Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat–Corn Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collections and Preparations
2.2.1. Basic Eggshell Quality Indices
2.2.2. Eggshell Mechanical Properties
2.2.3. Bone Densitometry
2.2.4. Measurements of Bone Mechanical Properties
2.2.5. Measurements of Bone and Eggshell Mineral Phase
2.3. Statistical Analysis
3. Results
3.1. Eggshell Properties
3.2. Bone Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Runknke, I.; Akter, Y.; Sibanda, T.Z.; Cowieson, A.I.; Wilkinson, S.; Maldonado, S.; Singh, M.; Hughes, P.; Caporale, D.; Bicker, S.; et al. The response of layer hen productivity and egg quality to an additional limestone source when offered diets differing in calcium concentrations and the inclusion of phytase. Animals 2021, 11, 2991. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Krawczyk, J.; Szczurek, W.; Puchała, M.; Józefiak, D. Effect of selected feed additives on egg performance and eggshell quality in laying hens fed a diet with standard or decreased calcium content. Ann. Anim. Sci. 2018, 18, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Dacke, C.G.; Arkle, S.; Cook, D.J.; Wormstone, I.M.; Jones, S.; Zaidi, M.; Bascal, Z.A. Medullary bone and avian calcium regulation. J. Exp. Biol. 1993, 184, 63–88. [Google Scholar] [CrossRef]
- Whitehead, C.C. Overview of bone biology in the egg-laying hen. Poult. Sci. 2004, 83, 193–199. [Google Scholar] [CrossRef]
- Gregory, N.; Wilkins, L. Broken bones in domestic fowl: Handling and processing damage in end-of-lay battery hens. Br. Poult. Sci. 1989, 30, 555–562. [Google Scholar] [CrossRef]
- Narushin, V.G.; Van Kepmen, T.A.; Wineland, M.J.; Christensen, V.L. Comparing infrared spectroscopy and egg size measurements for predicting eggshell quality. Biosyst. Eng. 2004, 87, 367–373. [Google Scholar] [CrossRef]
- Nowaczewski, S.; Lewko, L.; Kucharczyk, M.; Stuper-Szableska, K.; Rudzińska, K.; Cegielska-Radziejewska, R.; Biadała, A.; Szulc, K.; Tomczyk, Ł.; Kaczmarek, S.; et al. Effect of laying hens age and housing system on physicochemical characteristics of eggs. Ann. Anim. Sci. 2021, 21, 291–309. [Google Scholar] [CrossRef]
- Solomon, S.E. Egg and Eggshell Quality; Iowa State University Press: Ames, IA, USA, 1997. [Google Scholar]
- Światkiewicz, S.; Arczewska-Włosek, A.; Szczurek, W.; Calik, J.; Bederska-Łojewska, D.; Orczewska-Dudek, S.; Muszyński, S.; Tomaszewska, E.; Józefiak, D. Algal oil as source of polyunsaturated fatty acids in laying hens nutrition: Effect on egg performance, egg quality indices and fatty acid composition of egg yolk lipids. Ann. Anim. Sci. 2020, 20, 961–973. [Google Scholar] [CrossRef]
- Kubiś, M.; Kaczmarek, S.; Hejdysz, M.; Mikuła, R.; Wiśniewska, Z.; Pryszyńska-Oszmałek, E.; Kołodziejski, P.; Sassek, M.; Rutkowki, A. Microbial phytase improves performance and bone traits in broilers fed diets based on soybean meal and white lupin (Lupinus albus) meal. Ann. Anim. Sci. 2020, 20, 1379–1394. [Google Scholar] [CrossRef]
- Olgun, O.; Altay, Y.; Yildiz, A.O. Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets. Br. Poult. Sci. 2018, 59, 211–217. [Google Scholar] [CrossRef]
- Bederska-Łojewska, D.; Świątkiewicz, S.; Arczewska-Włosek, A.; Schwarz, T. Rye non-starch polysaccharides: Their impact on poultry intestinal physiology, nutrients digestibility and performance indices—A review. Ann. Anim. Sci. 2017, 17, 351–369. [Google Scholar] [CrossRef] [Green Version]
- Rataj, P.; Górka, P.; Śliwiński, B.; Wieczorek, J.; Boros, D.; Micek, P. Effect of rye grain derived from different cultivars or maize grain use in the diet on ruminal fermentation parameters and nutrient digestibility in sheep. Ann. Anim. Sci. 2021, 21, 959–976. [Google Scholar]
- Rataj, P.; Sady, M.; Kehoe, S.; Micek, P. Effect of replacing maize grain by hybrid rye grain in the TMR on performance of mid-lactating dairy cows. Ann. Anim. Sci. 2022, 22, 237–254. [Google Scholar]
- Mirzaie, S.; Zaghari, M.; Aminzadeh, S.; Shivazad, M.; Mateos, G.G. Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens. Poult. Sci. 2012, 91, 413–425. [Google Scholar] [CrossRef]
- Pan, C.F.; Igbasan, F.A.; Guenter, W.; Marquardt, R.R. The effects of enzyme and inorganic phosphorus supplements in wheat- and rye-based diets on laying hen performance, energy, and phosphorus availability. Poult. Sci. 1998, 77, 83–89. [Google Scholar] [CrossRef]
- Pyzik, E.; Urban-Chmiel, R.; Chałabis-Mazurek, A.; Świątkiewicz, S.; Arczewska-Włosek, A.; Schwarz, T.; Valverde Piedra, J.L. The influence of a diet supplemented with 20% rye and xylanase in different housing systems on the occurrence of pathogenic bacteria in broiler chickens. Ann. Anim. Sci. 2021, 21, 1455–1474. [Google Scholar] [CrossRef]
- Muszyński, S.; Arczewska, M.; Świątkiewicz, S.; Arczewska-Włosek, A.; Dobrowolski, P.; Świetlicka, I.; Hułas-Stasiak, M.; Blicharski, T.; Donaldson, J.; Schwarz, T.; et al. The effect of dietary rye inclusion and xylanase supplementation on structural organization of bone constitutive phases in laying hens fed a wheat–corn diet. Animals 2020, 10, 2010. [Google Scholar] [CrossRef]
- Węsierska, E.; Niemczyńska, K.; Pasternak, M.; Arczewska-Włosek, A. Selected physical and chemical characteristics of eggs laid by hens fed diets with different levels of hybrid rye. Ann. Anim. Sci. 2019, 19, 1009–1020. [Google Scholar] [CrossRef] [Green Version]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. In Poultry Feeding Standards, 5th ed.; The Kielanowski Institute of Animal Physiology and Nutrition PAS: Jabłonna, Poland, 2018; pp. 66–74. (In Polish) [Google Scholar]
- Bederska-Łojewska, D.; Arczewska-Włosek, A.; Świątkiewicz, S.; Orczewska-Dudek, S.; Schwarz, T.; Puchała, M.; Krawczyk, J.; Boros, D.; Fraś, A.; Micek, P.; et al. The effect of different dietary levels of hybrid rye and xylanase addition on the performance and egg quality in laying hens. Br. Poult. Sci. 2019, 60, 423–430. [Google Scholar] [CrossRef]
- Arczewska-Włosek, A.; Świątkiewicz, S.; Bederska-Łojewska, D.; Orczewska-Dudek, S.; Szczurek, W.; Boros, D.; Fras, A.; Tomaszewska, E.; Dobrowolski, P.; Muszyński, S.; et al. The efficiency of xylanase in broiler chickens fed with increasing dietary levels of rye. Animals 2019, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Janssen, W.M.M.A. European Table of Energy Values for Poultry Feedstuffs, 3rd ed.; Subcommittee Energy of the Working Group nr. 2 Nutrition of the European Federation of Branches of the World’s Poultry Science Association: Beekbergen, The Netherlands, 1989; ISBN 90-71463-00-0. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Science Public: New York, NY, USA, 1986; pp. 1–891. ISBN 978067721370. [Google Scholar]
- Altuntas, E.; Sekeroglu, A. Effect of egg shape index on mechanical properties of chicken eggs. J. Food Eng. 2008, 85, 606–612. [Google Scholar] [CrossRef]
- Kibala, L.; Rozempolska-Rucińska, I.; Kasperek, K.; Zięba, G.; Łukaszewicz, M. Ultrasonic eggshell thickness measurement for selection of layers. Poult. Sci. 2015, 94, 2360–2362. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, E.; Dobrowolski, P.; Świetlicka, I.; Muszyński, S.; Kostro, K.; Jakubczak, A.; Taszkun, I.; Żmuda, A.; Rycerz, K.; Blicharski, T.; et al. Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr. 2018, 102, e299–e308. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.M.; Galal, A.; Ali, U.M.; Abou-Emera, O.K. Physical and mechanical properties of eggshell as affected by chicken breed and flock age. Br. Poult. Sci. 2019, 5, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.M. Eggshell Strength: A Mechanical/Ultrastructural Evaluation. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 1990. Available online: https://theses.gla.ac.uk/76923/ (accessed on 10 October 2022).
- Nedomova, S.; Severa, L.; Buchar, J. Influence of hen egg shape on eggshell compressive strength. Int. Agrophys. 2009, 23, 249–256. [Google Scholar]
- Muszyński, S.; Kwiecień, M.; Tomaszewska, E.; Świetlicka, I.; Dobrowolski, P.; Kasperek, K.; Jeżewska-Witkowska, G. Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poult. Sci. 2017, 96, 491–500. [Google Scholar] [CrossRef]
- Lázaro, R.; García, M.; Araníbar, M.J.; Mateos, G.G. Effect of enzyme addition to wheat-, barley- and rye-based diets on nutrient digestibility and performance of laying hens. Br. Poult. Sci. 2003, 44, 256–265. [Google Scholar] [CrossRef]
- Lee, M.H.; Cho, E.J.; Choi, E.S.; Bang, M.H.; Sohn, S.H. The effect of hen age on egg quality in commercial layer. Korean J. Poult. Sci. 2016, 43, 253–261. [Google Scholar] [CrossRef]
- Cufadar, Y.; Yıldız, A.Ö.; Olgun, O. Effects of xylanase enzyme supplementation to corn/wheat-based diets on performance and egg quality in laying hens. Can. J. Anim. Sci. 2010, 90, 207–212. [Google Scholar] [CrossRef]
- Mikulski, D.; Naczmański, J.; Mikulska, M.; Jankowski, J. Effect of graded dietary inclusion levels of hybrid rye grain on productive performance, the cost-effectiveness of nutrition and egg quality in laying hens. Ann. Anim. Sci. 2022, 22, 677–685. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Nguyen, H.T.; Morgan, K. Dietary soluble non-starch polysaccharide level and xylanase supplementation influence performance, egg quality and nutrient utilization in laying hens fed wheat-based diet. Anim. Nutr. 2021, 7, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.E.; Bedford, M.R.; Pace, S.C.; Miller, H.M. The effects of phytase and xylanase supplementation on performance and egg quality in laying hens. Br. Poult. Sci. 2018, 59, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Bedford, M.R.; Acamovic, T. Effect of dietary xylanase on energy, amino acid and mineral metabolism, and egg production and quality in laying hens. Br. Poult. Sci. 2010, 51, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadou, D.; Jiang, W.; Goldbaum, D.; Saleem, A.; Basy, K.; Pacella, M.S.; Böhm, C.F.; Chromik, R.R.; Hincke, M.T.; Rodríguez-Navarro, A.B.; et al. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Sci. Adv. 2018, 4, eaar3219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusack, M.; Fraser, A.C.; Stachel, T. Magnesium and phosphorus distribution in the avian eggshell. Comp. Biochem. Physiol. Part B 2003, 134, 63–69. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; Rodriguez-Navarro, A. The mineral structure of the avian eggshell: A case of competitive crystal growth. Proc. Fundam. Biomin. Bull. Inst. Oceanogr. 1994, 14, 85–94. [Google Scholar]
- Rodriguez-Navarro, A.; Kalin, O.; Nys, Y.; Garcia-Ruiz, J.M. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. Br. Poult. Sci. 2002, 43, 395–403. [Google Scholar] [CrossRef]
- Bi, H.; Liu, Z.; Sun, C.; Li, G.; Wu, G.; Shi, F.; Liu, A.; Yang, N. Brown eggshell fading with layer ageing: Dynamic change in the content of protoporphyrin IX. Poult. Sci. 2018, 97, 1948–1953. [Google Scholar] [CrossRef]
- Skrivan, M.; Skrivanova, V.; Marounek, M. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poult. Sci. 2005, 84, 1570–1575. [Google Scholar] [CrossRef]
- Śliwiński, M.G.; Latty, C.J.; Spaleta, K.J.; Taylor, R.J.; Severin, K.P. Rapid, non-destructive analysis of calcium and strontium in eggshells by WD-XRF. Chemosphere 2020, 251, 126253. [Google Scholar] [CrossRef]
- Waddell, A.L.; Board, R.G.; Scott, V.D.; Tullett, S.G. Role of magnesium in egg shell formation in the domestic hen. Br. Poult. Sci. 1991, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, R.R.; Ward, A.T.; Misir, R. The retention of nutrients by chicks fed rye diets supplemented with amino acids and penicillin supplementation. Poult. Sci. 1979, 58, 631–640. [Google Scholar] [CrossRef]
- Lei, X.J.; Lee, K.Y.; Kim, I.H. Performance, egg quality, nutrient digestibility, and excreta microbiota shedding in laying hens fed corn-soybean-meal-wheat-based diets supplemented with xylanase. Poult. Sci. 2018, 97, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.M. Eggshell strength: A relationship between the mechanism of failure and the ultra-structural organisation of the mammillary layer. Br. Poult. Sci. 1992, 3, 303–319. [Google Scholar] [CrossRef]
- Solomon, S.E. The eggshell: Strength, structure and function. Br. Poult. Sci. 2010, 51, 52–59. [Google Scholar] [CrossRef]
- Taylor, D.; Walsh, M.; Cullen, A.; O’Reilly, P. The fracture toughness of eggshell. Acta Biomater. 2016, 37, 21–27. [Google Scholar] [CrossRef]
- Muszyński, S.; Tomaszewska, E.; Arczewska-Włosek, A.; Kasperek, K.; Batkowska, J.; Lamorski, K.; Wiącek, D.; Donaldson, J.; Świątkiewicz, S. Dietary L-glutamine affects eggshell quality in the post-peak laying period. Ann. Anim. Sci. 2022, in press. Available online: https://sciendo.com/article/10.2478/aoas-2022-0022 (accessed on 10 October 2022). [CrossRef]
- Kerschnitzki, M.; Zander, T.; Zaslansky, P.; Fratzl, P.; Shahar, R.; Wagermaier, W. Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone 2014, 69, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, C.; Takeshima, K.; Kiarie, E.G.; Bédécarrats, G.Y. Bone and eggshell quality throughout an extended laying cycle in three strains of layers spanning 50 years of selection. Poult. Sci. 2022, 101, 101672. [Google Scholar] [CrossRef]
- Almeida Paz, I.C.L.; Bruno, L.D.G. Bone mineral density: Review. Braz. J. Poult. Sci. 2006, 8, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Hocking, P.M.; Bain, M.; Channing, C.E.; Fleming, R.; Wilson, S. Genetic variation for egg production, egg quality and bone strength in selected and traditional breeds of laying fowl. Br. Poult. Sci. 2003, 44, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Baird, H.T.; Eggett, D.L.; Fullmer, S. Varying ratios of omega-6: Omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens. Poult. Sci. 2008, 87, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Essentiality of manganese for bone health: An overview and update. Nat. Prod. Commun. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Skomorucha, I.; Sosnówka-Czajka, E. A comparison of morphometric indices, mineralization level of long bones and selected blood parameters in hens of three breeds. Ann. Anim. Sci. 2021, 21, 869–885. [Google Scholar] [CrossRef]
- Tellez, G.; Latorre, J.D.; Kuttappan, V.A.; Kogut, M.H.; Wolfenden, A.; Hernandez-Velasco, X.; Hargis, B.M.; Bottje, W.G.; Bielkend, L.R.; Faulkner, O.B. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 2014, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Silversides, F.G.; Scott, T.A.; Korver, D.R.; Afsharmanesh, M.; Hruby, M. A study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial whit and brown egg laying hens. Poult. Sci. 2006, 85, 297–305. [Google Scholar] [CrossRef]
- Whitehead, C.C.; Fleming, R.H. Osteoporosis in cage layers. Poult. Sci. 2000, 79, 1033–1041. [Google Scholar] [CrossRef]
- Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C. Medullary bone and humeral breaking strength in laying hens. Res. Vet. Sci. 1998, 64, 63–67. [Google Scholar] [CrossRef]
- Jansen, S.; Baulain, U.; Habig, C.; Weigend, A.; Halle, I.; Scholz, A.M.; Simianer, H.; Sharifi, A.R.; Weigend, S. Relationship between bone stability and egg production in genetically divergent chicken layer lines. Animals 2020, 10, 850. [Google Scholar] [CrossRef]
Item | Diet | |
---|---|---|
Wheat–Corn 1 | Rye–Wheat–Corn 2 | |
Xylanase “on top” * | 0 or 200 mg/kg | 0 or 200 mg/kg |
Ingredients (g/kg) | ||
Rye 3 | 0.00 | 250.00 |
Wheat | 382.30 | 250.80 |
Corn | 290.00 | 150.00 |
Soybean meal | 200.00 | 210.00 |
Rapeseed oil | 15.00 | 27.00 |
Limestone | 91.00 | 90.00 |
Monocalcium phosphate | 12.00 | 12.00 |
Sodium chloride | 3.00 | 3.00 |
DL-Methionine | 1.10 | 1.10 |
L-Lysine hydrochloride | 0.60 | 0.10 |
Vitamin-mineral premix 4 | 5.00 | 5.00 |
Metabolizable energy, MJ/kg 5 | 11.55 | |
Nutrient composition (g/kg DM) 6 | ||
Crude protein | 170.00 | |
Lysine | 7.20 | |
Methionine | 3.40 | |
Calcium | 36.00 | |
Available phosphorus | 3.75 | |
Sodium | 1.50 | |
Chlorine | 2.19 |
Factors 1 | Egg Weight g | Eggshell Percentage, % | Eggshell Thickness, µm | Volume, cm3 | Shape Index, % | Eggshell Density, g/cm3 | |
---|---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | ||||||
Treatment 4 | |||||||
- | - | 61.1 | 13.6 | 459 b | 574 | 77.2 | 2.52 b |
+ | 61.8 | 13.7 | 451 b | 580 | 76.6 | 2.48 a | |
+ | - | 60.9 | 13.1 | 436 a | 571 | 76.9 | 2.49 a |
+ | 60.7 | 13.2 | 455 b | 565 | 77.9 | 2.51 b | |
SEM 5 | 0.88 | 0.18 | 7.4 | 8.0 | 0.01 | 0.007 | |
Main factors | |||||||
- | 61.5 | 13.7 | 455 | 577 | 76.9 | 2.50 | |
+ | 60.8 | 13.2 | 446 | 568 | 77.4 | 2.50 | |
- | 61.0 | 13.4 | 447 | 572 | 77.1 | 2.51 | |
+ | 61.2 | 13.4 | 453 | 573 | 77.2 | 2.49 | |
p-value | |||||||
Rye | 0.439 | 0.008 | 0.193 | 0.265 | 0.337 | 0.737 | |
Enzyme | 0.753 | 0.778 | 0.416 | 0.938 | 0.729 | 0.073 | |
Rye × enzyme | 0.612 | 0.918 | 0.042 | 0.448 | 0.130 | <0.001 |
Factors 1 | Ca, mg/g | Mg, mg/g | P, mg/g | K, µg/g | Na, µg/g | Sr, µg/g | Fe, µg/g | Zn, µg/g | Cu, µg/g | |
---|---|---|---|---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | |||||||||
Treatment 4 | ||||||||||
- | - | 262 d | 3.13 | 1.049 ab | 640 | 668 | 165 | 5.39 b | 5.25 | 0.838 ab |
+ | 244 b | 3.17 | 0.956 a | 700 | 608 | 157 | 5.13 ab | 3.61 | 0.760 a | |
+ | - | 239 a | 2.67 | 0.965 a | 651 | 643 | 145 | 5.04 a | 3.69 | 0.727 a |
+ | 250 c | 2.73 | 1.070 b | 621 | 668 | 146 | 5.35 b | 3.71 | 0.961 b | |
SEM 5 | 1.3 | 0.068 | 0.0314 | 26.0 | 21.6 | 2.7 | 0.070 | 0.486 | 0.0446 | |
Main factors | ||||||||||
- | 253 | 3.15 | 1.002 | 670 | 638 | 161 | 5.26 | 4.43 | 0.790 | |
+ | 244 | 2.70 | 1.017 | 636 | 656 | 145 | 5.20 | 3.70 | 0.844 | |
- | 250 | 2.90 | 1.007 | 645 | 656 | 155 | 5.21 | 4.48 | 0.783 | |
+ | 247 | 2.95 | 1.013 | 661 | 638 | 151 | 5.24 | 3.35 | 0.860 | |
p-value | ||||||||||
Rye | <0.001 | <0.001 | 0.627 | 0.196 | 0.415 | <0.001 | 0.346 | 0.138 | 0.317 | |
Enzyme | 0.009 | 0.457 | 0.865 | 0.552 | 0.422 | 0.103 | 0.694 | 0.104 | 0.089 | |
Rye × enzyme | <0.001 | 0.993 | 0.003 | 0.091 | 0.053 | 0.133 | <0.001 | 0.095 | 0.001 |
Factors 1 | Cracking Force, N | Deformation, % | Work to Cracking, N·mm | Stiffness, N/mm | Firmness, N/mm | Young’s Modulus, GPa | Toughness, N/mm3/2 | |
---|---|---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | |||||||
Treatment 4 | ||||||||
- | - | 48.9 | 1.55 b | 11.4 | 166 | 58.2 | 15.9 | 309 |
+ | 49.4 | 1.39 a | 10.8 | 169 | 61.9 | 18.4 | 342 | |
+ | - | 47.7 | 1.39 a | 10.3 | 162 | 60.7 | 17.3 | 328 |
+ | 45.0 | 1.46 ab | 10.1 | 155 | 55.0 | 17.4 | 328 | |
SEM 5 | 2.36 | 0.045 | 0.56 | 6.8 | 3.10 | 0.80 | 16.1 | |
Main factors | ||||||||
- | 49.1 | 1.43 | 11.1 | 167 | 60.1 | 17.2 | 325 | |
+ | 46.4 | 1.47 | 10.3 | 156 | 57.8 | 17.4 | 328 | |
- | 48.3 | 1.47 | 10.8 | 164 | 59.4 | 16.6 | 318 | |
+ | 47.2 | 1.42 | 10.5 | 159 | 58.5 | 17.9 | 335 | |
p-value | ||||||||
Rye | 0.245 | 0.353 | 0.133 | 0.186 | 0.480 | 0.794 | 0.880 | |
Enzyme | 0.634 | 0.304 | 0.489 | 0.765 | 0.751 | 0.102 | 0.315 | |
Rye × enzyme | 0.495 | 0.016 | 0.748 | 0.462 | 0.131 | 0.133 | 0.318 |
Factors 1 | Cracking Force, N | Deformation, % | Work to Cracking, N·mm | Stiffness, N/mm | Firmness, N/mm | Young’s Modulus, GPa | |
---|---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | ||||||
Treatment 4 | |||||||
- | - | 44.1 | 2.22 a | 13.0 | 105 | 44.8 | 11.3 |
+ | 44.8 | 2.28 ab | 12.8 | 105 | 44.5 | 10.6 | |
+ | - | 45.7 | 2.32 b | 13.3 | 103 | 45.3 | 10.7 |
+ | 44.3 | 2.25 a | 12.5 | 105 | 45.3 | 11.0 | |
SEM 5 | 1.74 | 0.030 | 0.43 | 6.1 | 1.75 | 0.26 | |
Main factors | |||||||
- | 44.4 | 2.25 | 12.9 | 105 | 44.6 | 11.0 | |
+ | 45.0 | 2.28 | 12.9 | 104 | 45.3 | 10.8 | |
- | 44.9 | 2.28 | 13.1 | 104 | 45.0 | 11.0 | |
+ | 44.5 | 2.27 | 12.6 | 105 | 44.9 | 10.8 | |
p-value | |||||||
Rye | 0.757 | 0.275 | 0.984 | 0.902 | 0.701 | 0.655 | |
Enzyme | 0.830 | 0.837 | 0.249 | 0.903 | 0.956 | 0.384 | |
Rye × enzyme | 0.561 | 0.028 | 0.439 | 0.840 | 0.921 | 0.071 |
Factors 1 | Weight, g | Length, mm | CI, % | AREA, mm2 | CSMI, mm4 | BMD, g/cm2 | BMC, g | Ash, % | |
---|---|---|---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | ||||||||
Treatment 4 | |||||||||
- | - | 11.2 | 119 | 24.5 | 19.3 | 137 | 0.223 | 2.44 | 31.7 a |
+ | 11.2 | 118 | 28.9 | 21.0 | 127 | 0.290 | 3.06 | 34.7 b | |
+ | - | 11.3 | 122 | 29.9 | 21.6 | 127 | 0.196 | 2.13 | 32.3 ab |
+ | 11.4 | 120 | 34.5 | 23.9 | 144 | 0.221 | 2.41 | 29.7 a | |
SEM 5 | 0.17 | 0.7 | 1.53 | 1.24 | 11.7 | 0.0160 | 0.173 | 0.71 | |
Main factors | |||||||||
- | 11.2 | 119 | 26.7 | 20.1 | 132 | 0.256 | 2.75 | 32.2 | |
+ | 11.3 | 121 | 32.2 | 22.8 | 136 | 0.208 | 2.27 | 30.0 | |
- | 11.2 | 121 | 27.2 | 20.4 | 132 | 0.209 | 2.28 | 32.0 | |
+ | 11.3 | 119 | 31.7 | 22.4 | 135 | 0.255 | 2.73 | 32.2 | |
p-value | |||||||||
Rye | 0.411 | <0.001 | <0.001 | 0.039 | 0.098 | 0.005 | 0.007 | 0.003 | |
Enzyme | 0.591 | 0.048 | 0.005 | 0.111 | 0.799 | 0.006 | 0.013 | 0.764 | |
Rye × enzyme | 0.740 | 0.705 | 0.912 | 0.799 | 0.255 | 0.198 | 0.329 | <0.001 |
Factors 1 | Ca, mg/g | P, mg/g | Mg, mg/g | Zn, µg/g | Fe, µg/g | Mn, µg/g | Cu, µg/g | Cr, µg/g | Ca/P | |
---|---|---|---|---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | |||||||||
Treatment 4 | ||||||||||
- | - | 311 | 139 | 4.42 | 252 | 57.6 | 7.74 | 5.78 | 5.51 a | 2.24 |
+ | 320 | 140 | 4.81 | 257 | 63.8 | 8.78 | 5.57 | 5.79 b | 2.28 | |
+ | - | 314 | 139 | 4.44 | 231 | 60.4 | 7.29 | 6.64 | 5.51 a | 2.26 |
+ | 319 | 139 | 4.79 | 260 | 62.4 | 8.64 | 5.79 | 5.54 a | 2.29 | |
SEM 5 | 1.2 | 0.6 | 0.051 | 8.9 | 3.84 | 0.365 | 0.497 | 0.038 | 0.014 | |
Main factors | ||||||||||
- | 315 | 140 | 4.62 | 254 | 60.7 | 8.16 | 5.67 | 5.65 | 2.26 | |
+ | 317 | 139 | 4.61 | 245 | 61.4 | 7.97 | 6.21 | 5.52 | 2.28 | |
- | 312 | 139 | 4.43 | 242 | 59.1 | 7.41 | 6.21 | 5.51 | 2.25 | |
+ | 319 | 140 | 4.80 | 258 | 63.1 | 8.71 | 5.68 | 5.67 | 2.29 | |
p-value | ||||||||||
Rye | 0.204 | 0.384 | 0.947 | 0.319 | 0.848 | 0.601 | 0.283 | 0.002 | 0.238 | |
Enzyme | <0.001 | 0.390 | <0.001 | 0.072 | 0.290 | <0.001 | 0.293 | <0.001 | 0.010 | |
Rye × enzyme | 0.106 | 0.330 | 0.753 | 0.186 | 0.588 | 0.878 | 0.523 | 0.002 | 0.644 |
Factors 1 | Yield Load, N | Ultimate Load, N | Elastic Energy, mJ | Work to Fracture, mJ | Stiffness, N/mm | |
---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | |||||
Treatment 4 | ||||||
- | - | 104 | 149 | 21.0 | 98 a | 246 |
+ | 119 | 182 | 24.0 | 259 b | 260 | |
+ | - | 97 | 156 | 21.4 | 106 a | 235 |
+ | 110 | 174 | 22.8 | 115 a | 274 | |
SEM 5 | 4.8 | 9.5 | 1.52 | 12.8 | 16.6 | |
Main factors | ||||||
- | 120 | 166 | 22.5 | 179 | 253 | |
+ | 122 | 165 | 22.1 | 111 | 254 | |
- | 100 | 152 | 21.2 | 102 | 241 | |
+ | 114 | 178 | 23.4 | 187 | 267 | |
p-value | ||||||
Rye | 0.096 | 0.992 | 0.775 | <0.001 | 0.943 | |
Enzyme | 0.005 | 0.009 | 0.157 | <0.001 | 0.118 | |
Rye × enzyme | 0.795 | 0.455 | 0.595 | <0.001 | 0.468 |
Factors 1 | Young’s Modulus, MPa | Yield Strain, % | Ultimate Strain, % | Yield Stress, MPA | Ultimate Stress, MPa | |
---|---|---|---|---|---|---|
Rye 2 | Enzyme 3 | |||||
Treatment | ||||||
- | - | 105 | 9.82 | 25.4 | 11.2 | 17.3 |
+ | 124 | 9.49 | 32.2 | 13.7 | 20.8 | |
+ | - | 93 | 9.51 | 24.8 | 11.1 | 17.5 |
+ | 98 | 9.32 | 24.8 | 11.2 | 17.7 | |
SEM 4 | 11.7 | 0.335 | 2.57 | 0.68 | 1.40 | |
Main factors | ||||||
- | 138 | 9.65 | 28.8 | 12.4 | 19.1 | |
+ | 120 | 9.41 | 24.8 | 11.1 | 17.6 | |
- | 122 | 9.67 | 25.1 | 11.1 | 17.4 | |
+ | 135 | 9.40 | 28.5 | 12.4 | 19.3 | |
p-value | ||||||
Rye | 0.121 | 0.478 | 0.130 | 0.060 | 0.311 | |
Enzyme | 0.310 | 0.431 | 0.199 | 0.057 | 0.185 | |
Rye × enzyme | 0.516 | 0.838 | 0.194 | 0.084 | 0.238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muszyński, S.; Kasperek, K.; Świątkiewicz, S.; Arczewska-Włosek, A.; Wiącek, D.; Donaldson, J.; Dobrowolski, P.; Arciszewski, M.B.; Valverde Piedra, J.L.; Krakowiak, D.; et al. Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat–Corn Diet. Vet. Sci. 2022, 9, 683. https://doi.org/10.3390/vetsci9120683
Muszyński S, Kasperek K, Świątkiewicz S, Arczewska-Włosek A, Wiącek D, Donaldson J, Dobrowolski P, Arciszewski MB, Valverde Piedra JL, Krakowiak D, et al. Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat–Corn Diet. Veterinary Sciences. 2022; 9(12):683. https://doi.org/10.3390/vetsci9120683
Chicago/Turabian StyleMuszyński, Siemowit, Kornel Kasperek, Sylwester Świątkiewicz, Anna Arczewska-Włosek, Dariusz Wiącek, Janine Donaldson, Piotr Dobrowolski, Marcin B. Arciszewski, Jose Luis Valverde Piedra, Dominika Krakowiak, and et al. 2022. "Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat–Corn Diet" Veterinary Sciences 9, no. 12: 683. https://doi.org/10.3390/vetsci9120683
APA StyleMuszyński, S., Kasperek, K., Świątkiewicz, S., Arczewska-Włosek, A., Wiącek, D., Donaldson, J., Dobrowolski, P., Arciszewski, M. B., Valverde Piedra, J. L., Krakowiak, D., Kras, K., Śliwa, J., & Schwarz, T. (2022). Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat–Corn Diet. Veterinary Sciences, 9(12), 683. https://doi.org/10.3390/vetsci9120683