Effects of Feeding Housefly (Musca domestica) Larvae on the Butchery Skills and Meat Sensory Characteristics of Local Chickens in Niger
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Housing and Rearing Conditions
2.2. Chicken Diets
2.3. Growth Monitoring and Slaughter
2.4. Butchery Skills and Sensory Characteristics Measurement
2.5. Statistical Analysis
- −
- Yij is BW or ADG or FCR of animal fed diet j at age i.
- −
- µ is the overall mean.
- −
- Ai is the fixed effect of age (i: 3, 6, 14).
- −
- Dj is the fixed effect of diet (j: LFD, 25DL, 50DL, 25FL, 50FL).
- −
- (A*D)ij represent two-way interactions between age i and diet j.
- −
- eij is the random residual effect for animal fed diet j at age i.
- −
- Y’i’j is the butchery skills parameters (pH1, pH24, Carcass yield, Feet, Head, Heart, Empty gizzard, Gizzard, Liver, Proventriculus, Spleen, Breast drip loss 24h, Thigh-and-drumstick drip loss 24 h, Wings drip loss 24 h, Breast drip loss 72 h, Thigh-and-drumstick drip loss 72 h, Wings drip loss 72 h, Breast cooking loss, Thigh-and-drumstick cooking loss, wings cooking loss, Breast total loss, Thigh-and-drumstick total loss, Wings total loss) of animal of sex i’ (i’: female, male) fed diet j.
- −
- µ’ is the overall mean for butchery skills.
- −
- Si’ is the fixed effect of sex.
- −
- e’i’j is the random residual effect for animal of sex i’, fed diet j.
- −
- Yj” is sensory parameters (Whiteness, Redness, Yellowness, The smell, Juicy, Tasty, Tender, Overall assessment).
- −
- µ” is overall means for these sensory parameters.
- −
- Dj is the fixed effects of diet.
- −
- e”j is the random residual effect for meat cutouts of animal fed diet j.
3. Results
3.1. Effects of Housefly Larvae on Growth Performance, Buchery Skills and Sensory Characteristics
3.2. Effects of Housefly Larvae Substitution Rate and Physical State on Growth Parameters
3.3. Effects of Housefly Larvae Substitution Rate and Physical State on Butchery Skills Parameters
3.4. Effects of Housefly Larvae Substitution Rate and Physical State on Sensory Characteristics of Locale Chickens Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tacher, G.; Letenneur, L. Livestock sector in sub-Saharan Africa, from the independence’s to 2020. I. Sub-Saharan Africa in the world exchanges and livestock sector’s trend. Rev. D’élevage Méd. Vét. Pays Trop. 1999, 52, 279–290. [Google Scholar] [CrossRef]
- OECD. FAO 6 Meat. In OECD-FAO Agricultural Outlook 2021–2030; OECD-FAO Agricultural Outlook; OECD: Rome, Italy, 2021; ISBN 978-92-64-43607-7. [Google Scholar]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and Human Health—Current Knowledge and Research Gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef] [PubMed]
- Lebret, B.; Picard, B. The Main Components of Carcasses and Meat Quality in Various Animal Species. INRA Prod. Anim. 2020, 28, 93–98. [Google Scholar] [CrossRef]
- Kim, S.R.; Kim, K.; Lee, S.A.; Kwon, S.O.; Lee, J.-K.; Keum, N.; Park, S.M. Effect of Red, Processed, and White Meat Consumption on the Risk of Gastric Cancer: An Overall and Dose–Response Meta-Analysis. Nutrients 2019, 11, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC. Red Meat and Processed Meat; International Agency for Research on Cancer: Lyon, France, 2018; ISBN 978-92-832-0180-9. [Google Scholar]
- Rosset, R. Perishable foodstuffs, freezing and quality of foods. Particular case for meat. Bull. Académie Vét. Fr. 1995, 148, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M. Factors Influencing Fatty Acids in Meat and the Role of Antioxidants in Improving Meat Quality. Br. J. Nutr. 1997, 78, S49–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonaiya, E.B.; Swan, S.E.J. Small-Scale Poultry Production; Manuel FAO de Production et Santé Animale; FAO: Rome, Italy, 2004; p. 120. [Google Scholar]
- Moussa, H.O.; Keambou, T.C.; Hima, K.; Issa, S.; Motsa’a, S.J.; Bakasso, Y. Indigenous Chicken Production in Niger. Vet. Anim. Sci. 2019, 7, 100040. [Google Scholar] [CrossRef] [PubMed]
- Ayssiwede, S.B.; Dieng, A.; Houinato, M.R.B.; Chrysostome, C.; Hornick, J.-L.; Missohou, A. Indigenous Chickens Breeding in Senegal and in Sub-Saharan Africa: Current Status and Constraints. Ann. Méd. Vét. 2013, 157, 103–119. [Google Scholar]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107595-1. [Google Scholar]
- Moula, N.; Detilleux, J. A Meta-Analysis of the Effects of Insects in Feed on Poultry Growth Performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awoniyi, T.A.M.; Aletor, V.A.; Aina, J.M. Performance of Broiler-Chickens Fed on Maggot Meal in Place of Fishmeal. Int. J. Poult. Sci. 2003, 2, 271–274. [Google Scholar]
- Khan, M.; Chand, N.; Khan, S.; Khan, R.; Sultan, A. Utilizing the House Fly (Musca domestica) Larva as an Alternative to Soybean Meal in Broiler Ration During the Starter Phase. Rev. Bras. Ciênc. Avícola 2018, 20, 9–14. [Google Scholar] [CrossRef]
- Adeniji, A.A. Effect of Replacing Groundnut Cake with Maggot Meal in the Diet of Broilers. Int. J. Poult. Sci. 2007, 6, 822–825. [Google Scholar] [CrossRef]
- Scollan, N.D.; Price, E.M.; Morgan, S.A.; Huws, S.A.; Shingfield, K.J. Can We Improve the Nutritional Quality of Meat? Proc. Nutr. Soc. 2017, 76, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamani, B.; Moula, N.; Taffa, A.G.; Leyo, I.H.; Mahamadou, C.; Detilleux, J.; Van, Q.C.D. Effect of Housefly (Musca domestica) Larvae on the Growth Performance and Carcass Characteristics of Local Chickens in Niger. Vet. World 2022, 15, 1738–1748. [Google Scholar] [CrossRef] [PubMed]
- Leyo, I.H.; Ousmane, Z.M.; Francis, F.; Megido, R.C. Optimal Substrates for Producing Housefly Larvae with High Nutritional Composition for Sustainable Poultry Feed in Niger. J. Insects Food Feed 2022, 1–12. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994; Volume 9, ISBN 978-0-309-04892-7.
- Brah, N.; Houndonougbo, F.M.; Issa, S.; Chrysostome, A.A.M. Tableur Ouest Africain de Formulation d’Aliments de Volailles (TOAFA–Volaille). Int. J. Biol. Chem. Sci. 2019, 13, 1308–1320. [Google Scholar] [CrossRef]
- Heuze, V.; Tran, G. Housefly Maggot Meal. Available online: https://www.feedipedia.org/node/671 (accessed on 20 August 2021).
- Niger Republic. LOI No 2004-048 Du 30 Juin 2004 Portant Loi Cadre Relative à L’élevage; Republique du Niger: Niamey, Niger, 2004.
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Chodová, D.; Tůmová, E. Insects in Chicken Nutrition. A Review. Agron. Res. 2020, 18, 376–392. [Google Scholar] [CrossRef]
- Pieterse, E.; Pretorius, Q.; Hoffman, L.C.; Drew, D.W. The Carcass Quality, Meat Quality and Sensory Characteristics of Broilers Raised on Diets Containing Either Musca domestica Larvae Meal, Fish Meal or Soya Bean Meal as the Main Protein Source. Anim. Prod. Sci. 2014, 54, 622. [Google Scholar] [CrossRef]
- Radulović, S.; Pavlović, M.; Šefer, D.; Katoch, S.; Hadži-Milić, M.; Jovanović, D.; Grdović, S.; Marković, R. Effects of Housefly Larvae (Musca domestica) Dehydrated Meal on Production Performances and Sensory Properties of Broiler Meat. Thai J. Vet. Med. 2018, 48, 63–70. [Google Scholar]
- Osei Mensah, J.; Etuah, S.; Musah, E.F.; Botchwey, F.; Oppong Adjei, L.; Owusu, K. Consumers’ Preferences and Willingness to Pay for Domestic Chicken Cut Parts in Ghana: Evidence from the Kumasi Metropolis. J. Agribus. Dev. Emerg. Econ. 2022, 12, 126–141. [Google Scholar] [CrossRef]
- Chen, L.; Cai, T.; Zhao, C.; Bai, S.; Shu, G.; Wen, C.; Xu, Q.; Peng, X. Atmospheric Ammonia Causes Histopathological Lesions, Cell Cycle Blockage and Apoptosis of Spleen in Chickens. Can. J. Anim. Sci. 2022, 102, 448–456. [Google Scholar] [CrossRef]
- Jezie, A.; Acorda, D.; Bernardo, F.A.E.M.; Linnuel, S. Lorico Ultrasonographic Imaging of the Heart, Liver, Gallbladder, Spleen, Proventriculus and Ventriculus in Layer Chickens at Different Ages. Philipp. J. Vet. Anim. Sci. 2011, 37, 45–56. [Google Scholar]
- Riddell, C. The Influence of Fiber in the Diet on Dilation (Hypertrophy) of the Proventriculus in Chickens. Avian Dis. 1976, 20, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.K.P.; Chatterjee, R.N. Carcass Quality Traits in Four Different Crossbreds Developed for Backyard Poultry and the Effect of Age on Carcass Quality under Intensive System of Rearing. Indian J. Anim. Sci. 2013, 83, 1102–1108. [Google Scholar]
- van der Klein, S.A.S.; Silva, F.A.; Kwakkel, R.P.; Zuidhof, M.J. The Effect of Quantitative Feed Restriction on Allometric Growth in Broilers. Poult. Sci. 2017, 96, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Mokrejš, P.; Mrázek, P.; Gál, R.; Pavlačková, J. Biotechnological Preparation of Gelatines from Chicken Feet. Polymers 2019, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Santana, J.C.C.; Gardim, R.B.; Almeida, P.F.; Borini, G.B.; Quispe, A.P.B.; Llanos, S.A.V.; Heredia, J.A.; Zamuner, S.; Gamarra, F.M.C.; Farias, T.M.B.; et al. Valorization of Chicken Feet By-Product of the Poultry Industry: High Qualities of Gelatin and Biofilm from Extraction of Collagen. Polymers 2020, 12, 529. [Google Scholar] [CrossRef] [Green Version]
- Bacha Jr, W.J.; Bacha, L.M. Color Atlas of Veterinary Histology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Rougière, N. Comparative Study of Digestive Parameters of Chickens from D+ and D-selected Genetic Lines for di-vergent Digestive Efficiency. Ph.D. Thesis, Université François—Rabelais De Tours, Centre Val de Loire, France, 2010. [Google Scholar]
- Majó, N.; Dolz, R.; Le Sueur-Almosni, F. Autopsie Des Volailles: Diagnostique Macroscopique et méthodes de prélèvements; Collection Atlas, Éd.; du Point Vétérinaire: Rueil-Malmaison, France, 2012; ISBN 978-2-86326-314-3. [Google Scholar]
- Berri, C.; Debut, M.; Santé-Lhoutellier, V.; Arnould, C.; Boutten, B.; Sellier, N.; Baéza, E.; Jehl, N.; Jégo, Y.; Duclos, M.J.; et al. Variations in Chicken Breast Meat Quality: Implications of Struggle and Muscle Glycogen Content at Death. Br. Poult. Sci. 2005, 46, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Ylä-Ajos, M.; Ruusunen, M.; Puolanne, E. Glycogen Debranching Enzyme and Some Other Factors Relating to Post-Mortem PH Decrease in Poultry Muscles. J. Sci. Food Agric. 2007, 87, 394–398. [Google Scholar] [CrossRef]
- Przybylski, W.; Sałek, P.; Kozłowska, L.; Jaworska, D.; Stańczuk, J. Metabolomic Analysis Indicates That Higher Drip Loss May Be Related to the Production of Methylglyoxal as a By-Product of Glycolysis. Poult. Sci. 2022, 101, 101608. [Google Scholar] [CrossRef] [PubMed]
- Oswell, N.J.; Gilstrap, O.P.; Pegg, R.B. Variation in the Terminology and Methodologies Applied to the Analysis of Water Holding Capacity in Meat Research. Meat Sci. 2021, 178, 108510. [Google Scholar] [CrossRef] [PubMed]
- Jlali, M.; Gigaud, V.; Métayer-Coustard, S.; Sellier, N.; Tesseraud, S.; Le Bihan-Duval, E.; Berri, C. Modulation of Glycogen and Breast Meat Processing Ability by Nutrition in Chickens: Effect of Crude Protein Level in 2 Chicken Genotypes1. J. Anim. Sci. 2012, 90, 447–455. [Google Scholar] [CrossRef]
- Elahi, U.; Ma, Y.; Wu, S.; Wang, J.; Zhang, H.; Qi, G. Growth Performance, Carcass Characteristics, Meat Quality and Serum Profile of Broiler Chicks Fed on Housefly Maggot Meal as a Replacement of Soybean Meal. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wu, Y.; Lin, J. Effect of House Fly Larvae Meal on Growth Performance and Slaughter Performance of Yellow Dwarf Chickens. China Poult. 2011, 33, 8–11. [Google Scholar]
- Hwangbo, J.; Hong, E.C.; Jang, A.; Kang, H.K.; Oh, J.S.; Kim, B.W.; Park, B.S. Utilization of House Fly-Maggots, a Feed Supplement in the Production of Broiler Chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar] [PubMed]
- Ciurescu, G.; Idriceanu, L.; Gheorghe, A.; Ropotă, M.; Drăghici, R. Meat Quality in Broiler Chickens Fed on Cowpea (Vigna Unguiculata [L.] Walp) Seeds. Sci. Rep. 2022, 12, 9685. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Lyu, F.; Chen, X.; Ma, J.; Jiang, H.; Xiao, C. Meat Quality Traits of Four Chinese Indigenous Chicken Breeds and One Commercial Broiler Stock. J. Zhejiang Univ. Sci. B 2013, 14, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Escobedo Del Bosque, C.I.; Altmann, B.A.; Ciulu, M.; Halle, I.; Jansen, S.; Nolte, T.; Weigend, S.; Mörlein, D. Meat Quality Parameters and Sensory Properties of One High-Performing and Two Local Chicken Breeds Fed with Vicia Faba. Foods 2020, 9, 1052. [Google Scholar] [CrossRef] [PubMed]
- Devatkal, S.K.; Vishnuraj, M.R.; Kulkarni, V.V.; Kotaiah, T. Carcass and Meat Quality Characterization of Indigenous and Improved Variety of Chicken Genotypes. Poult. Sci. 2018, 97, 2947–2956. [Google Scholar] [CrossRef]
- Lipiński, K.; Antoszkiewicz, Z.; Kotlarczyk, S.; Mazur-Kuśnirek, M.; Kaliniewicz, J.; Makowski, Z. The Effect of Herbal Feed Additive on the Growth Performance, Carcass Characteristics and Meat Quality of Broiler Chickens Fed Low-Energy Diets. Arch. Anim. Breed. 2019, 62, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Arroyo, H.; Capinera, J.L. House Fly, Musca domestica Linnaeus; IFAS Extension, University of Florida: Gainesville, FL, USA, 2003. [Google Scholar]
- Acevedo-Giraldo, J.D.; Sánchez, J.A.; Romero, M.H. Effects of Feed Withdrawal Times Prior to Slaughter on Some Animal Welfare Indicators and Meat Quality Traits in Commercial Pigs. Meat Sci. 2020, 167, 107993. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Du, J.; Li, Y.; Chen, Y.; Cao, Y. RNA-Seq-Based Quanitative Transcriptome Analysis of Meat Color and Taste from Chickens Administered by Eucalyptus Leaf Polyphenols Extract. J. Food Sci. 2020, 85, 1319–1327. [Google Scholar] [CrossRef]
- Qamar, A.; Mohyuddin, S.G.; Hamza, A.; Lartey, K.A.; Shi, C.Q.; Yang, F.; Lu, Z.; Yang, J.; Chen, J.J. Physical and Chemical Factors Affecting Chicken Meat Color. Pak. J. Sci. 2019, 71, 82. [Google Scholar]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent Advances in Meat Color Re-search. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Udomkun, P.; Ilukor, J.; Mockshell, J.; Mujawamariya, G.; Okafor, C.; Bullock, R.; Nabahungu, N.L.; Vanlauwe, B. What Are the Key Factors Influencing Consumers’ Preference and Willingness to Pay for Meat Products in East-ern DRC? Food Sci. Nutr. 2018, 6, 2321–2336. [Google Scholar] [CrossRef]
- Qiao, M.; Fletcher, D.L.; Smith, D.P.; Northcutt, J.K. The Effect of Broiler Breast Meat Color on PH, Moisture, Water-Holding Capacity, and Emulsification Capacity. Poult. Sci. 2001, 80, 676–680. [Google Scholar] [CrossRef]
Composition %Gross | Diets | ||||
---|---|---|---|---|---|
LFD | 25DL | 50DL | 25FL | 50FL | |
Maize | 63.47 | 61.50 | 60.00 | 61.50 | 59.54 |
Wheat bran | 12.73 | 13.43 | 14.13 | 13.43 | 14.13 |
Dried/fresh larvae | 0.00 | 2.50 | 5.00 | 2.50 (10.00) * | 5.00 (20.00) * |
Fishmeal | 10.00 | 7.50 | 5.00 | 7.50 | 5.00 |
Peanut cake | 10.62 | 11.86 | 12.65 | 11.86 | 13.11 |
L-lysine | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Dl-methionine | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Bone meal | 2.47 | 2.50 | 2.51 | 2.50 | 2.51 |
Salt | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Vitamin and mineral premix | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Calculated composition (%DM) | |||||
Metabolizable Energy (kcal/kg) | 2900 | 2900 | 2900 | 2900 | 2900 |
Crude protein | 18.08 | 18.13 | 18.00 | 18.13 | 18.18 |
Ethereal extract | 3.92 | 4.20 | 4.48 | 4.20 | 4.48 |
Cellulose brute | 3.47 | 3.58 | 3.70 | 3.58 | 3.70 |
Calcium | 1.45 | 1.35 | 1.25 | 1.35 | 1.25 |
Phosphorus | 0.69 | 0.66 | 0.63 | 0.66 | 0.63 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Chlorine | 0.22 | 0.20 | 0.19 | 0.20 | 0.19 |
Lysine | 0.88 | 0.86 | 0.83 | 0.86 | 0.83 |
Methionine | 0.42 | 0.41 | 0.40 | 0.41 | 0.40 |
Composition %Gross | Diets | ||||
---|---|---|---|---|---|
LFD | 25DL | 50DL | 25FL | 50FL | |
Maize | 68.11 | 66.07 | 64.11 | 66.07 | 64.11 |
Wheat bran | 12.07 | 13.39 | 14.26 | 13.39 | 14.26 |
Dried/fresh larvae | 0.00 | 2.44 | 4.89 | 2.44 (9.76) * | 4.88 (19.52) * |
Fishmeal | 9.77 | 7.33 | 4.89 | 7.33 | 4.89 |
Peanut cake | 5.00 | 6.05 | 7.21 | 6.05 | 7.21 |
L-lysine | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Dl-methionine | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Bone meal | 4.00 | 3.68 | 3.60 | 3.68 | 3.60 |
Salt | 0.50 | 0.49 | 0.49 | 0.49 | 0.49 |
Vitamin and mineral premix | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Calculated composition (%DM) | |||||
Metabolizable Energy (kcal/kg) | 2890 | 2890 | 2890 | 2890 | 2890 |
Crude protein | 15.55 | 15.60 | 15.66 | 15.60 | 15.66 |
Ethereal extract | 3.89 | 4.18 | 4.46 | 4.18 | 4.46 |
Cellulose brute | 3.02 | 3.18 | 3.30 | 3.18 | 3.30 |
Calcium | 2.02 | 1.79 | 1.66 | 1.79 | 1.66 |
Phosphorus | 0.65 | 0.63 | 0.61 | 0.63 | 0.61 |
Sodium | 0.29 | 0.28 | 0.28 | 0.28 | 0.28 |
Chlorine | 0.43 | 0.40 | 0.38 | 0.40 | 0.38 |
Lysine | 0.81 | 0.79 | 0.77 | 0.79 | 0.77 |
Methionine | 0.40 | 0.39 | 0.38 | 0.39 | 0.38 |
Criteria | Scores | Descriptions |
---|---|---|
Whiteness | 1 to 5 | from non-white to bright white |
Redness | 1 to 5 | from non-red to very red |
Yellowness | 1 to 5 | from non-yellow to very yellow |
The smell | 1 to 5 | from non-smell with very smell |
Juicy | 1 to 5 | from non-juicy to very juicy |
Tasty | 1 to 5 | from not pleasant to very pleasant |
Tenderness | 1 to 5 | from hard to very tender |
Overall assessment | 1 to 4 | from not acceptable to very acceptable |
Parameters | Age | Sex | Diet | Age*Diet | Sex*Diet |
---|---|---|---|---|---|
BW | 0.0001 | n.a. | 0.4505 | 0.0378 | n.a. |
ADG | 0.0001 | n.a. | 0.3903 | 0.3439 | n.a. |
FCR | 0.0001 | n.a. | 0.0366 | 0.0046 | n.a. |
pH1 | n.a. | 0.7870 | 0.8320 | n.a. | 0.3400 |
pH24 | n.a. | 0.6540 | 0.3890 | n.a. | 0.7870 |
Carcass yield | n.a. | 0.2281 | 0.4189 | n.a. | 0.7278 |
Feet | n.a. | 0.0001 | 0.0224 | n.a. | 0.6771 |
Head | n.a. | 0.0001 | 0.0654 | n.a. | 0.4443 |
Heart | n.a. | 0.0552 | 0.2550 | n.a. | 0.0187 |
Empty gizzard | n.a. | 0.0091 | 0.0204 | n.a. | 0.6043 |
Gizzard | n.a. | 0.0105 | 0.0050 | n.a. | 0.8959 |
Liver | n.a. | 0.0604 | 0.0430 | n.a. | 0.9143 |
Proventriculus | n.a. | 0.3339 | 0.0131 | n.a. | 0.0518 |
Spleen | n.a. | 0.4459 | 0.0078 | n.a. | 0.4062 |
Breast drip loss 24 h | n.a. | 0.1200 | 0.8710 | n.a. | 0.4190 |
Thigh-and-drumstick drip loss 24 h | n.a. | 0.0240 | 0.1920 | n.a. | 0.0020 |
Wings drip loss 24 h | n.a. | 0.3520 | 0.8410 | n.a. | 0.3090 |
Breast drip loss 72 h | n.a. | 0.1820 | 0.5490 | n.a. | 0.6360 |
Thigh-and-drumstick drip loss 72 h | n.a. | 0.0650 | 0.0010 | n.a. | 0.0070 |
Wings drip loss 72 h | n.a. | 0.2420 | 0.6340 | n.a. | 0.1890 |
Breast cooking loss | n.a. | 0.0170 | 0.6730 | n.a. | 0.8100 |
Thigh-and-drumstick cooking loss | n.a. | 0.2780 | 0.6650 | n.a. | 0.2480 |
wings cooking loss | n.a. | 0.6450 | 0.5570 | n.a. | 0.2720 |
Breast total loss | n.a. | 0.2600 | 0.3380 | n.a. | 0.8370 |
Thigh-and-drumstick total loss | n.a. | 0.9070 | 0.7670 | n.a. | 0.3540 |
Wings total loss | n.a. | 0.4110 | 0.5340 | n.a. | 0.2000 |
Parameters | Breast Meat | Thigh-and-Drumstick |
---|---|---|
Whiteness | 0.9126 | 0.4708 |
Redness | 0.0293 | 0.6877 |
Yellowness | 0.0053 | 0.0258 |
The smell | 0.7721 | 0.9676 |
Juicy | 0.1287 | 0.1858 |
Tasty | 0.9645 | 0.1837 |
Tender | 0.9882 | 0.8990 |
Overall assessment | 0.2352 | 0.8282 |
Parameters | Rate | State | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | FL | DL | 25 vs. 0 | 50 vs. 0 | FL vs. DL | |
BW | 522.33 ± 19.85 | 506.85 ± 19.85 | 544.54 ± 19.85 | 531.76 ± 19.85 | 519.63 ± 19.85 | 0.5384 | 0.3826 | 0.5549 |
ADG | 15.52 ± 0.65 | 15.13 ± 0.65 | 16.35 ± 0.65 | 15.99 ± 0.65 | 15.48 ± 0.65 | 0.6294 | 0.3179 | 0.4438 |
FCR | 3.62 ± 0.10 | 3.83 ± 0.10 | 3.48 ± 0.10 | 3.67 ± 0.10 | 3.63 ± 0.10 | 0.1188 | 0.2857 | 0.6890 |
Parameters | Rate | State | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | FL | DL | 25 vs. 0 | 50 vs. 0 | FL vs. DL | |
pH1 | 5.69 ± 0.06 | 5.67 ± 0.06 | 5.66 ± 0.06 | 5.69 ± 0.05 | 5.64 ± 0.05 | 0.711 | 0.666 | 0.970 |
pH24 | 5.63 ± 0.03 | 5.56 ± 0.03 | 5.58 ± 0.03 | 5.59 ± 0.03 | 5.55 ± 0.03 | 0.085 | 0.195 | 0.099 |
carcass | 66.70 ± 1.18 | 65.11 ± 1.18 | 66.58 ± 1.18 | 66.63 ± 1.18 | 65.06 ± 1.18 | 0.275 | 0.939 | 0.190 |
Empty gizzard | 3.87 ± 0.18 | 4.10 ± 0.18 | 3.80 ± 0.18 | 3.82 ± 0.18 | 4.08 ± 0.18 | 0.298 | 0.770 | 0.158 |
feet | 5.97 ± 0.19 | 6.45 ± 0.19 | 5.89 ± 0.19 | 6.14 ± 0.19 | 6.20 ± 0.19 | 0.043 | 0.725 | 0.739 |
gizzard | 5.47 ± 0.30 | 5.85 ± 0.30 | 5.09 ± 0.30 | 5.22 ± 0.30 | 5.72 ± 0.30 | 0.299 | 0.300 | 0.104 |
head | 5.94 ± 0.17 | 6.00 ± 0.17 | 5.71 ± 0.17 | 5.72 ± 0.17 | 5.98 ± 0.17 | 0.747 | 0.268 | 0.126 |
heart | 0.65 ± 0.03 | 0.73 ± 0.03 | 0.70 ± 0.03 | 0.73 ± 0.03 | 0.69 ± 00.03 | 0.060 | 0.320 | 0.204 |
liver | 3.23 ± 0.13 | 3.24 ± 0.13 | 3.12 ± 0.13 | 3.01 ± 0.13 | 3.345 ± 0.13 | 0.945 | 0.500 | 0.012 |
proventriculus | 0.79 ± 0.06 | 0.946 ± 0.06 | 0.76 ± 0.06 | 0.82 ± 0.06 | 0.88 ± 0.06 | 0.043 | 0.698 | 0.317 |
spleen | 0.45 ± 0.05 | 0.52 ± 0.05 | 0.57 ± 0.05 | 0.49 ± 0.05 | 0.60 ± 0.05 | 0.262 | 0.055 | 0.018 |
Breast drip loss 24 h | 6.69 ± 0.94 | 7.15 ± 0.94 | 7.28 ± 0.94 | 6.84 ± 0.94 | 7.59 ± 0.94 | 0.691 | 0.611 | 0.430 |
Thigh-and-drumstick drip loss 24 h | 3.56 ± 0.45 | 3.56 ± 0.45 | 2.63 ± 0.45 | 3.12 ± 0.45 | 3.07 ± 0.45 | 0.999 | 0.102 | 0.924 |
Wings drip loss 24 h | 2.81 ± 0.53 | 3.13 ± 0.53 | 2.79 ± 0.53 | 3.12 ± 0.53 | 2.80 ± 0.53 | 0.629 | 0.974 | 0.544 |
Breast drip loss 72 h | 11.61 ± 1.04 | 11.17 ± 1.04 | 9.83 ± 1.04 | 10.15 ± 1.04 | 10.85 ± 1.04 | 0.734 | 0.170 | 0.506 |
Thigh-and-drumstick drip loss 72 h | 4.75 ± 0.51 | 3.71 ± 0.51 | 3.62 ± 0.51 | 4.85 ± 0.51 | 4.48 ± 0.51 | 0.129 | 0.076 | 0.469 |
Wings drip loss 72 h | 4.13 ± 0.71 | 5.29 ± 0.71 | 4.61 ± 0.71 | 5.15 ± 0.71 | 4.75 ± 0.71 | 0.184 | 0.583 | 0.575 |
Breast cooking loss | 26.67 ± 1.11 | 27.56 ± 1.11 | 26.46 ± 1.11 | 26.94 ± 1.11 | 27.08 ± 1.11 | 0.513 | 0.878 | 0.900 |
Thigh-and-drumstick cooking loss | 17.71 ± 1.46 | 19.34 ± 1.46 | 19.17 ± 1.46 | 19.45 ± 1.46 | 19.06 ± 1.46 | 0.366 | 0.415 | 0.793 |
Wings cooking loss | 9.69 ± 1.55 | 12.46 ± 1.55 | 12.52 ± 1.55 | 12.03 ± 1.55 | 12.95 ± 1.55 | 0.151 | 0.142 | 0.558 |
Breast total loss | 38.28 ± 1.49 | 39.15 ± 1.49 | 36.29 ± 1.49 | 37.09 ± 1.49 | 38.35 ± 1.49 | 0.634 | 0.281 | 0.403 |
Thigh-and-drumstick total loss | 22.63 ± 1.66 | 24.63 ± 1.66 | 22.80 ± 1.66 | 23.88 ± 1.66 | 23.54 ± 1.66 | 0.329 | 0.934 | 0.840 |
Wings total loss | 13.82 ± 1.87 | 17.75 ± 1.87 | 17.13 ± 1.87 | 17.18 ± 1.87 | 17.7 ± 1.87 | 0.093 | 0.156 | 0.784 |
Meat | Parameters | Rate | State | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | FL | DL | 25 vs. 0 | 50 vs. 0 | FL vs. DL | ||
Breast | Whiteness | 2.25 ± 0.33 | 2.50 ± 0.33 | 2.46 ± 0.38 | 2.44 ± 0.33 | 2.53 ± 0.38 | 0.5419 | 0.7599 | 1.0000 |
Redness | 1.63 ± 0.30 | 1.44 ± 0.30 | 2.00 ± 0.30 | 1.38 ± 0.30 | 2.06 ± 0.30 | 0.6151 | 0.3173 | 0.0289 | |
Yellowness | 1.38 ± 0.15 | 1.19 ± 0.15 | 1.81 ± 0.15 | 1.56 ± 0.15 | 1.44 ± 0.15 | 0.3264 | 0.0262 | 0.4219 | |
The smell | 2.88 ± 0.34 | 2.44 ± 0.34 | 2.56 ± 0.34 | 2.63 ± 0.34 | 2.38 ± 0.34 | 0.2988 | 0.4563 | 0.4654 | |
Juicy | 2.88 ± 0.36 | 2.56 ± 0.36 | 3.25 ± 0.36 | 2.63 ± 0.36 | 3.19 ± 0.36 | 0.4799 | 0.3973 | 0.1244 | |
Tasty | 3.88 ± 0.36 | 3.75 ± 0.36 | 3.94 ± 0.36 | 3.81 ± 0.36 | 3.88 ± 0.36 | 0.7791 | 0.8884 | 0.8636 | |
Tender | 3.75 ± 0.37 | 3.56 ± 0.37 | 3.69 ± 0.37 | 3.63 ± 0.37 | 3.63 ± 0.37 | 0.6832 | 0.8917 | 1.0000 | |
Overall assessment | 2.75 ± 0.27 | 3.25 ± 0.27 | 3.31 ± 0.27 | 3.50 ± 0.27 | 3.06 ± 0.27 | 0.1392 | 0.0975 | 0.1138 | |
thigh-and-drumstick | Whiteness | 1.57 ± 0.29 | 1.79 ± 0.29 | 2.14 ± 0.29 | 1.93 ± 0.29 | 2.00 ± 0.29 | 0.5482 | 0.1158 | 0.8059 |
Redness | 2.57 ± 0.42 | 2.43 ± 0.42 | 2.36 ± 0.42 | 2.14 ± 0.42 | 2.64 ± 0.42 | 0.7850 | 0.6826 | 0.2473 | |
Yellowness | 1.14 ± 0.17 | 1.29 ± 0.17 | 1.57 ± 0.17 | 1.50 ± 0.17 | 1.36 ± 0.17 | 0.4850 | 0.0423 | 0.3933 | |
The smell | 2.29 ± 0.32 | 2.50 ± 0.32 | 2.36 ± 0.32 | 2.43 ± 0.32 | 2.43 ± 0.32 | 0.5928 | 0.8582 | 1.0000 | |
Juicy | 2.86 ± 0.36 | 3.00 ± 0.36 | 3.79 ± 0.36 | 3.36 ± 0.36 | 3.43 ± 0.36 | 0.7479 | 0.0434 | 0.8439 | |
Tasty | 3.43 ± 0.33 | 3.86 ± 0.33 | 4.07 ± 0.33 | 3.64 ± 0.33 | 4.29 ± 0.33 | 0.3003 | 0.1243 | 0.0623 | |
Tender | 4.00 ± 0.32 | 3.86 ± 0.32 | 4.00 ± 0.32 | 3.79 ± 0.32 | 4.07 ± 0.32 | 0.7157 | 1.0000 | 0.3751 | |
Overall assessment | 3.14 ± 0.32 | 2.93 ± 0.32 | 3.14 ± 0.32 | 2.93 ± 0.32 | 3.14 ± 0.32 | 0.5829 | 1.0000 | 0.5018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamani, B.; Taffa, A.G.; Issa, S.; Mahamadou, C.; Detilleux, J.; Moula, N. Effects of Feeding Housefly (Musca domestica) Larvae on the Butchery Skills and Meat Sensory Characteristics of Local Chickens in Niger. Vet. Sci. 2022, 9, 553. https://doi.org/10.3390/vetsci9100553
Hamani B, Taffa AG, Issa S, Mahamadou C, Detilleux J, Moula N. Effects of Feeding Housefly (Musca domestica) Larvae on the Butchery Skills and Meat Sensory Characteristics of Local Chickens in Niger. Veterinary Sciences. 2022; 9(10):553. https://doi.org/10.3390/vetsci9100553
Chicago/Turabian StyleHamani, Bachir, Adamou Guisso Taffa, Salissou Issa, Chaibou Mahamadou, Johann Detilleux, and Nassim Moula. 2022. "Effects of Feeding Housefly (Musca domestica) Larvae on the Butchery Skills and Meat Sensory Characteristics of Local Chickens in Niger" Veterinary Sciences 9, no. 10: 553. https://doi.org/10.3390/vetsci9100553