Utilization of Mao (Antidesma thwaitesianum Muell. Arg.) Pomace Meal to Substitute Rice Bran on Feed Utilization and Rumen Fermentation in Tropical Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Animals, Treatments, and Experimental Design
2.3. Data Collection and Sampling Procedures
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of the Diets
3.2. Feed Intake and Nutrient Digestibility
3.3. Ruminal Fermentation Characteristics
4. Discussion
4.1. The Chemical Composition of Diets
4.2. Feed Intake and Nutrient Digestibility
4.3. Rumen Fermentation Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcos, C.N.; Carro, M.D.; Yepes, J.F.; Haro, A.; Romero-Huelva, M.; Molina-Alcaide, E. Effects of agroindustrial by-product supplementation on dairy goat milk characteristics, nutrient utilization, ruminal fermentation, and methane production. J. Dairy Sci. 2020, 103, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Gunun, P.; Gunun, N.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Sirilaophaisan, S.; Wachirapakorn, C.; Kang, S. In vitro rumen fermentation and methane production as affected by rambutan peel powder. J. Appl. Anim. Res. 2018, 46, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Spaggiari, M.; Dall’Asta, C.; Galaverna, G.; del Castillo Bilbao, M.D. Rice bran by-product: From valorization strategies to nutritional perspectives. Foods 2021, 10, 85. [Google Scholar] [CrossRef]
- Kim, S.; Cho, J.H.; Kim, H.B.; Song, M. Rice as alternative feed ingredient in swine diets. J. Anim. Sci. Technol. 2021, 63, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Criscioni, P.; Fernández, C. Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions, and milk performance of Murciano-Granadina goats. J. Dairy Sci. 2016, 99, 280–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinchan, P.; Sirijariyawat, A.; Prommakool, A.; Phattayakorn, K.; Peungsomphane, S.; Tayuan, C. Antidesma thwaitesianum Müll. Arg. fruit juice, its phytochemical contents, antimicrobial activity, and application in chiffon cake. Int. J. Food Sci. 2022, 2022, 5183562. [Google Scholar] [CrossRef] [PubMed]
- Puangpronpitag, D.; Yongvanit, P.; Boonsiri, P.; Suttajit, M.; Areejitranusorn, P.; Na, H.K.; Surh, Y.J. Molecular mechanism underlying anti-apoptotic and anti-inflammatory effects of mamao (Antidesma thwaitesianum Müll. Arg.) polyphenolics in human breast epithelial cells. Food Chem. 2011, 127, 1450–1458. [Google Scholar] [CrossRef]
- Gunun, P.; Gunun, N.; Khejornsart, P.; Ouppamong, T.; Cherdthong, A.; Wanapat, M.; Sililaophaisan, S.; Yuangklang, C.; Polyorach, S.; Kenchaiwong, W.; et al. Effects of Antidesma thwaitesianum Muell. Arg. pomace as a source of plant secondary compounds on digestibility, rumen environment, hematology, and milk production in dairy cows. Anim. Sci. J. 2019, 90, 372–381. [Google Scholar] [CrossRef]
- Lokaewmanee, K.; Promdee, P. Mao pomace on carcass and meat quality of broiler. Int. J. Poult. Sci. 2018, 17, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Lokaewmanee, K. Effects of mao pomace powder as a dietary supplement on the production performance and egg quality in laying hens. Int. J. Poult. Sci. 2016, 15, 139–143. [Google Scholar] [CrossRef]
- Sirilaophaisan, S.; Gunun, P.; Panyakaew, P.; Kesorn, P.; Kenchaiwong, W. Effects of the replacement of rice bran with yeast fermented mao pomace on growth performance and carcass quality in broiler chicken. J. Agric. Res. Ext. 2018, 35, 31–40. [Google Scholar]
- Gunun, P.; Wanapat, M.; Gunun, N.; Cherdthong, A.; Sirilaophaisan, S.; Kaewwongsa, W. Effects of condensed tannins in mao (Antidesma thwaitesianum Muell. Arg.) seed meal on rumen fermentation characteristics and nitrogen utilization in goats. Asian Australas. J. Anim. Sci. 2016, 29, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Udén, P.; Robinson, P.H.; Wiseman, J. Use of detergent system terminology and criteria for submission of manuscripts on new, or revised, analytical methods as well as descriptive information on feed analysis and/or variability. Anim. Feed Sci. Technol. 2005, 118, 181–186. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Burns, R.E. Method for estimation of tannin in the grain sorghum. Agron. J. 1971, 163, 511–512. [Google Scholar] [CrossRef]
- Hall, M.B. Calculation of Non-Neutral Detergent Fiber Carbohydrate Content of Feeds that Contain Non-Protein Nitrogen; Fact Sheet DS97; University of Florida: Gainesville, FL, USA, 2001. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Cai, Y. Analysis method for silage. In Field and Laboratory Methods for Grassland Science; Japanese Society of Grassland Science, Ed.; Tosho Printing Co., Ltd.: Tokyo, Japan, 2004; pp. 279–282. [Google Scholar]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Casas, G.A.; Overholt, M.F.; Dilger, A.C.; Boler, D.D.; Stein, H.H. Effects of full fat rice bran and defatted rice bran on growth performance and carcass characteristics of growing-finishing pigs. J. Anim. Sci. 2018, 96, 2293–2309. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Naumann, H.D.; Tedeschi, L.O.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Callaway, T.R.; Lillehoj, H.; Chuanchuen, R.; Gay, C.G. Alternatives to antibiotics: A symposium on the challenges and solutions for animal health and production. Antibiotics 2021, 10, 471. [Google Scholar] [CrossRef]
- Buccioni, A.; Pallara, G.; Pastorelli, R.; Bellini, L.; Cappucci, A.; Mannelli, F.; Minieri, S.; Roscini, V.; Rapaccini, S.; Mele, M.; et al. Effect of dietary chestnut or quebracho tannin supplementation on microbial community and fatty acid profile in the rumen of dairy ewes. Biomed Res. Int. 2017, 2017, 4969076. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
- Nunoi, A.; Wanapat, M.; Foiklang, S.; Ampapon, T.; Viennasay, B. Effects of replacing rice bran with tamarind seed meal in concentrate mixture diets on the changes in ruminal ecology and feed utilization of dairy steers. Trop. Anim. Health Prod. 2021, 51, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian Australas. J. Anim. Sci. 2003, 16, 463–472. [Google Scholar] [CrossRef]
- Gunun, N.; Sanjun, I.; Kaewpila, C.; Foiklang, S.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Khota, W.; Kimprasit, T.; Kesorn, P.; et al. Effect of dietary supplementation of hydrolyzed yeast on growth performance, digestibility, rumen fermentation, and hematology in growing beef cattle. Animals 2022, 12, 2473. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Wanapat, M.; Wachirapakorn, C. Effects of urea–calcium mixture in concentrate containing high cassava chip on feed intake, rumen fermentation and performance of lactating dairy cows fed on rice straw. Livest. Sci. 2011, 136, 76–84. [Google Scholar] [CrossRef]
- Gunun, N.; Wanapat, M.; Gunun, P.; Cherdthong, A.; Khejornsart, P.; Kang, S. Effect of treating sugarcane bagasse with urea and calcium hydroxide on feed intake, digestibility, and rumen fermentation in beef cattle. Trop. Anim. Health Prod. 2016, 48, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Hartinger, T.; Gresner, N.; Südekum, K.H. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J. Anim. Sci. Biotechnol. 2018, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Aufrère, J.; Dudilieu, M.; Andueza, D.; Poncet, C.; Baumont, R. Mixing sainfoin and lucerne to improve the feed value of legumes fed to sheep by the effect of condensed tannins. Animal 2013, 7, 82–92. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.J.; Ates, S.; MacAdam, J.W. Non-fiber carbohydrates in forages and their influence on beef production systems. Front. Sustain. Food Syst. 2021, 5, 566338. [Google Scholar] [CrossRef]
- Ren, H.; Su, X.; Bai, H.; Yang, Y.; Wang, H.; Dan, Z.; Lu, J.; Wu, S.; Cai, C.; Cao, Y.; et al. Specific enrichment of microbes and increased ruminal propionate production: The potential mechanism underlying the high energy efficiency of Holstein heifers fed steam-flaked corn. AMB Express 2019, 9, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanza, Y.R.; Fitri, A.; Suwignyo, B.; Elfahmi; Hidayatik, N.; Kumalasari, N.R.; Irawan, A.; Jayanegara, A. The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals 2021, 11, 3317. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Foiklang, S.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of supplementation of Piper sarmentosum leaf powder on feed efficiency, rumen ecology and rumen protozoal concentration in Thai native beef cattle. Animals 2019, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.-C.; Wang, W.-K.; Zhang, F.; Li, W.-J.; Wang, Y.-L.; Lv, L.-K.; Yang, H.-J. Dietary cysteamine supplementation remarkably increased feed efficiency and shifted rumen fermentation toward glucogenic propionate production via enrichment of Prevotella in feedlot lambs. Microorganisms 2022, 10, 1105. [Google Scholar] [CrossRef]
Mao Pomace Meal Replacing Rice Bran, % Dry Matter | ||||
---|---|---|---|---|
Item | 0 | 33 | 67 | 100 |
Ingredient, % dry matter | ||||
Cassava chip | 60.5 | 60.5 | 60.5 | 60.5 |
Rice bran | 21.0 | 14.0 | 7.0 | 0.0 |
Mao pomace | 0.0 | 7.0 | 14.0 | 21.0 |
Soybean meal | 12.9 | 12.9 | 12.9 | 12.9 |
Molasses | 2.0 | 2.0 | 2.0 | 2.0 |
Urea | 1.6 | 1.6 | 1.6 | 1.6 |
Mineral and vitamin mixture | 1.0 | 1.0 | 1.0 | 1.0 |
Salt | 0.5 | 0.5 | 0.5 | 0.5 |
Sulfur | 0.5 | 0.5 | 0.5 | 0.5 |
Mao Pomace Meal Replacing Rice Bran, % Dry Matter | Rice Straw | Mao Pomace Meal | ||||
---|---|---|---|---|---|---|
Item | 0 | 33 | 67 | 100 | ||
Chemical composition | ||||||
Dry matter, % | 90.9 | 90.7 | 89.3 | 90.7 | 93.3 | 92.5 |
Organic matter, % dry matter | 94.0 | 94.3 | 94.6 | 95.0 | 87.5 | 94.3 |
Crude protein, % dry matter | 13.3 | 13.3 | 13.2 | 13.5 | 2.0 | 11.2 |
Ether extract, % dry matter | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 1.4 |
Neutral detergent fiber, % dry matter | 30.2 | 32.4 | 34.4 | 35.4 | 70.0 | 53.3 |
Acid detergent fiber, % dry matter | 18.0 | 19.1 | 20.8 | 21.9 | 56.1 | 41.9 |
Non-fiber carbohydrates, % dry matter | 48.0 | 46.6 | 45.5 | 45.1 | 15.0 | 28.4 |
Ash, % dry matter | 6.0 | 5.7 | 5.4 | 5.0 | 12.5 | 5.7 |
Condensed tannins, % dry matter | 0.0 | 0.7 | 1.3 | 2.0 | - | 9.4 |
Price (USD/kg) | 0.31 | 0.29 | 0.27 | 0.25 | - | - |
Mao Pomace Meal Replacing Rice Bran, % Dry Matter | Contrast | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0 | 33 | 67 | 100 | SEM | Linear | Quadratic | Cubic |
Dry matter intake | ||||||||
Rice straw | ||||||||
kg/d | 3.0 | 2.8 | 2.6 | 2.5 | 0.21 | 0.36 | 0.93 | 0.93 |
%BW | 1.5 | 1.3 | 1.3 | 1.3 | 0.08 | 0.09 | 0.54 | 0.77 |
g/kg BW0.75 | 55.7 | 50.5 | 48.7 | 46.8 | 4.12 | 0.14 | 0.68 | 0.85 |
Concentrate | ||||||||
kg/d | 1.0 | 1.0 | 1.0 | 1.0 | 0.05 | 0.80 | 0.94 | 0.78 |
%BW | 0.5 | 0.5 | 0.5 | 0.5 | 0.01 | 0.55 | 0.14 | 0.16 |
g/kg BW0.75 | 19.0 | 17.9 | 18.5 | 18.3 | 0.53 | 0.51 | 0.38 | 0.25 |
Total intake | ||||||||
kg/d | 4.0 | 3.7 | 3.6 | 3.4 | 0.25 | 0.42 | 0.93 | 0.90 |
%BW | 2.0 | 1.8 | 1.8 | 1.7 | 0.12 | 0.06 | 0.45 | 0.63 |
g/kg BW0.75 | 74.7 | 68.4 | 67.2 | 65.1 | 4.64 | 0.13 | 0.62 | 0.75 |
Nutrient intake, kg/d | ||||||||
Organic matter | 3.6 | 3.4 | 3.3 | 3.1 | 0.22 | 0.43 | 0.95 | 0.91 |
Crude protein | 0.2 | 0.2 | 0.2 | 0.2 | 0.01 | 0.67 | 0.72 | 0.75 |
Ether extract | 0.04 | 0.03 | 0.03 | 0.02 | 0.001 | <0.01 | 0.42 | 0.17 |
Neutral detergent fiber | 2.4 | 2.3 | 2.2 | 2.1 | 0.18 | 0.42 | 0.93 | 0.94 |
Acid detergent fiber | 1.9 | 1.7 | 1.7 | 1.6 | 0.15 | 0.37 | 0.91 | 0.88 |
Non-fiber carbohydrates | 0.9 | 0.9 | 0.9 | 0.8 | 0.05 | 0.49 | 0.90 | 0.95 |
Mao Pomace Meal Replacing Rice Bran, % Dry Matter | Contrast | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0 | 33 | 67 | 100 | SEM | Linear | Quadratic | Cubic |
Digestibility coefficients, % | ||||||||
Dry matter | 64.9 | 63.3 | 61.5 | 60.2 | 0.56 | 0.01 | 0.90 | 0.90 |
Organic matter | 66.9 | 65.6 | 63.3 | 62.0 | 0.56 | <0.01 | 0.88 | 0.82 |
Crude protein | 60.6 | 58.0 | 56.8 | 54.1 | 2.31 | 0.81 | 0.42 | 0.62 |
Ether extract | 76.0 | 72.2 | 59.6 | 56.5 | 3.29 | 0.04 | 0.79 | 0.42 |
Neutral detergent fiber | 59.2 | 58.7 | 55.4 | 53.8 | 3.14 | 0.06 | 0.79 | 0.62 |
Acid detergent fiber | 57.7 | 56.6 | 53.0 | 53.1 | 2.12 | 0.14 | 0.82 | 0.60 |
Mao Pomace Meal Replacing Rice Bran, % Dry Matter | Contrast | |||||||
---|---|---|---|---|---|---|---|---|
Item | 0 | 33 | 67 | 100 | SEM | Linear | Quadratic | Cubic |
pH | ||||||||
0 h post feeding | 6.9 | 6.8 | 6.9 | 7.0 | 0.40 | 0.27 | 0.15 | 0.45 |
4 h post feeding | 6.8 | 6.7 | 6.6 | 6.5 | 0.15 | 0.06 | 0.93 | 0.92 |
Ammonia–nitrogen (mg/dL) | ||||||||
0 h post feeding | 19.3 | 19.8 | 18.7 | 18.7 | 0.34 | 0.36 | 0.67 | 0.36 |
4 h post feeding | 20.1 | 21.0 | 20.1 | 19.8 | 0.62 | 0.77 | 0.65 | 0.65 |
Total volatile fatty acid (mM) | ||||||||
0 h post feeding | 48.7 | 47.2 | 41.3 | 45.3 | 1.72 | 0.32 | 0.44 | 0.38 |
4 h post feeding | 49.9 | 53.3 | 53.1 | 51.2 | 0.81 | 0.60 | 0.14 | 0.80 |
Volatile fatty acid (mol/100 mol) | ||||||||
Acetate | ||||||||
0 h post feeding | 67.9 | 67.5 | 66.6 | 61.4 | 0.96 | 0.04 | 0.26 | 0.68 |
4 h post feeding | 59.8 | 61.0 | 62.3 | 58.2 | 1.32 | 0.55 | 0.08 | 0.39 |
Propionate | ||||||||
0 h post feeding | 20.9 | 21.1 | 21.4 | 26.8 | 1.08 | 0.02 | 0.29 | 0.64 |
4 h post feeding | 28.8 | 27.2 | 25.3 | 28.3 | 1.43 | 0.62 | 0.17 | 0.48 |
Butyrate | ||||||||
0 h post feeding | 11.2 | 11.4 | 11.7 | 11.8 | 0.19 | 0.23 | 0.88 | 0.81 |
4 h post feeding | 11.4 | 11.8 | 11.7 | 13.5 | 0.42 | 0.13 | 0.41 | 0.53 |
Acetate to propionate ratio | ||||||||
0 h post feeding | 3.4 | 3.3 | 3.1 | 2.4 | 0.17 | 0.02 | 0.47 | 0.69 |
4 h post feeding | 2.2 | 2.3 | 2.4 | 2.1 | 0.07 | 0.89 | 0.12 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunun, N.; Khejornsart, P.; Polyorach, S.; Kaewpila, C.; Kimprasit, T.; Sanjun, I.; Cherdthong, A.; Wanapat, M.; Gunun, P. Utilization of Mao (Antidesma thwaitesianum Muell. Arg.) Pomace Meal to Substitute Rice Bran on Feed Utilization and Rumen Fermentation in Tropical Beef Cattle. Vet. Sci. 2022, 9, 585. https://doi.org/10.3390/vetsci9110585
Gunun N, Khejornsart P, Polyorach S, Kaewpila C, Kimprasit T, Sanjun I, Cherdthong A, Wanapat M, Gunun P. Utilization of Mao (Antidesma thwaitesianum Muell. Arg.) Pomace Meal to Substitute Rice Bran on Feed Utilization and Rumen Fermentation in Tropical Beef Cattle. Veterinary Sciences. 2022; 9(11):585. https://doi.org/10.3390/vetsci9110585
Chicago/Turabian StyleGunun, Nirawan, Pichad Khejornsart, Sineenart Polyorach, Chatchai Kaewpila, Thachawech Kimprasit, Ittipol Sanjun, Anusorn Cherdthong, Metha Wanapat, and Pongsatorn Gunun. 2022. "Utilization of Mao (Antidesma thwaitesianum Muell. Arg.) Pomace Meal to Substitute Rice Bran on Feed Utilization and Rumen Fermentation in Tropical Beef Cattle" Veterinary Sciences 9, no. 11: 585. https://doi.org/10.3390/vetsci9110585