Assessment of Semen Respiratory Activity of Domesticated Species before and after Cryopreservation: Boars, Bulls, Stallions, Reindeers and Roosters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Chemicals and Extenders Preparation
2.4. Semen Collection and Preparation
2.5. Semen Freezing
2.5.1. Boar Semen Freezing
2.5.2. Equine Semen Freezing
2.5.3. Bovine Semen Freezing
2.5.4. Reindeer Semen Freezing
2.5.5. Roosters Semen Freezing
2.6. Semen Evaluation after Thawing
2.7. Artificial Insemination (AI) and Pregnancy Control
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John Aitken, R.; Jones, K.; Robertson, S. Reactive Oxygen Species and Sperm Function—In Sickness and In Health. J. Androl. 2012, 33, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Stendardi, A.; Focarelli, R.; Piomboni, P.; Palumberi, D.; Serafini, F.; Ferramosca, A.; Zara, V. Evaluation of mitochondrial respiratory efficiency during in vitro capacitation of human spermatozoa. Int. J. Androl. 2011, 34, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, V. Role of Glycolysis and Respiration in Sperm Metabolism and Motility. Doctoral Dissertation, Kent State University, Kent, OH, USA, 2007. [Google Scholar]
- Rodriguez-Gil, J.E. Mammalian sperm energy resources management and survival during conservation in refrigeration. Reprod. Domest. Anim. 2006, 41, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Nesci, S.; Spinaci, M.; Galeati, G.; Nerozzi, C.; Pagliarani, A.; Algieri, C.; Tamanini, C.; Bucci, D. Sperm function and mitochondrial activity: An insight on boar sperm metabolism. Theriogenology 2020, 144, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Misro, M.M.; Ramya, T. Fuel/energy sources of spermatozoa. In Male Infertility; Springer: New York, NY, USA, 2012; pp. 209–223. [Google Scholar] [CrossRef]
- Ferramosca, A.; Lorenzetti, S.; Di Giacomo, M.; Lunetti, P.; Murrieri, F.; Capobianco, L.; Dolce, V.; Coppola, L.; Zara, V. Modulation of human sperm mitochondrial respiration efficiency by plant polyphenols. Antioxidants 2021, 10, 217. [Google Scholar] [CrossRef]
- Ferramosca, A.; Pinto Provenzano, S.; Montagna, D.D.; Coppola, L.; Zara, V. Oxidative stress negatively affects human sperm mitochondrial respiration. Urology 2013, 82, 78–83. [Google Scholar] [CrossRef]
- Cosson, J.J. ATP: The sperm movement energizer. In Adenosine Triphosphate: Chemical Properties, Biosynthesis and Functions in Cells; Nova Biomedical: Waltham, MA, USA, 2013; pp. 1–46. ISBN 9781624178900. [Google Scholar]
- Sang, L.; Du, Q.Z.; Yang, W.C.; Tang, K.Q.; Yu, J.N.; Hua, G.H.; Zhang, X.X.; Yang, L.G. Polymorphisms in follicle stimulation hormone receptor, inhibin alpha, inhibin bata A, and prolactin genes, and their association with sperm quality in Chinese Holstein bulls. Anim. Reprod. Sci. 2011, 126, 151–156. [Google Scholar] [CrossRef]
- Moraes, C.R.; Meyers, S. The sperm mitochondrion: Organelle of many functions. Anim. Reprod. Sci. 2018, 194, 71–80. [Google Scholar] [CrossRef]
- Davila, M.P.; Muñoz, P.M.; Tapia, J.A.; Ferrusola, C.O.; Da Silva C, C.B.; Peña, F.J. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Davila, M.P.; Muñoz, P.M.; Bolaños, J.M.G.; Stout, T.A.E.; Gadella, B.M.; Tapia, J.A.; Balao Da Silva, C.; Ortega Ferrusola, C.; Peña, F.J. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation. Reproduction 2016, 152, 683–694. [Google Scholar] [CrossRef]
- Bucci, D.; Rodriguez-Gil, J.E.; Vallorani, C.; Spinaci, M.; Galeati, G.; Tamanini, C. Gluts and mammalian sperm metabolism. J. Androl. 2011, 32, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Skulachev, V.P. Energy Transformation in Biomembranes; Nauka: Moscow, Russia, 1972. [Google Scholar]
- Ferramosca, A.; Zara, V. Bioenergetics of mammalian sperm capacitation. Biomed Res. Int. 2014, 2014, 902953. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Ling, X.; Zou, P.; Yang, H.; Chen, Q.; Zhou, N.; Sun, L.; Gao, J.; Zhou, Z.; et al. Mitochondrial biomarkers reflect semen quality: Results from the MARCHS study in chongqing, China. PLoS ONE 2016, 11, e0168823. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Jiao, Y.; An, D.; Li, D.; Li, W.; Wei, Q. Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection. Sensors 2019, 19, 3995. [Google Scholar] [CrossRef] [PubMed]
- Nikitkina, E.; Krutikova, A.; Musidrai, A.; Timofeeva, S.; Goncharov V., P. Assessment of oxidative phosphorylation in reindeer (Rangifer Tarandus) semen—a pilot study. Reprod. Domest. Anim. 2019, 54, 57. [Google Scholar]
- Busiello, R.A.; Savarese, S.; Lombardi, A. Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol. 2015, 6, 36. [Google Scholar] [CrossRef]
- Nikitkina, E.; Shapiev, I. Assessment of the respiratory activity in equine sperm. Reproduction in Domestic Animals. Reprod. Domest. Anim. 2014, 49, 49–50. [Google Scholar]
- Ferramosca, A.; Conte, A.; Moscatelli, N.; Zara, V. A high-fat diet negatively affects rat sperm mitochondrial respiration. Andrology 2016, 4, 520–525. [Google Scholar] [CrossRef]
- Gibb, Z.; Lambourne, S.R.; Aitken, R.J. The paradoxical relationship between stallion fertility and oxidative stress. Biol. Reprod. 2014, 91, 1–10. [Google Scholar] [CrossRef]
- Aalbers, J.G.; Mann, T.; Polge, C. Metabolism of boar semen in relation to sperm motility and survival. J. Reprod. Fertil. 1961, 2, 42–53. [Google Scholar] [CrossRef]
- Hoskins, D.D.; Patterson, D.L. Metabolism of rhesus monkey spermatozoa. J. Reprod. Fertil. 1968, 16, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, G.; Peterson, R.N.; Freund, M. Changes in the Metabolism of Guinea Pig Sperm from Different Segments of the Epididymis. Proc. Soc. Exp. Biol. Med. 1973, 143, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- García, B.M.; Moran, A.M.; Fernández, L.G.; Ferrusola, C.O.; Rodriguez, A.M.; Bolaños, J.M.G.; Da Silva, C.M.B.; Martínez, H.R.; Tapia, J.A.; Peña, F.J. The mitochondria of stallion spermatozoa are more sensitive than the plasmalemma to osmotic-induced stress: Role of c-Jun N-terminal kinase (JNK) pathway. J. Androl. 2012, 33, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Gibb, Z.; Lambourne, S.R.; Curry, B.J.; Hall, S.E.; Aitken, R.J. Aldehyde dehydrogenase plays a pivotal role in the maintenance of stallion sperm motility. Biol. Reprod. 2016, 94, 1–11. [Google Scholar] [CrossRef]
- Akbarinejad, V.; Fathi, R.; Shahverdi, A.; Esmaeili, V.; Rezagholizadeh, A.; Ghaleno, L.R. Activator of Mitochondrial Aldehyde Dehydrogenase (Alda-1) Could Enhance Quality of Equine Cooled Semen by Ameliorating Loss of Mitochondrial Function Over Time. J. Equine Vet. Sci. 2018, 70, 63–70. [Google Scholar] [CrossRef]
- Chen, J.J.; Yu, B.P. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic. Biol. Med. 1994, 17, 411–418. [Google Scholar] [CrossRef]
- Takeshima, T.; Kuroda, S.; Yumura, Y. Reactive Oxygen Species and Sperm Cells. In Reactive Oxygen Species (ROS) in Living Cells; Books on Demand: Norderstedt, Germany, 2018. [Google Scholar] [CrossRef]
- Griveau, J.F.; Le Lannou, D. Reactive oxygen species and human spermatozoa: Physiology and pathology. Int. J. Androl. 1997, 20, 61–69. [Google Scholar] [CrossRef]
- Agarwal, A.; Makker, K.; Sharma, R. Clinical relevance of oxidative stress in male factor infertility: An update. Am. J. Reprod. Immunol. 2008, 59, 2–11. [Google Scholar] [CrossRef]
- Aitken, R.J.; Clarkson, J.S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 1987, 81, 459–469. [Google Scholar] [CrossRef]
- Meyers, S.A. Cryostorage and oxidative stress in mammalian spermatozoa. In Studies on Men’s Health and Fertility; Humana Press: Totowa, NJ, USA, 2012; pp. 41–56. [Google Scholar] [CrossRef]
Animal | Semen | n | Progressive Motility, % | Respiration Rate nAO2/min | Stimulation of Respiration by 2.4-dinitrophenol |
---|---|---|---|---|---|
Boar | Fresh | 7 | 90.4 ± 3.67 a | 178 ± 18.6 (49–220) | 3.30 ± 0.05 (1–4.5) |
Frozen | 7 | 35.2 ± 2.86 b | 98 ± 11.4 (23–177) | 2.45 ± 0.15 (1–3.8) | |
Stallion | Fresh | 10 | 79.7 ± 5.45 a | 281 ± 68.0 (56–324) | 1.80 ± 0.14 (1–3.2) |
Frozen | 10 | 43.3 ± 6.73 b | 136 ± 115.0 (65–235) | 1.50 ± 0.11 (1–2.3) | |
Bull | Fresh | 10 | 81.1 ± 3.23 a | 132 ± 7.0 (28–210) | 2.20 ± 0.35 (1–3.6) |
Frozen | 10 | 50.2 ± 2.13 b | 87 ± 11.3 (23–156) | 1.59 ± 0.07 (1–2.5) | |
Reindeer | Fresh | 10 | 79.1 ± 5.45 a | – | 1.70 ± 0.08 (1–2.4) |
Frozen | 10 | 30.4 ± 8.46 b | – | 1.30 ± 0.09 (1–1.9) | |
Rooster | Fresh | 10 | 91.0 ± 2.19 a | 225 ± 21.2 (67–354) | 1.87 ± 0.04 (1–5.7) |
Frozen | 10 | 45.2 ± 2.36 b | 121 ± 12.6 (46–212) | 1.66 ± 0.11 (1–4.6) |
Pig Groups | Progressive Motility, % | Stimulation of Respiration by 2.4-dinitrophenol | Pregnancy Rates, % |
---|---|---|---|
Pregnancy rate < 50% | 42.7 ± 0.53 | 1.4 ± 0.01 | 35 ± 4.6 a |
Pregnancy rate 50–60% | 44.0 ± 0.67 | 1.8 ± 0.05 | 53.8 ± 8.0 b |
Pregnancy rate > 60% | 43.7 ± 0.86 | 2.1 ± 0.05 | 66.7 ± 6.0 c |
Cows Groups | Progressive Motility, % | Stimulation of Respiration by 2.4-dinitrophenol | Pregnancy Rates, % |
---|---|---|---|
Pregnancy rate<50% | 50.5 ± 0.67 | 1.34 ± 0.077 d | 39.1 ± 3.6 a |
Pregnancy rate 50–60% | 51.0 ± 0.46 | 1.41 ± 0.029 e | 55.3 ± 2.0 b |
Pregnancy rate>60% | 51.1 ± 0.73 | 1.59 ± 0.025 f | 70.5 ± 1.6 c |
Rooster, Individual No | Respiration Rate, nAO2/min | Stimulation of Respiration by 2.4-dinitrophenol | Egg Fertility Rates,% |
---|---|---|---|
7861 | 71.0 | 1.85 | 67 |
7863 | 59.0 | 1.62 | 44 |
7864 | 50.0 | 1.69 | 62 |
7868 | 86.0 | 1.72 | 72 |
7870 | 50.5 | 1.79 | 75 |
7871 | 42.0 | 1.88 | 82 |
7872 | 65.0 | 1.77 | 74 |
7873 | 79.0 | 1.87 | 89 |
7875 | 70.0 | 1.70 | 67 |
7899 | 34.0 | 1.49 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitkina, E.; Shapiev, I.; Musidray, A.; Krutikova, A.; Plemyashov, K.; Bogdanova, S.; Leibova, V.; Shiryaev, G.; Turlova, J. Assessment of Semen Respiratory Activity of Domesticated Species before and after Cryopreservation: Boars, Bulls, Stallions, Reindeers and Roosters. Vet. Sci. 2022, 9, 513. https://doi.org/10.3390/vetsci9100513
Nikitkina E, Shapiev I, Musidray A, Krutikova A, Plemyashov K, Bogdanova S, Leibova V, Shiryaev G, Turlova J. Assessment of Semen Respiratory Activity of Domesticated Species before and after Cryopreservation: Boars, Bulls, Stallions, Reindeers and Roosters. Veterinary Sciences. 2022; 9(10):513. https://doi.org/10.3390/vetsci9100513
Chicago/Turabian StyleNikitkina, Elena, Ismail Shapiev, Artem Musidray, Anna Krutikova, Kirill Plemyashov, Sofia Bogdanova, Victoria Leibova, Gennadiy Shiryaev, and Julia Turlova. 2022. "Assessment of Semen Respiratory Activity of Domesticated Species before and after Cryopreservation: Boars, Bulls, Stallions, Reindeers and Roosters" Veterinary Sciences 9, no. 10: 513. https://doi.org/10.3390/vetsci9100513