Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Bacterium Culture, Serotyping, Antibiotic Resistance, Toxin Profile
2.3. Pulsed-Field Gel Electrophoresis
2.4. Whole-Genome Sequencing
3. Results
3.1. Serovars
3.2. Macrorestriction Clusters
3.3. Resistance Genes
3.4. Toxin Profile
3.5. Whole-Genome Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sassu, E.L.; Bossé, J.T.; Tobias, T.J.; Gottschalk, M.; Langford, P.R. Update on Actinobacillus pleuropneumoniae—Knowledge, gaps and challenges. Transbound. Emerg. Dis. 2018, 65 (Suppl. S1), 72–90. [Google Scholar] [CrossRef] [PubMed]
- Stringer, O.W.; Bossé, J.T.; Lacouture, S.; Gottschalk, M.; Fodor, L.; Angen, Ø.; Velazquez, E.; Penny, P.; Lei, L.; Langford, P.R.; et al. Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars. Vet. Microbiol. 2021, 255, 109021. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Broes, A. Actinobacillosis. In Diseases of Swine, 11th ed.; Zimmermann, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 749–766. [Google Scholar]
- Stringer, O.W.; Li, Y.; Bossé, J.T.; Langford, P.R. JMM profile: Actinobacillus pleuropneumoniae: A major cause of lung disease in pigs but difficult to control and eradicate. J. Med. Microbiol. 2022, 71, 001483. [Google Scholar] [CrossRef] [PubMed]
- To, H.; Teshima, K.; Kon, M.; Yasuda, S.; Akaike, Y.; Shibuya, K.; Nagai, S.; Sasakawa, C. Characterization of nontypable Actinobacillus pleuropneumoniae strains. J. Vet Diagn. Investig. 2020, 34, 581–584. [Google Scholar] [CrossRef]
- Sárközi, R.; Makrai, L.; Fodor, L. Isolation of biotype 1 serotype 12 and detection of Actinobacillus pleuropneumoniae from wild boars. Pathogens 2022, 11, 505. [Google Scholar] [CrossRef]
- Chiers, K.; de Waele, T.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonisation, persistence and induction of lesions in its porcine host. Vet. Res. 2010, 41, 65. [Google Scholar] [CrossRef]
- Kamp, E.M.; Vermeulen, T.M.M.; Smits, M.A.; Haagsma, J. Production of Apx toxins by field strains of Actinobacillus pleuropneumoniae and Actinobacillus suis. Infect. Immun. 1994, 62, 4063–4065. [Google Scholar] [CrossRef]
- Frey, J. RTX toxins of animal pathogens and their role as antigens in vaccines and diagnostics. Toxins 2019, 11, 719. [Google Scholar] [CrossRef]
- Pereira, M.F.; Rossi, C.C.; Seide, L.E.; Filho, S.M.; Dolinski, C.M.; Bazzoli, D.M.S. Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity. Res. Vet. Sci. 2018, 118, 498–501. [Google Scholar] [CrossRef]
- Nahar, N.; Turni, C.; Tram, G.; Blackall, P.J.; Atack, J.M. Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis. In Advances in Microbiological Physiology; Poole, R.K., Kelly, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 78, pp. 179–216. [Google Scholar]
- Bossé, J.T.; Janson, H.; Sheehan, B.J.; Beddek, A.J.; Rycroft, A.N.; Kroll, J.S.; Langford, P.R. Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Microbes Infect. 2002, 4, 225–235. [Google Scholar] [CrossRef]
- Liu, F.; Peng, W.; Liu, T.; Zhao, H.; Yan, K.; Yuan, F.; Chen, H.; Bei, W. Biological role of Actinobacillus pleuropneumoniae type IV pilus proteins encoded by the apf and pil operons. Vet. Microbiol. 2018, 224, 17–22. [Google Scholar] [CrossRef]
- Hathroubi, S.; Hancock, M.A.; Bossé, J.T.; Langford, P.R.; Tremblay, Y.D.N.; Labrie, J.; Jacques, M. Surface polysaccharide mutant reveal that absence of O antigen reduces biofilm formation of Actinobacillus pleuropneumoniae. Infect. Immun. 2016, 84, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Aper, D.; Frömbling, J.; Bağcioğlu, M.; Ehling-Schulz, M.; Hennig-Pauka, I. Comparison of metabolic adaptation and biofilm formation of Actinobacillus pleuropneumoniae field isolates from the upper and lower respiratory tract of swine with respiratory disease. Vet. Microbiol. 2020, 240, 108532. [Google Scholar] [CrossRef] [PubMed]
- Schaller, A.; Kuhn, R.; Kuhnert, P.; Nicolet, J.; Anderson, T.J.; Macinnes, J.I.; Segers, R.P.A.M.; Frey, J. Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiology 1999, 145, 2105–2116. [Google Scholar] [CrossRef] [PubMed]
- Schaller, A.; Djordjevic, S.P.; Eamens, G.J.; Forbes, W.A.; Kuhn, R.; Kuhnert, P.; Gottschalk, M.; Nocolet, J.; Frey, J. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxIVA. Vet. Microbiol. 2001, 79, 47–62. [Google Scholar] [CrossRef]
- Sthitmatee, N.; Sirinarumitr, T.; Makonkewkeyoon, L.; Sakpuaram, T.; Tesaprateep, T. Identification of the Actinobacillus pleuropneumoniae serotype using PCR based-apx genes. Mol. Cell. Probe. 2003, 17, 301–305. [Google Scholar] [CrossRef]
- Beck, M.; van Den Bosch, J.F.; Jongenelen, I.M.C.A.; Loeffen, P.L.W.; Nielsen, R.; Nicolet, J.; Frey, J. RTX toxin genotypes and phenotypes in Actinobacillus pleuropneumoniae field strains. J. Clin. Microbiol. 1994, 32, 2749–2754. [Google Scholar] [CrossRef]
- Rayamajhi, N.; Shin, S.J.; Kang, S.G.; Lee, D.Y.; Ahn, J.M.; Yoo, H.S. Development and use of a multiplex polymerase chain reaction assay based on Apx toxin genes for genotyping of Actinobacillus pleuropneumoniae isolates. J. Vet. Diagn. Investig. 2005, 17, 359–362. [Google Scholar] [CrossRef]
- Eggen, A.A.S. Worldwide update on APP infections. Intern. Pig Topics 2007, 22, 21–23. [Google Scholar]
- Komal, J.P.; Mittal, K.R. Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice. Vet. Microbiol. 1990, 25, 229–240. [Google Scholar] [CrossRef]
- Frey, J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol. 1995, 3, 257–261. [Google Scholar] [CrossRef]
- Sárközi, R.; Makrai, L.; Fodor, L. Identification of a proposed new serovar of Actinobacillus pleuropneumoniae: Serovar 16. Acta Vet. Hung. 2015, 63, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.; Briaire, J.; Smith, H.; Dom, P.; Haesebrouck, F.; Kamp, E.M.; Gielkens, A.L.J.; Smits, M.A. Knockout mutants of Actinobacillus pleuropneumoniae serotype 1 that are devoid of RTX toxins do not activate or kill porcine neutrophils. Infect. Immun. 1995, 63, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Teshima, K.; Hirano, H.; Ushiyama, K.; Shibuya, K.; Nagai, S.; Sasakawa, C.; To, H. Isolation and characterization of atypical Actinobacillus pleuropneumoniae serovar 15 lacking the apxIICA genes in Japan. J. Vet. Med. Sci. 2019, 81, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.C.; de Araújo, E.F.; de Queiroz, M.V.; Bazzolli, D.M. Characterization of the omlA gene from different serotypes of Actinobacillus pleuropneumoniae: A new insight into an old approach. Genet. Mol. Biol. 2013, 36, 243–251. [Google Scholar] [CrossRef]
- Schuwerk, L.; Hoeltig, D.; Waldmann, K.-H.; Valentin-Weigand, P.; Rohde, J. Sero- and apx-typing of German Actinobacillus pleuropneumoniae field isolates from 2010 to 2019 reveals predominance of serovar 2 with regular apx-profile. Vet. Res. 2021, 52, 10. [Google Scholar] [CrossRef]
- Sárközi, R.; Makrai, L.; Fodor, L. Actinobacillus pleuropneumoniae serotypes in Hungary. Acta Vet. Hung. 2018, 66, 343–349. [Google Scholar] [CrossRef]
- Satrán, P.; Nedbalcová, K. Prevalence of serotypes, production of Apx toxins, and antibiotic resistance in strains of Actinobacillus pleuropneumoniae isolated from porcine pleuropneumonia in the Czech Republic during a period 2003–2004. Vet. Med. Czech 2002, 47, 92–98. [Google Scholar]
- Kucerova, Z.; Jaglic, Z.; Ondriasova, R.; Nedbalcová, K. Serotype distribution of Actinobacillus pleuropneumoniae in the Czech Republic between 2001 and 2003. Vet. Med. Czech 2005, 50, 355–360. [Google Scholar] [CrossRef]
- Li, Y.; Bossé, J.T.; Williamson, S.M.; Maskell, D.J.; Tucker, A.W.; Wren, B.W.; Rycroft, A.N.; Langford, P.R. Actinobacillus pleuropneumoniae serovar predominates in England and Wales. Vet. Rec. 2018, 179, 276. [Google Scholar] [CrossRef]
- Gottschalk, M.; Lacouture, S. Distribution of Streptococcus suis (from 2012 to 2014) and Actinobacillus pleuropneumoniae (from 2011 to 2014) serotypes isolated from diseased pigs. Canad. Vet. J. 2015, 56, 1093–1094. [Google Scholar]
- Lacouture, S.; Gottschalk, M. Distribution of Actinobacillus pleuropneumoniae (from 2015 to June 2020) and Glaesserella parasuis (from 2017 to June 2020) serotypes isolated from diseased pigs in Quebec. Canad. Vet. J. 2020, 61, 1261–1263. [Google Scholar]
- Fodor, L.; Varga, J.; Molnár, É.; Hajtós, I. Biochemical and serological properties of Actinobacillus pleuropneumoniae biotype 2 strains isolated from swine. Vet. Microbiol. 1989, 20, 173–180. [Google Scholar] [CrossRef]
- Nielsen, R.; Andresen, L.O.; Plambeck, T.; Nielsen, J.P.; Krarup, L.T.; Jorsal, S.E. Serological characterization of Actinobacillus pleuropneumoniae biotype 2 strains isolated from pigs in two Danish herds. Vet. Microbiol. 1997, 54, 35–46. [Google Scholar] [CrossRef]
- Maldonado, J.; Valls, L.; Martínez, E.; Riera, P. Isolation rates, serovars, and toxin genotypes of nicotinamide adenine dinucleotide-independent Actinobacillus pleuropneumoniae among pigs suffering from pleuropneumonia in Spain. J. Vet. Diagn. Investig. 2009, 21, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Barrow, G.I.; Feltham, R.K.A. Cowan and Steels’s Manual for the Identification of Medical Bacteria, 3rd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Markey, B.; Leonard, F.; Archambault, M.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Mosby-Elsevier: Edinburgh, UK, 2013. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI standard VET01; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Ng, L.-K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probe. 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Blanco, M.; Gutiérrez-Martin, C.B.; Rodríguez-Ferri, E.F.; Roberts, M.C.; Navas, J. Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob. Agents Ch. 2006, 50, 702–708. [Google Scholar] [CrossRef]
- Moleres, J.; Santos-López, A.; Lázaro, I.; Labairu, J.; Prat, C.; Ardanuy, C.; González-Zorn, B.; Aragon, V.; Garmendia, J. Novel blaROB-1-bearing plasmid conferring resistance to β-lactams in Haemophilus parasuis isolates from healthy weaning pigs. Appl. Environ. Microbiol. 2015, 81, 3255–3267. [Google Scholar] [CrossRef]
- Levy, F.; Walker, E.S. BRO beta-lactamase alleles, antibiotic resistance and a test of the BRO-1 selective replacement hypothesis in Moraxella catarrhalis. J. Antimicrob. Chemoth. 2004, 53, 371–374. [Google Scholar] [CrossRef]
- Kardos, G.; Kiss, I. Molecular epidemiology investigation of outbreaks of fowl cholera in geographically related poultry flocks. J. Clin. Microbiol. 2005, 43, 2959–2961. [Google Scholar] [CrossRef]
- Chevallier, B.; Dugourd, D.; Tarasiuk, K.; Harel, J.; Gottschalk, M.; Kobisch, M.; Frey, J. Chromosome sizes and phylogenetic relationships between serotypes of Actinobacillus pleuropneumoniae. FEMS Microbiol. Lett. 1998, 160, 209–216. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics; Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A.; et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020, 21, 180. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing [Manual]. Available online: https://www.R-project.org/ (accessed on 21 July 2022).
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T. GGTREE: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 21 July 2022).
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Prado, I.G.O.; Silva, G.C.; Crispim, J.S.; Vidigal, P.M.P.; Nascimento, M.; Santana, M.F.; Bazzoli, D.M.S. Comparative genomics of Actinobacillus pleuropneumoniae serotype 8 reveals the importance of prophages in the genetic variability of the species. Int. J. Genom. 2020, 2020, 9354204. [Google Scholar] [CrossRef]
- Doná, V.; Ramette, A.; Perreten, V. Comparative genomics of 26 complete circular genomes of 18 different serotypes of Actinobacillus pleuropneumoniae. Microb. Genom. 2022, 8, 000776. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, C.B.; Rodríguez Barbosa, J.I.; Tascón, R.I.; Costa, L.I.; Riera, P.; Rodríguez Ferri, E.F. Serological characterization and antimicrobial susceptibility of Actinobacillus pleuropneumoniae strains isolated from pigs in Spain. Vet. Rec. 1995, 137, 62–64. [Google Scholar] [CrossRef]
- Stärk, K.D.C.; Miserez, R.; Siegmann, S.; Ochs, H.; Infanger, P.; Schmidt, J. A successful national control programme for enzootic respiratory diseases in pigs in Switzerland. Rev. Sci. Tech. Off. Int. Epiz. 2007, 26, 595–606. [Google Scholar]
- Bossé, J.T.; Li, Y.; Angen, O.; Weinert, L.A.; Chaudhuri, R.R.; Holden, M.T.; Williamson, S.M.; Maskell, D.J.; Tucker, A.W.; Wren, B.W.; et al. Multiplex PCR assay for unequivocal differentiation of Actinobacillus pleuropneumoniae serovars 1 to 3, 5 to 8, 10, and 12. J. Clin. Microbiol. 2014, 52, 2380–2385. [Google Scholar] [CrossRef] [PubMed]
- Molnár, É. Survey of Actinobacillus (Haemophilus) pleuropneumoniae infection in swine by different methods. Acta Vet. Hung. 1990, 38, 231–238. [Google Scholar] [PubMed]
- Molnár, L. Occurrence of serotypes of Actinobacillus pleuropneumoniae biotype 1 in Hungary and its practical importance (in Hungarian). Magy. Allatorvosok 1992, 47, 374–378. [Google Scholar]
- Chiers, K.; Donné, E.; van Overbeke, I.; Ducatelle, R.; Haesebrouck, F. Actinobacillus pleuropneumoniae infections in closed swine herds: Infection patterns and serological profiles. Vet. Microbiol. 2022, 85, 343–352. [Google Scholar] [CrossRef]
- Fussing, V.; Barfod, K.; Nielsen, R.; Moller, K.; Nielsen, J.P.; Wegener, H.C.; Bisgaard, M. Evaluation and application of ribotyping for epidemiological studies of Actinobacillus pleuropneumoniae in Denmark. Vet. Microbiol. 1998, 62, 145–162. [Google Scholar] [CrossRef]
- Kokotovic, B.; Angen, O. Genetic diversity of Actinobacillus pleuropneumoniae assessed by amplified length polymorphism analysis. J. Clin. Microbiol. 2007, 45, 3921–3929. [Google Scholar] [CrossRef]
- Perry, M.B.; Angen, O.; MacLean, L.L.; Lacouture, S.; Kokotovic, B.; Gottschalk, M. An atypical biotype I Actinobacillus pleuropneumoniae serotype 13 is present in North America. Vet Microbiol. 2012, 156, 403–410. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Li, L.; Wang, S.; Chen, H.; Zhou, R. Comparative genomic characterization of Actinobacillus pleuropneumoniae. J. Bacteriol. 2010, 192, 5625–5636. [Google Scholar] [CrossRef] [PubMed]
- Chatellier, S.; Harel, J.; Dugourd, D.; Chevallier, B.; Kobisch, M.; Gottschalk, M. Genomic relatedness among Actinobacillus pleuropneumoniae field strains of serotypes 1 and 5 isolated from healthy and diseased pigs. Can. J. Vet. Res. 1999, 63, 170–176. [Google Scholar] [PubMed]
- Dayao, D.; Gibson, J.S.; Blackall, P.J.; Turni, C. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust. Vet. J. 2016, 94, 227–231. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Lin, C.-N.; Lin, C.-F.; Chang, T.-C.; Chiou, M.-T. Serotypes, antimicrobial susceptibility, and minimal inhibitory concentrations of Actinobacillus pleuropneumoniae isolated from slaughter pigs in Taiwan (2002–2007). J. Vet. Med. Sci. 2011, 73, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Nedbalcova, K.; Satran, P.; Jaglic, Z.; Ondriasova, R.; Kucerova, Z. Monitoring of antibiotic resistance in isolates of Actinobacillus pleuropneumoniae in the Czech Republic between 2001 and 2003. Vet. Med-Czech. 2005, 50, 181–185. [Google Scholar] [CrossRef]
- de Jong, A.; Thomas, V.; Simjee, S.; Moyaert, H.; El Garch, F.; Maher, K.; Morrissey, I.; Butty, P.; Klein, U.; Marion, H.; et al. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: The VetPath study. Vet. Microbiol. 2014, 172, 202–215. [Google Scholar] [CrossRef]
- El Garch, F.; de Jong, A.; Simjee, S.; Moyaert, H.; Klein, U.; Ludwig, C.; Marion, H.; Haag-Diergarten, S.; Richard-Mater, A.; Thomas, V.; et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe 2009–2012. VetPath results. Vet. Microbiol. 2016, 194, 11–22. [Google Scholar] [CrossRef]
- Michael, G.B.; Bossé, J.T.; Schwarz, S. Antimicrobial resistance in Pasteurellaceae of veterinary origin. Microbiol. Spectr. 2018, 6, 3. [Google Scholar] [CrossRef]
- Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B.; Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53–62. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kardos, G.; Sárközi, R.; Laczkó, L.; Marton, S.; Makrai, L.; Bányai, K.; Fodor, L. Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary. Vet. Sci. 2022, 9, 511. https://doi.org/10.3390/vetsci9100511
Kardos G, Sárközi R, Laczkó L, Marton S, Makrai L, Bányai K, Fodor L. Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary. Veterinary Sciences. 2022; 9(10):511. https://doi.org/10.3390/vetsci9100511
Chicago/Turabian StyleKardos, Gábor, Rita Sárközi, Levente Laczkó, Szilvia Marton, László Makrai, Krisztián Bányai, and László Fodor. 2022. "Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary" Veterinary Sciences 9, no. 10: 511. https://doi.org/10.3390/vetsci9100511
APA StyleKardos, G., Sárközi, R., Laczkó, L., Marton, S., Makrai, L., Bányai, K., & Fodor, L. (2022). Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary. Veterinary Sciences, 9(10), 511. https://doi.org/10.3390/vetsci9100511