Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Techniques and Phytochemical Profile and Gas Chromatography–Mass Spectrometry (GC–MS) Analyses
2.3. In Vitro Toxicity Test
2.4. Semi-Field Toxicity Test
2.5. Honeybee Workers: Toxicity Evaluation
2.6. Statistical Analysis
3. Results
3.1. Phytochemical Profiles
3.2. Fumigant In Vitro Toxicity
3.3. Fumigant Semi-Field Toxicity
3.4. Honeybee Toxicity Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blacquière, T.; Boot, W.; Calis, J.; Moro, A.; Neumann, P.; Panziera, D. Darwinian black box selection for resistance to settled invasive Varroa destructor parasites in honey bees. Biol. Invasions 2019, 21, 2519–2528. [Google Scholar] [CrossRef] [Green Version]
- Posada-Florez, F.; Ryabov, E.V.; Heerman, M.C.; Chen, Y.; Evans, J.D.; Sonenshine, D.E.; Cook, S.C. Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. PLoS ONE 2020, 15, e0242688. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.Y.; Chantawannakul, P.; McAfee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.J.; Ellis, J.D. Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. J. Insect Sci. 2021, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In vitro evaluation of acute toxicity of five citrus spp. Essential oils towards the parasitic mite varroa destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Bava, R.; Castagna, F.; Piras, C.; Musolino, V.; Lupia, C.; Palma, E.; Britti, D.; Musella, V. Entomopathogenic Fungi for Pests and Predators Control in Beekeeping. Vet. Sci. 2022, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Sara Hernández-Rodríguez, C.; Marín, Ó.; Calatayud, F.; Mahiques, M.J.; Mompó, A.; Segura, I.; Simó, E.; González-Cabrera, J. Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa destructor. Insects 2021, 12, 27. [Google Scholar] [CrossRef]
- Higes, M.; Martín-Hernández, R.; Sara Hernández-Rodríguez, C.; González-Cabrera, J. Assessing the resistance to acaricides in Varroa destructor from several Spanish locations. Parasitol. Res. 2020, 119, 3595–3601. [Google Scholar] [CrossRef]
- Lipiński, Z.; Szubstarski, J. Resistance of Varroa destructor to most commonly used synthetic acaricides. Pol. J. Vet. Sci. 2007, 10, 289–294. [Google Scholar]
- Bava, R.; Castagna, F.; Carresi, C.; Cardamone, A.; Federico, G.; Roncada, P.; Palma, E.; Musella, V.B. Comparison of Two Diagnostic Techniques for the Apis mellifera Varroatosis: Strengths, Weaknesses and Impact on the Honeybee Health. Vet. Sci. 2022, 9, 354. [Google Scholar] [CrossRef]
- Castagna, F.; Bava, R.; Piras, C.; Carresi, C.; Musolino, V.; Lupia, C.; Marrelli, M.; Conforti, F.; Palma, E.; Britti, D.; et al. Green Veterinary Pharmacology for Honey Bee Welfare and Health: Origanum heracleoticum L. (Lamiaceae) Essential Oil for the Control of the Apis mellifera Varroatosis. Vet. Sci. 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Castagna, F.; Bava, R.; Musolino, V.; Piras, C.; Cardamone, A.; Carresi, C.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; et al. Potential New Therapeutic Approaches Based on Punica granatum Fruits Compared to Synthetic Anthelmintics for the Sustainable Control of Gastrointestinal Nematodes in Sheep. Animals 2022, 12, 2883. [Google Scholar] [CrossRef]
- Neumann, P.; Carreck, N.L. Honey bee colony losses. J. Apic. Res. 2010, 49, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ellse, L.; Wall, R. The use of essential oils in veterinary ectoparasite control: A review. Med. Vet. Entomol. 2014, 28, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Štrbac, F.; Bosco, A.; Maurelli, M.P.; Ratajac, R.; Stojanović, D.; Simin, N.; Orčić, D.; Pušić, I.; Krnjajić, S.; Sotiraki, S.; et al. Anthelmintic Properties of Essential Oils to Control Gastrointestinal Nematodes in Sheep—In Vitro and In Vivo Studies. Vet. Sci. 2022, 9, 93. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Schmiderer, C.; Grassi, P.; Novak, J.; Weber, M.; Franz, C. Diversity of essential oil glands of clary sage (Salvia sclarea L., Lamiaceae). Plant Biol. 2008, 10, 433–440. [Google Scholar] [CrossRef]
- Lee, Y.L.; Ding, P. Physiological production of essential oil in plants-Ontogeny, secretory structures and seasonal variations. Pertanika J. Sch. Res. Rev. 2016, 2. [Google Scholar]
- Butnariu, M.; Sarac, I. Essential Oils from Plants. J. Biotechnol. Biomed. Sci. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Pusceddu, M.; Floris, I.; Mangia, N.P.; Angioni, A.; Satta, A. In vitro activity of several essential oils extracted from aromatic plants against ascosphaera apis. Vet. Sci. 2021, 8, 80. [Google Scholar] [CrossRef]
- Castagna, F.; Piras, C.; Palma, E.; Musolino, V.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Musella, V.; Britti, D. Green veterinary pharmacology applied to parasite control: Evaluation of punica granatum, artemisia campestris, salix caprea aqueous macerates against gastrointestinal nematodes of sheep. Vet. Sci. 2021, 8, 237. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Panda, S.K.; Luyten, W. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules 2020, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Su, X.; Wang, S.; Ji, T.; Hu, F.L.; Zheng, H.Q. Fumigant toxicity of eleven Chinese herbal essential oils against an ectoparasitic mite (Varroa destructor) of the honey bee (Apis mellifera). J. Apic. Res. 2020, 59, 204–210. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982; Volume II. [Google Scholar]
- Saharkhiz, M.J.; Tarakeme, A. Essential oil content and composition of fennel (Foeniculum vulgare L.) fruits at different stages of development. J. Essent. Oil-Bear. Plants 2011, 14, 605–609. [Google Scholar] [CrossRef]
- de Oliveira, F.Q.; Malaquias, J.B.; Figueiredo, W.R.d.; Batista, J.d.; Beserra, E.B.; de Oliveira, R. Insecticidal activity of bioproducts on Ceratitis capitata Wiedemann (Diptera: Tephritidae). Afr. J. Biotechnol. 2014, 13, 1430–1438. [Google Scholar] [CrossRef] [Green Version]
- Aboelhadid, S.M.; Arafa, W.M.; Abdel-Baki, A.A.S.; Sokmen, A.; Al-Quraishy, S.; Hassan, A.O.; Kamel, A.A. Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from trans-anethone. PLoS ONE 2021, 16, e0260172. [Google Scholar] [CrossRef]
- Kostić, I.; Lazarević, J.; Jovanović, D.Š.; Kostić, M.; Marković, T.; Milanović, S. Potential of essential oils from anise, dill and fennel seeds for the gypsy moth control. Plants 2021, 10, 2194. [Google Scholar] [CrossRef]
- Marrelli, M.; Amodeo, V.; Viscardi, F.; De Luca, M.; Statti, G.; Conforti, F. Essential Oils of Foeniculum vulgare subsp. piperitum and Their in Vitro Anti-Arthritic Potential. Chem. Biodivers. 2020, 17, e2000388. [Google Scholar] [CrossRef]
- Shaaya, E.; Kostyukovysky, M. Essential oils: Potency against stored product insects and mode of action. Stewart Postharvest Rev. 2008, 2, 1–6. [Google Scholar] [CrossRef]
- Demeter, S.; Lebbe, O.; Hecq, F.; Nicolis, S.C.; Kenne Kemene, T.; Martin, H.; Fauconnier, M.L.; Hance, T. Insecticidal activity of 25 essential oils on the stored product pest, sitophilus granarius. Foods 2021, 10, 200. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; de CarvalhoAragão, C.E.; deAraújo, P.J.P.; Benatto, A.; Chaaban, A.; Martins, C.E.N.; do Amaral, W.; Cipriano, R.R.; Zawadneak, M.A.C. Insecticide activity and toxicity of essential oils against two stored-product insects. Crop. Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- Vigad, N.; Pelyuntha, W.; Tarachai, P.; Chansakaow, S.; Chukiatsiri, K. Physical characteristics, chemical compositions, and insecticidal activity of plant essential oils against chicken lice (Menopon gallinae) and mites (Ornithonyssus bursa). Vet. Integr. Sci. 2021, 19, 449–466. [Google Scholar] [CrossRef]
- Salman, M.; Abbas, R.Z.; Israr, M.; Abbas, A.; Mehmood, K.; Khan, M.K.; Sindhu, Z.U.D.; Hussain, R.; Saleemi, M.K.; Shah, S. Repellent and acaricidal activity of essential oils and their components against Rhipicephalus ticks in cattle. Vet. Parasitol. 2020, 283, 109178. [Google Scholar] [CrossRef] [PubMed]
- Soutar, O.; Cohen, F.; Wall, R. Essential oils as tick repellents on clothing. Exp. Appl. Acarol. 2019, 79, 209–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León-Méndez, G.; Pájaro-Castro, N.; Pájaro-Castro, E.; Torrenegra-Alarcón, M.; Herrera-Barros, A. Essential oils as a source of bioactive molecules. Rev. Colomb. Cienc. Químico-Farm. 2019, 48, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef]
- Haddadi, M. Effect of Thymol, Trans-Anethole and Diallyl Fisulfide on the Survival and Antioxidant System of Honey Bee. Ph.D. Thesis, University of Zabol, Zabol, Iran, 2020. [Google Scholar]
- Sabahi, Q.; Hamiduzzaman, M.M.; Barajas-Pérez, J.S.; Tapia-Gonzalez, J.M.; Guzman-Novoa, E. Toxicity of anethole and the essential oils of lemongrass and sweet marigold to the parasitic mite Varroa destructor and their selectivity for honey bee (Apis mellifera) workers and larvae. Psyche: A J. Èntomol. 2018, 2018, 6196289. [Google Scholar] [CrossRef] [Green Version]
- Hýbl, M.; Bohatá, A.; Rádsetoulalová, I.; Kopecký, M.; Hoštičková, I.; Vaníčková, A.; Mráz, P. Evaluating the Efficacy of 30 Different Essential Oils against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects 2021, 12, 1045. [Google Scholar] [CrossRef]
- Imdorf, A.; Bogdanov, S.; Ochoa, R.I.; Calderone, N.W. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 1999, 30, 209–228. [Google Scholar] [CrossRef] [Green Version]
- George, D.R.; Smith, T.J.; Shiel, R.S.; Sparagano, O.A.E.; Guy, J.H. Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Vet. Parasitol. 2009, 161, 276–282. [Google Scholar] [CrossRef]
- Quintans-Júnior, L.J.; Barreto, R.S.S.; Menezes, P.P.; Almeida, J.R.G.S.; Viana, A.F.S.C.; Oliveira, R.C.M.; Oliveira, A.P.; Gelain, D.P.; de Lucca Júnior, W.; Araújo, A.A.S. β-Cyclodextrin-complexed (-)-linalool produces antinociceptive effect superior to that of (-)-linalool in experimental pain protocols. Basic Clin. Pharmacol. Toxicol. 2013, 113, 167–172. [Google Scholar] [CrossRef] [PubMed]
- De Souza Siqueira Quintans, J.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; Araújo, A.A.D.S.; Quintans, L.J. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine 2013, 20, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M.; Deans, S.G.; Eaglesham, E. Relationship between bioactivity and chemical composition of commercial essential oils. Flavour Fragr. J. 1998, 13, 98–104. [Google Scholar] [CrossRef]
- Ariana, A.; Ebadi, R.; Tahmasebi, G. Laboratory evaluation of some plant essences to control Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 2002, 27, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Milani, N. The resistance of Varroa jacobsoni Oud to pyrethroids: A laboratory assay. Apidologie 1995, 26, 415–429. [Google Scholar] [CrossRef]
- Rinkevich, F.D. Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa destructor, within commercial beekeeping operations. PLoS ONE 2020, 15, e0227264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosco, A.; Kießler, J.; Amadesi, A.; Varady, M.; Hinney, B.; Ianniello, D.; Maurelli, M.P.; Cringoli, G.; Rinaldi, L. The threat of reduced efficacy of anthelmintics against gastrointestinal nematodes in sheep from an area considered anthelmintic resistance-free. Parasites Vectors 2020, 13, 457. [Google Scholar] [CrossRef]
- Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef]
Compound (a) | RT (b) | RAP (c) | |||
---|---|---|---|---|---|
Whole plant | Leaves | Achenes | Flowers | ||
α-pinene | 6.585 | - | 2.50 ± 0.23 | 1.71 ± 0.03 | 3.45 ± 0.30 |
β-myrcene | 7.774 | - | - | 0.41 ± 0.02 | 1.13 ± 0.02 |
o-cymene | 8.070 | 0.92 ± 0.02 | - | - | - |
α-phellandrene | 8.111 | 5.72 ± 0.09 | 8.37 ± 0.17 | 1.53 ± 0.03 | 6.10 ± 0.37 |
p-cymene | 8.471 | - | - | 0.20 ± 0.02 | 0.91 ± 0.04 |
Limonene | 8.569 | - | 5.54 ± 0.28 | 5.67 ± 0.34 | 6.05 ± 0.22 |
Eucalyptol | 8.609 | - | - | 0.10 ± 0.02 | 0.70 ± 0.03 |
β-ocimene | 8.672 | - | 0.20 ± 0.02 | 0.10 ± 0.01 | 1.10 ± 0.11 |
γ-terpinene | 9.032 | - | 0.70 ± 0.03 | 1.1 ± 0.01 | 2.5 ± 0.12 |
Linalool | 9.250 | 0.69 ± 0.02 | - | - | - |
Fenchone | 9.649 | 7.05 ± 0.24 | 9.76 ± 0.88 | 18.48 ± 1.28 | 16.08 ± 1.02 |
Camphor | 10.438 | - | 0.22 ± 0.03 | 1.64 ± 0.08 | 1.03 ± 0.08 |
p-anisaldehyde | 11.110 | 5.49 ± 0.10 | - | - | - |
Estragole | 11.129 | 5.00 ± 0.08 | 30.83 ± 2.22 | 33.40 ± 2.15 | 28.81 ± 2.04 |
Isoeugenol | 12.070 | 0.73 ± 0.01 | - | - | - |
Anethole | 12.232 | 49.90 ± 0.98 | 29.18 ± 1.42 | 24.16 ± 1.85 | 27.40 ± 1.93 |
α-bergamotene | 12.630 | 0.74 ± 0.02 | - | - | - |
Time of Exposition | EO from Whole Plant | EO from Flowers | EO from Achenes | EO from Leaves | ||||
---|---|---|---|---|---|---|---|---|
1 mg/mL | 2 mg/mL | 1 mg/mL | 2 mg/mL | 1 mg/mL | 2 mg/mL | 1 mg/mL | 2 mg/mL | |
15 min | 8% | 4% | 4% | 8% | 0% | 4% | 4% | 4% |
30 min | 12% | 28% | 8% | 12% | 8% | 16% | 8% | 20% |
45 min | 28% | 32% | 16% | 28% | 20% | 12% | 24% | 24% |
90 min | 40% | 52% | 24% | 36% | 24% | 40% | 40% | 52% |
Concentration 1 mg/mL | EO from Whole Plant | EO from Flowers | EO from Achenes | EO from Leaves | ||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
15 min | 8% | 12% | 16% | 20% | 8% | 8% | 8% | 12% |
30 min | 28% | 32% | 20% | 24% | 12% | 28% | 16% | 24% |
45 min | 36% | 36% | 20% | 24% | 24% | 32% | 32% | 32% |
90 min | 52% | 52% | 32% | 44% | 28% | 32% | 52% | 48% |
Concentration 2 mg/mL | EO from Whole Plant | EO from Flowers | EO from Achenes | EO from Leaves | ||||
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
15 min | 20% | 24% | 8% | 24% | 12% | 16% | 20% | 24% |
30 min | 32% | 36% | 24% | 28% | 20% | 24% | 28% | 32% |
45 min | 36% | 48% | 40% | 44% | 24% | 32% | 32% | 44% |
90 min | 56% | 68% | 48% | 56% | 48% | 52% | 60% | 64% |
Concentration | EO from Whole Plant | EO from Flowers | EO from Achenes | EO from Leaves | ||||
---|---|---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
10 mg/ml | 0% | 0% | 0% | 0% | 0% | 0% | 3.33% | 0% |
20 mg/ml | 13.33% | 16.67% | 6.67% | 3.33% | 3.33% | 3.33% | 10% | 13.33% |
30 mg/ml | 26.67% | 40% | 10% | 13.33% | 3.33% | 3.33% | 16.67% | 16.67% |
40 mg/ml | 53.33% | 53.33% | 13.33% | 16.67% | 6.67% | 10% | 23.33% | 36.67% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bava, R.; Castagna, F.; Palma, E.; Musolino, V.; Carresi, C.; Cardamone, A.; Lupia, C.; Marrelli, M.; Conforti, F.; Roncada, P.; et al. Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet. Sci. 2022, 9, 684. https://doi.org/10.3390/vetsci9120684
Bava R, Castagna F, Palma E, Musolino V, Carresi C, Cardamone A, Lupia C, Marrelli M, Conforti F, Roncada P, et al. Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Veterinary Sciences. 2022; 9(12):684. https://doi.org/10.3390/vetsci9120684
Chicago/Turabian StyleBava, Roberto, Fabio Castagna, Ernesto Palma, Vincenzo Musolino, Cristina Carresi, Antonio Cardamone, Carmine Lupia, Mariangela Marrelli, Filomena Conforti, Paola Roncada, and et al. 2022. "Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests" Veterinary Sciences 9, no. 12: 684. https://doi.org/10.3390/vetsci9120684
APA StyleBava, R., Castagna, F., Palma, E., Musolino, V., Carresi, C., Cardamone, A., Lupia, C., Marrelli, M., Conforti, F., Roncada, P., Musella, V., & Britti, D. (2022). Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Veterinary Sciences, 9(12), 684. https://doi.org/10.3390/vetsci9120684