, 931–935. [Google Scholar] [PubMed]
- Ziekman, P.G.P.M.; Otter, W.D.E.N.; Tan, J.F.V.; Teske, E.; Kirpensteijn, J.; Koten, J.-W.; Jacobs, J.J.L. Intratumoural interleukin-2 therapy can induce regression of non-resectable mastocytoma in dogs. Anticancer Res. 2013, 33, 161–165. [Google Scholar]
- Ridgway, T.D.; Lucroy, M.D. Phototoxic effects of 635-nm light on canine transitional cell carcinoma cells incubated with 5-aminolevulinic acid. Am. J. Vet. Res. 2003, 64, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lucroy, M.D.; Bowles, M.H.; Higbee, R.G.; Blaik, M.A.; Ritchey, J.W.; Ridgway, T.D. Photodynamic Therapy for Prostatic Carcinoma in a Dog. J. Vet. Intern. Med. 2003, 17, 235–237. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Zhang, H.; Wang, S.; Xie, L.; Li, B.; Rodriguez, C.O.; White, R.D.V.; Pan, C.-X. Targeting canine bladder transitional cell carcinoma with a human bladder cancer-specific ligand. Mol. Cancer 2011, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Aina, O.H.; Lam, K.S.; White, R.D.V.; Evans, C.; Henderson, P.; Lara, P.N.; Wang, X.; Bassuk, J.A.; Pan, C.-X. Identification of a bladder cancer-specific ligand using a combinatorial chemistry approach. Urol. Oncol. Semin. Orig. Investig. 2010, 30, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.-X.; Lin, T.-Y.; Zhang, H.; Luo, J.; Li, Y.; Gao, T.; Lara, P.N., Jr.; White, R.D.V.; Lam, K.S. Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer. Int. J. Nanomed. 2012, 7, 2793–2804. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Li, Y.-P.; Zhang, H.; Luo, J.; Goodwin, N.; Gao, T.; White, R.D.V.; Lam, K.S.; Pan, C.-X. Tumor-targeting multifunctional micelles for imaging and chemotherapy of advanced bladder cancer. Nanomedicine 2013, 8, 1239–1251. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Li, Y.; Liu, Q.; Chen, J.-L.; Zhang, H.; Lac, D.; Zhang, H.; Ferrara, K.; Wachsmann-Hogiu, S.; Li, T.; et al. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials 2016, 104, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; Zhang, H.; Li, Y.; Lin, T.-Y.; Wang, F.; Lee, J.; Cheng, M.; Dall’Era, M.; Li, T.; White, R.D.; et al. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 2016, 27, 425103. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yeh, T.-K.; Wang, J.; Chen, L.; Lyness, G.; Xin, Y.; Wientjes, M.G.; Bergdall, V.; Couto, G.; Alvarez-Berger, F.; et al. Paclitaxel Gelatin Nanoparticles for Intravesical Bladder Cancer Therapy. J. Urol. 2011, 185, 1478–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhawan, D.; Ramos-Vara, J.A.; Naughton, J.F.; Cheng, L.; Low, P.; Rothenbuhler, R.; Leamon, C.P.; Parker, N.; Klein, P.J.; Vlahov, I.R.; et al. Targeting Folate Receptors to Treat Invasive Urinary Bladder Cancer. Cancer Res. 2012, 73, 875–884. [Google Scholar] [CrossRef] [Green Version]
- Fulkerson, C.M.; Dhawan, D.; Ratliff, T.L.; Hahn, N.M.; Knapp, D.W. Naturally Occurring Canine Invasive Urinary Bladder Cancer: A Complementary Animal Model to Improve the Success Rate in Human Clinical Trials of New Cancer Drugs. Int. J. Genom. 2017, 2017, 6589529. [Google Scholar] [CrossRef]
- Besaratinia, A.; Cockburn, M.; Tommasi, S. Alterations of DNA methylome in human bladder cancer. Epigenetics 2013, 8, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Kim, W.-J. Can we use methylation markers as diagnostic and prognostic indicators for bladder cancer? Investig. Clin. Urol. 2016, 57, S77–S88. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Henrique, R.; Jerónimo, C.; Paramio, J.M. DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020, 9, 1850. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Meng, L.; Long, X.; Diao, T.; Hu, M.; Wang, M.; Liu, M.; Wang, J. DNA methylation-based classification and identification of bladder cancer prognosis-associated subgroups. Cancer Cell Int. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kanai, Y.; Ushijima, S.; Kitamura, T.; Kakizoe, T.; Hirohashi, S. DNA hypermethylation on multiple cpg islands associated with increased dna methyltransferase dnmt1 protein expression during multistage urothelial carcinogenesis. J. Urol. 2005, 173, 1767–1771. [Google Scholar] [CrossRef]
- Dhawan, D.; Ramos-Vara, J.A.; Hahn, N.M.; Waddell, J.; Olbricht, G.R.; Zheng, R.; Stewart, J.C.; Knapp, D.W. DNMT1: An emerging target in the treatment of invasive urinary bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1761–1769. [Google Scholar] [CrossRef]
- Hahn, N.M.; Bonney, P.L.; Dhawan, D.; Jones, D.R.; Balch, C.; Guo, Z.; Hartman-Frey, C.; Fang, F.; Parker, H.G.; Kwon, E.M.; et al. Subcutaneous 5-Azacitidine Treatment of Naturally Occurring Canine Urothelial Carcinoma: A Novel Epigenetic Approach to Human Urothelial Carcinoma Drug Development. J. Urol. 2012, 187, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulkerson, C.M.; Dhawan, D.; Jones, D.R.; Marquez, V.E.; Jones, P.A.; Wang, Z.; Wu, Q.; Klaunig, J.E.; Fourez, L.M.; Bonney, P.L.; et al. Pharmacokinetics and toxicity of the novel oral demethylating agent zebularine in laboratory and tumor bearing dogs. Vet. Comp. Oncol. 2015, 15, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, P.L.P.; Müller, S.; Fukumasu, H. Epigenetic Mechanisms in Canine Cancer. Front. Oncol. 2020, 10, 591843. [Google Scholar] [CrossRef]
- Goutas, D.; Theocharis, S.; Tsourouflis, G. Unraveling the Epigenetic Role and Clinical Impact of Histone Deacetylases in Neoplasia. Diagnostics 2021, 11, 1346. [Google Scholar] [CrossRef] [PubMed]
- Eto, S.; Saeki, K.; Yoshitake, R.; Yoshimoto, S.; Shinada, M.; Ikeda, N.; Kamoto, S.; Tanaka, Y.; Kato, D.; Maeda, S.; et al. Anti-tumor effects of the histone deacetylase inhibitor vorinostat on canine urothelial carcinoma cells. PLoS ONE 2019, 14, e0218382. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, H.; Breen, M. Sequence analysis of RAS and RAF mutation hot spots in canine carcinoma. Vet. Comp. Oncol. 2016, 15, 1598–1605. [Google Scholar] [CrossRef]
- Foskett, A.; Manley, C.; Naramore, R.; Gordon, I.K.; Stewart, B.M.; Khanna, C. Tolerability of oral sorafenib in pet dogs with a diagnosis of cancer. Vet. Med. Res. Rep. 2017, 8, 97–102. [Google Scholar] [CrossRef] [Green Version]
Primary Canine Urinary Bladder Tumours | |||
---|---|---|---|
Epithelial | |||
Malignant | (%) | Benign | (%) |
Transitional cell carcinoma | 75–90 | Papilloma | 2 |
Undifferentiated carcinoma | 6 | ||
Adenocarcinoma | 4 | Adenoma | 0.2 |
Squamous cell carcinoma | 3 | ||
Mesenchymal | |||
Malignant | Benign | ||
Leiomyosarcoma | 2 | Leiomyoma | 2 |
Sarcoma | 1.5 | ||
Rhabdomyosarcoma | 1.3 | ||
Haemangiosarcoma | 1 | Haemangioma | 0.2 |
Fibrosarcoma | 1 | Fibroma | 1 |
Canine Transitional Cell Carcinoma Classification |
---|
Papillary infiltrating |
Often multiple and may cover large regions of the mucosa. Form papillary or exophytic growths that project into the lumen of the bladder. Invade the stalk and wall of the bladder, lamina propria, and muscle layers and may be transmural. Mild to marked cellular atypia. Likely to metastasise. |
Papillary non-infiltrating |
Do not invade the stroma of their own stalk, do not go beyond the lamina propria, so unlikely to metastasise. Differentiation from papilloma is subjective and based on criteria such as overall size, cellular atypia, small branches off the main lesion, among others. Non-invasive tumours may be adjacent to invasive TCC, and additional sections should be searched for invasion. |
Non-papillary infiltrating |
Form plaques and flat nodules, which can cover large regions of the mucosa. Surfaces are often ulcerated, tumour infiltrates into muscle layers, so high tendency to metastasise. Marked histological and cytological variability. |
Non-papillary non-infiltrating |
Rare. Additionally, defined as carcinoma in situ; confined to the epithelium and do not form papillae. Neoplastic epithelium more intensely eosinophilic than non-neoplastic cells; cells may be dysplastic to mildly anaplastic. Loss of intercellular cohesion. Usually located adjacent to invasive carcinoma; if seen, additional section analysis recommended to look for invasion. |
Biomarker | Sample | Method | Diagnostic Utility, Commercial Availability | Utility as a Prognostic and/or Therapeutic Target | Power of the Test | |
---|---|---|---|---|---|---|
Sensitivity | Specificity | |||||
BRAF mutation | Tissue, urine, blood [58,59,60,61,62,63,64,65,66,67] | Determination of cBRAFV595E mutation status in DNA retrieved from cells, using ddPCR analysis or other molecular methods. | Highly sensitive test for detecting TCC cells bearing the BRAF mutation. Could be used as a first, non-invasive screening test. Commercially available for dogs, for use in free-catch urine samples—CADET® BRAF mutation detection assay. Provides qualitative results (positive vs. negative for V595E) and quantitative data of tumour-derived mutation load in urine DNA. Reported to detect TCC in free-catch urine samples up to several months before development of clinical signs. The test is not affected by the presence of blood or bacteria in the urine. ~20% of tumours of canine TCC and PC patients do not possess the mutation, which limits the sensitivity of the ddPCR assay to ~80%. A more recent test that detects chromosomal copy number variation can be added in BRAF mutation-negative patients, increasing combined sensitivity to ~95% (CADET® BRAF-PLUS). | BRAF mutation was not a predictor for histological grade, nor for survival. Measuring levels of BRAF mutation in urine or blood samples may be useful for monitoring treatment response and relapse. Potential target for treatment. | 67–88% (TCC, tissue) 83–100% (TCC, urine) | 100% (TCC, tissue and urine) |
BTA | Urine [68,69,70,71,72] | Rapid latex agglutination dipstick colorimetric test for qualitative detection of tumour analytes in urine. The test uses antibodies to detect a urinary bladder tumour-associated glycoprotein complex. | Useful as a screening test to rule out TCC, especially in dogs at high risk of developing TCC. False positive test results reported in dogs with non-neoplastic urinary tract disease, e.g., in the presence of significant glycosuria, proteinuria, and pyuria or haematuria. Presence of lower urinary tract malignant tumours other than TCC may yield positive results. Discrepancies with results may be observed over time, while reading the test. Commercially available—V-BTA Test. Results are either positive or negative. Not recommended as a confirmatory/definitive diagnostic test for urinary tract TCC in dogs, and should not be indiscriminately used in every patient presenting clinical signs of urinary tract disease. | N.A. | 88–90% | 35–41% in dogs with non-malignant urinary tract disease; 84–94% in healthy dogs or unhealthy dogs due to non-urinary tract diseases |
bFGF | Urine [73,74,75,76,77,78] | ELISA urine test for human and canine bFGF. A quantitative sandwich enzyme immunoassay technique has also been developed using an antibody for canine bFGF. | Urine bFGF could be useful as a diagnostic tumour marker, helping to distinguish dogs with UTI from those with TCC. Commercially available (for research use, only): Quantikine® HS ELISA, Human FGF basic Immunoassay, Canine BFGF ELISA Kit, Nori® Canine FGF Basic ELISA Kit. | Quantification of urine bFGF could be useful as a non-invasive indicator of treatment response. | N.S. | N.S. |
Chromosomal CNAs | Tissue, urine [39,79] | Assessment of urothelial cell ploidy/DNA copy number status in biopsy sections and in urine sediment by FISH. | Non-invasive method for canine TCC diagnosis. Potentially high-sensitivity and high-specificity FISH-based method/assay for the detection of canine TCC diagnosis utilising low-volume, free-catch urine specimens. Expensive and high effort method/labour intensive, expertise, time-consuming, increased cost, which may limit its application as routine diagnostics in a clinical environment. Not commercially available for canine TCC. Available for in vitro diagnostic use in human samples. A multicolour FISH-based assay for detection of aneuploidy for chromosomes 3, 7, 17, and loss of the 9p21 locus through FISH in urine specimens—UroVysion Bladder Cancer Kit. | N.A. | N.S. | N.S. |
Tissue, urine [55,64] | Multiplexed ddPCR assay for the detection and quantification of DNA copy number imbalances/changes characteristic to canine TCC. | Accurate, high-throughput method for evaluation of copy number changes in dogs with TCC. In this study, changes in copy number were not detected in 33% of urine DNA samples from dogs with TCC, which was probably due to the presence of inflammatory cells. Thus, additional techniques to improve sensitivity in those samples may be required. In such cases, FISH will still provide a more accurate evaluation. Commercially available for dogs, for use in free-catch urine samples: CADET® BRAF-PLUS. Can be used in BRAF mutation-negative patients. Could be added to CADET® BRAF, increasing combined sensitivity to ~95%. | N.A. | N.S. | N.S. | |
Microsatellite instability | Urine [72] | PCR study of a panel of 22 microsatellite DNA sequences from exfoliated urothelial cells and blood cells; comparison of microsatellites genotypes. | The technique added little value as a diagnostic test for TCC in dogs. High rate of false positives (32%, 12 of 38). | N.A. | 55% (48% *) | 68% (76%, vs. V-BTA) |
* When compared with results of V-BTA from the same study. | ||||||
MicroRNAs | Tissue, cell lines [56] | QPCR of specific miRNAs involved in the pathophysiology of TCC in humans. | MiR-34a, miR-16, miR-103b and miR-106b could be useful diagnostic biomarkers for the identification of dogs with TCC. More studies are required, with a larger sample. | N.A. | N.S. | N.S. |
Blood, urine [80] | MiR-103b and miR-16 are potential non-invasive diagnostic biomarkers for TCC; particularly for distinguishing LUTD and TCC in canine urine samples. Urine tests seem to be superior in distinguishing TCC from LUTD. | N.A. | N.A. | N.S. | ||
Telomerase | Canine TCC cell line, urine [81,82] | PCR-based telomeric repeat amplification protocol for detection/measurement of telomerase activity. | Telomerase activity may be useful in diagnosing canine TCC in urine samples in a clinical context. Results of the assay are either telomerase-positive or telomerase-negative. Urine samples containing other telomerase-positive cells may yield false-positive results (e.g., presence of activated lymphocytes in dogs with bacterial cystitis). False-negative results may occur with unappropriated urine samples storage. | N.A. | 91% | 89% |
Diagnostic sensitivity/specificity of the TRAP assay applied to clinical canine urine samples. | ||||||
Calgranulins | Urine [44,83] | Species-specific radioimmunoassays to measure urine concentrations of canine calgranulins S100A8/A9 and S100A12. | Results presented as normalised to urine specific gravity levels (S100A8/A9USG) and as S100A8/A9-to-S100A12 ratio (UcalR). Provides quantitative results. S100A8/A9USG could be a good a screening test for TCC/PC in dogs, especially in those where a UTI has been ruled out as a cause of clinical signs of lower urinary tract disease (due to a moderate rate of false positives observed for dogs ≥6 years of age with UTI). UcalR can help differentiate patients with a UTI from those with TCC/PC, even though a moderate false negative rate was seen in dogs ≥ 6 y.o. with a UTI. A combination of S100A8/A9USG and uCalR improved diagnostic accuracy for the detection of canine TCC/PC. Test levels are not affected by haematuria. | N.A. | 96% S100A8/A9USG * 91% UcalR ** | 66% S100A8/A9USG * 60% UcalR ** |
* For detection of TCC/PC in dogs ≥ 6 y.o.; ** to distinguish dogs with TCC/PC from dogs with UTI in dogs ≥ 6 y.o. | ||||||
Proteomics | Urine [84] | Characterisation of the canine urinary proteome by using liquid chromatography tandem mass spectrometry and immunoblot. | A protein signature was identified, that could distinguish between healthy patients and those with TCC or UTIs. A statistical model using a biomarker multiplex for categorising samples as TCC or non-TCC was developed, predicting the presence of disease with 90% confidence. Potential relevance of the identified proteins as biomarkers for the diagnosis of TCC in dogs. Preliminary study, high-throughput technique. A more direct assay will be useful for clinical diagnosis. | N.A. | N.S. | N.S. |
Metabolomics | Urine [55] | Nuclear magnetic resonance spectroscopy-based metabolite profiling analysis. | Six metabolites showed significantly higher levels in dogs with TCC compared to controls: urea, choline, methylguanidine, citrate, acetone and β-hydroxybutyrate. Good sensitivity to predict the healthy control and disease samples. Potential for early detection of bladder cancer. Preliminary study, high-throughput technique. | N.A. | 86% | 78% |
Lipidomics | Tissue [85] | Imaging analysis to examine lipidome/lipid profiles, using desorption electrospray ionisation mass spectrometry. | Differentiation of canine cancerous bladder tissue and cutaneous metastasis from noncancerous canine bladder tissue samples. Different lipid distributions between healthy and diseased tissues. DESI-MS imaging could be useful in diagnosing TCC by using a multimarker approach based on the lipid profiles and intensities of tissue samples. Further studies are required with larger populations and additional control groups, i.e., with other lower urinary diseases. Still requires invasive techniques for tissue collection. | N.A. | N.S. | N.S. |
Urine [86] | Analysis of lipid profiles using liquid chromatography-mass spectrometry. | Unique lipid profiles were found among dogs with TCC, dogs with UTI, and healthy dogs. Specific statistical analyses allowed their differentiation. Concentrations of the specific lipids could not be determined, and thus the study did not conclude which lipid families were up or downregulated. Foundation for further research on urinary lipids as potential biomarkers for TCC. Non-invasive method. | N.A. | N.S. | N.S. | |
Survivin | Tissue [87] | Immunohistochemistry for detection of survivin, an apoptosis-inhibiting protein; RT-PCR analysis for the survivin gene. | Initial phases of investigational development with limited samples. Additional research needed to investigate potential role of nuclear survivin as an early marker for bladder tumours, as well as in the development, progression and as a therapeutic target. | N.A. | N.S. | N.S. |
EGFR | Tissue [88] | IHC and qPCR analysis for EGFR. | EGFR expression could potentially be used as a marker to aid canine TCC diagnosis. It may improve the sensitivity of urine cytological diagnosis when provisional diagnosis is needed. | Not useful for predicting prognosis of TCC. | 72% | 100% |
HER-2 | Tissue [61,89] | IHC for HER-2. | N.A. | Potential maker of malignancy and therapeutic target in canine TCC. | N.S. | N.S. |
VEGFR2, PDGFR-β, c-KIT | Tissue, cell lines [90,91,92,93,94] | IHC for expression of VEGFR2, PDGFR-β, c-KIT. | PDGFR-β could play a role in canine TCC tumourigenesis. | PDGFR-β and VEGFR2 might be involved in mediating clinical response of TCC to toceranib. | N.S. | N.S. |
Granzyme B, CD3 | Tissue [95] | IHC and PCR assay for CD3 and granzyme B. | N.A. | Granzyme B+ tumour-infiltrating cells could be involved in inhibition of tumour progression, and a favourable prognosis. Presence of granzyme B+ tumour-infiltrating cells might be an independent prognostic factor. | N.S. | N.S. |
P63, Ki67, β-catenin | Tissue [96,97,98,99,100,101,102] | IHC for p63. | P63 could potentially be used as a clinical marker for diagnosing canine TCC. | P63 could potentially be used as a clinical marker for predicting prognosis in canine TCC. | N.S. | N.S. |
UP III CK 7 CK 20 COX-2 | Tissue [2,44,103,104,105] | IHC for UP III, CK 7 and CK20. | UP III is the most common marker of urothelial differentiation used in dogs. It was considered the marker of choice in canine urothelial neoplasms. Although UP III is not a specific marker for TCC itself (it does not differentiate neoplastic from non-neoplastic lesions), it can be useful e.g., to rule in TCC in a biopsy from a tumour of unknown origin and to identify metastatic carcinomas in the skin. CK 7 was more sensitive than UP III for canine TCC, but CK 7 is expressed in several non-urothelial tumours and also in normal tissues, as is CK 20. CK 7 should be used for tumours negative for UP III but suspected of being TCC. CK 20 alone did not prove to be useful for diagnosis of urothelial tumours. Some urothelial carcinomas might not be positively labelled when using UP III and CK 7 as diagnostic markers. COX-2 has been found to be expressed in canine TCCs but not by normal urothelium of the urinary bladder. | UP III, CK 7, COX-2: Significant associations between specific patterns of expression and tumour classification, depth of neoplastic cell infiltration. COX-2: Intensity of COX-2 expression did not correlate with grading. Nonselective COX and COX-2 specific inhibitors have been used for treating TCC. Still unclear whether it could be useful as a predictive factor for treatment response. | N.S. | N.S. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasteiro, A.M.; Sá e Lemos, E.; Oliveira, P.A.; Gil da Costa, R.M. Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy. Vet. Sci. 2022, 9, 107. https://doi.org/10.3390/vetsci9030107
Rasteiro AM, Sá e Lemos E, Oliveira PA, Gil da Costa RM. Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy. Veterinary Sciences. 2022; 9(3):107. https://doi.org/10.3390/vetsci9030107
Chicago/Turabian StyleRasteiro, Ana Mafalda, Eva Sá e Lemos, Paula A. Oliveira, and Rui M. Gil da Costa. 2022. "Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy" Veterinary Sciences 9, no. 3: 107. https://doi.org/10.3390/vetsci9030107
APA StyleRasteiro, A. M., Sá e Lemos, E., Oliveira, P. A., & Gil da Costa, R. M. (2022). Molecular Markers in Urinary Bladder Cancer: Applications for Diagnosis, Prognosis and Therapy. Veterinary Sciences, 9(3), 107. https://doi.org/10.3390/vetsci9030107