Validation of a Novel ELISA for the Diagnosis of Hemorrhagic Septicemia in Dairy Cattle from Thailand Using a Bayesian Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Samples
2.2. Enzyme-Linked Immunosorbent Assay (ELISA) Test
2.3. Indirect Hemagglutination Assay (IHA) Test
2.4. Sensitivity and Specificity Estimation
3. Results
3.1. Results from Diagnostic Tests
3.2. Bayesian Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol. Lett. 2006, 265, 1–10. [Google Scholar] [CrossRef]
- Farooq, U.; Saeed, Z.; Khan, M.A.; Ali, I.; Qamar, M.F. Sero-surveillance of hemorrhagic septicemia in buffaloes and cattle in Southern Punjab, Pakistan. Pak. Vet. J. 2011, 31, 254–256. [Google Scholar]
- Singh, B.; Prasad, S.; Verma, M.; Sinha, D.K. Estimation of economic losses due to haemorrhagic septicaemia in cattle and buffaloes in India. Agric. Econ. Res. Rev. 2014, 27, 271–279. [Google Scholar] [CrossRef]
- Tankaew, P.; Srisawat, W.; Singhla, T.; Tragoolpua, K.; Kataoka, Y.; Sawada, T.; Sthitmatee, N. Comparison of two indirect ELISA coating antigens for the detection of dairy cow antibodies against Pasteurella multocida. J. Microbiol. Methods 2018, 145, 20–27. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. Haemorrhagic septicaemia. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 6th ed.; World Organisation for Animal Health: Paris, France, 2008; pp. 739–751. [Google Scholar]
- Kraemer, H.C. Evaluating Medical Tests: Objective and Quantitative Guidelines; Sage Publications: Newbury Park, CA, USA, 1992; p. 294. [Google Scholar]
- Staquet, M.; Rozencweig, M.; Lee, Y.J.; Muggia, F.M. Methodology for assessment of new dichotomous diagnostic tests. J. Chronic Dis. 1981, 34, 599–610. [Google Scholar] [CrossRef]
- Valenstein, P.N. Evaluating diagnostic tests with imperfect standards. Am. J. Clin. Pathol. 1990, 93, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Branscum, A.J.; Gardner, I.A.; Johnson, W.O. Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. Prev. Vet. Med. 2005, 68, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Singhla, T.; Boonyayatra, S.; Chulakasian, S.; Lukkana, M.; Alvarez, J.; Sreevatsan, S.; Wells, S.J. Determination of the sensitivity and specificity of bovine tuberculosis screening tests in dairy herds in Thailand using a Bayesian approach. BMC Vet. Res. 2019, 15, 149–156. [Google Scholar] [CrossRef]
- Enoe, C.; Georgiadis, M.P.; Johnson, W.O. Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Prev. Vet. Med. 2000, 45, 61–81. [Google Scholar] [CrossRef]
- Areewong, C.; Rittipornlertrak, A.; Nambooppha, B.; Fhaikrue, I.; Singhla, T.; Sodarat, C.; Prachasilchai, W.; Vongchan, P.; Sthitmatee, N. Evaluation of an in-house indirect enzyme-linked immunosorbent assay of feline panleukopenia VP2 subunit antigen in comparison to hemagglutination inhibition assay to monitor tiger antibody levels by Bayesian approach. BMC Vet. Res. 2020, 16, 275. [Google Scholar] [CrossRef]
- Sawada, T.; Rimler, R.B.; Rhoades, K.R. Indirect hemagglutination test that uses glutaraldehyde-fixed sheep erythrocytes sensitized with extract antigens for detection of Pasteurella antibody. J. Clin. Microbiol. 1982, 15, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Gardner, I.A.; Stryhn, H.; Lind, P.; Collins, M.T. Conditional dependence between tests affects the diagnosis and surveillance of animal diseases. Prev. Vet. Med. 2000, 45, 107–122. [Google Scholar] [CrossRef]
- Alvarez, J.; Perez, A.; Bezos, J.; Marqués, S.; Grau, A.; Saez, J.L.; Mínguez, O.; de Juan, L.; Domínguez, L. Evaluation of the sensitivity and specificity of bovine tuberculosis diagnostic tests in naturally infected cattle herds using a Bayesian approach. Vet. Microbiol. 2012, 155, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 20–22 March 2003; Hornik, K., Leisch, F., Zeileis, A., Eds.; Technische Universität: Vienna, Austria, 2003; pp. 125–135. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Su, Y.S.; Yajima, M. Using R to Run JAGS: Package R2jags. 2015. Available online: https://cran.r-project.org/web/packages/R2jags/R2jags.pdf (accessed on 19 December 2019).
- Plummer, M.; Stukalov, A.; Denwood, M. Bayesian Graphicalmodel Using MCMC: Package Rjags. 2016. Available online: https://cran.r-project.org/web/packages/rjags/rjags.pdf. (accessed on 19 December 2019).
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–511. [Google Scholar] [CrossRef]
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1997, 7, 434–455. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.R.; Van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Berkvens, D.; Speybroek, N.; Praet, N.; Adel, A.; Lesaffre, E. Estimating disease prevalence in a Bayesian framework using probabilistic constraints. Epidemiology 2006, 17, 145–153. [Google Scholar] [CrossRef]
- De Alwis, M.C.L.; Wijewardana, T.G.; Gomis, A.I.U.; Vipulasiri, A.A. Persistence of the carrier status in haemorrhagic septicaemia (Pasteurella multocida serotype 6:B infection) in Buffaloes. Trop. Anim. Health Prod. 1990, 22, 18–194. [Google Scholar] [CrossRef] [PubMed]
- El-Jakee, J.K.; Ali, S.S.; El-Shafii, S.A.; Hessain, A.M.; Al-Arfaj, A.A.; Mohamed, M.I. Comparative studies for serodiagnosis of haemorrhagic septicaemia in cattle sera. Saudi J. Biol. Sci. 2016, 23, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogra, V.; Verma, S.; Singh, G.; Wani, A.H.; Chahota, R.; Dhar, P.; Verma, L.; Sharma, M. Development of OMP based indirect ELISA to gauge the antibody titers in bovines against Pasteurella multocida. Iran. J. Vet. Res. 2015, 16, 350–356. [Google Scholar] [PubMed]
- Qureshi, S.; Saxena, H.M. Estimation of titers of antibody against Pasteurella multocida in cattle vaccinated with haemorrhagic septicemia alum precipitated vaccine. Vet. World 2014, 7, 224–228. [Google Scholar] [CrossRef]
- Moustafa, A.M.; Ali, S.N.; Bennett, M.D.; Hyndman, T.H.; Robertson, I.D.; Edwards, J. A Case-control Study of Haemorrhagic Septicaemia in Buffaloes and Cattle in Karachi, Pakistan, in 2012. Transbound. Emerg. Dis. 2017, 64, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shome, R.; Deka, R.P.; Sahay, S.; Grace, D.; Lindahl, J.F. Seroprevalence of hemorrhagic septicemia in dairy cows in Assam, India. Infect. Ecol. Epidemiol. 2019, 9, 1604064. [Google Scholar] [CrossRef] [PubMed]
- Radostits, O.M.; Gay, C.C.; Blood, D.C.; Hinchcliff, K.W. Veterinary Medicine a Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses, 9th ed.; Saunders Company Ltd.: London, UK, 2000. [Google Scholar]
Diagnostic Tests | Parameters | Mode | 95% CI a |
---|---|---|---|
ELISA b | Sensitivity | 92.1 | >87.3 |
Specificity | 71.9 | >63.0 | |
IHA c | Sensitivity | 36.0 | >26.7 |
Specificity | 58.2 | >50.4 | |
Disease prevalence | 35.7 | <42.8 |
Diagnostic Test | ELISA+ a | ELISA− b | Total |
---|---|---|---|
IHA+ c | 636 | 224 | 860 |
IHA‒ d | 265 | 111 | 376 |
Total | 901 | 335 | 1236 |
Diagnostic Tests | Parameters | Median | 95% PPI a |
---|---|---|---|
ELISA b | Sensitivity | 90.5 | 83.2–95.4 |
Specificity | 70.8 | 60.8–79.8 | |
IHA c | Sensitivity | 77.0 | 70.8–84.1 |
Specificity | 51.1 | 36.8–66.3 | |
Disease prevalence | 71.7 | 62.7–82.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singhla, T.; Tankaew, P.; Sthitmatee, N. Validation of a Novel ELISA for the Diagnosis of Hemorrhagic Septicemia in Dairy Cattle from Thailand Using a Bayesian Approach. Vet. Sci. 2020, 7, 163. https://doi.org/10.3390/vetsci7040163
Singhla T, Tankaew P, Sthitmatee N. Validation of a Novel ELISA for the Diagnosis of Hemorrhagic Septicemia in Dairy Cattle from Thailand Using a Bayesian Approach. Veterinary Sciences. 2020; 7(4):163. https://doi.org/10.3390/vetsci7040163
Chicago/Turabian StyleSinghla, Tawatchai, Pallop Tankaew, and Nattawooti Sthitmatee. 2020. "Validation of a Novel ELISA for the Diagnosis of Hemorrhagic Septicemia in Dairy Cattle from Thailand Using a Bayesian Approach" Veterinary Sciences 7, no. 4: 163. https://doi.org/10.3390/vetsci7040163
APA StyleSinghla, T., Tankaew, P., & Sthitmatee, N. (2020). Validation of a Novel ELISA for the Diagnosis of Hemorrhagic Septicemia in Dairy Cattle from Thailand Using a Bayesian Approach. Veterinary Sciences, 7(4), 163. https://doi.org/10.3390/vetsci7040163