Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drug Treatment
2.3. Measurement
2.4. Observation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Granholm, M.; McKusick, B.C.; Westerholm, F.C.; Aspegrén, J.C. Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole. Vet. Anaesth. Analg. 2006, 33, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Pollock, C.G.; Schumacher, J.; Orosz, S.E.; Ramsay, E.C. Sedative effects of medetomidine in pigeons (Columba livia). J. Avian Med. Surg. 2001, 15, 95–100. [Google Scholar] [CrossRef]
- Hayashi, K.; Nishimura, R.; Yamaki, A.; Kim, H.; Matsunaga, S.; Sasaki, N.; Takeuchi, A. Comparison of sedative effects induced by medetomidine, medetomidine-midazolam and medetomidine-butorphanol in dogs. J. Vet. Med. Sci. 1994, 56, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Rioja, E.; Kerr, C.L.; Enouri, S.S.; McDonell, W.N. Sedative and cardiopulmonary effects of medetomidine hydrochloride and xylazine hydrochloride and their reversal with atipamezole hydrochloride in calves. Am. J. Vet. Res. 2008, 69, 319–329. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jee, H.C.; Jeong, S.M.; Park, C.S.; Kim, M.C. Comparison of anaesthetic and cardiorespiratory effects of xylazine or medetomidine in combination with tiletamine/zolazepam in pigs. Vet. Rec. 2010, 167, 245–249. [Google Scholar] [CrossRef]
- Girard, N.M.; Leece, E.A.; Cardwell, J.; Adams, V.J.; Brearley, J.C. The sedative effects of low-dose medetomidine and butorphanol alone and in combination intravenously in dogs. Vet. Anaesth. Analg. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Bryant, C.E.; England, G.C.; Clarke, K.W. Comparison of the sedative effects of medetomidine and xylazine in horses. Vet. Rec. 1991, 129, 421–423. [Google Scholar] [CrossRef]
- Jalanka, H.H. Medetomidine- and medetomidine-ketamine-induced immobilization in blue foxes (Alopex lagopus) and its reversal by atipamezole. Acta Vet. Scand. 1990, 31, 63–71. [Google Scholar]
- England, G.C.W.; Clarke, K.W.; Goossens, L. A comparison of the sedative effects of three α 2 -adrenoceptor agonists (romifidine, detomidine and xylazine) in the horse. J. Vet. Pharmacol. Ther. 1992, 15, 194–201. [Google Scholar] [CrossRef]
- Rohrbach, H.; Korpivaara, T.; Schatzmann, U.; Spadavecchia, C. Comparison of the effects of the alpha-2 agonists detomidine, romifidine and xylazine on nociceptive withdrawal reflex and temporal summation in horses. Vet. Anaesth. Analg. 2009, 36, 384–395. [Google Scholar] [CrossRef]
- Hopfensperger, M.J.; Messenger, K.M.; Papich, M.G.; Sherman, B.L. The use of oral transmucosal detomidine hydrochloride gel to facilitate handling in dogs. J. Vet. Behav. 2013, 8, 114–123. [Google Scholar] [CrossRef]
- Bloor, B.C.; Frankland, M.; Alper, G.; Raybould, D.; Weitz, J.; Shurtliff, M. Hemodynamic and sedative effects of dexmedetomidine in dog. J. Pharmacol. Exp. Ther. 1992, 263, 690–697. [Google Scholar] [PubMed]
- Cagnardi, P.; Villa, R.; Ravasio, G.; Lucatello, L.; Di Cesare, F.; Capolongo, F.; Boccardo, A.; Pravettoni, D. Pharmacokinetics and sedative effects of dexmedetomidine in dairy calves. N. Z. Vet. J. 2017, 65, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Samimi, A.S.; Molaei, M.M.; Azari, O.; Ebrahimpour, F. Comparative evaluation of sedative and clinical effects of dexmedetomidine and xylazine in dromedary calves (Camelus dromedarius). Vet. Anaesth. Analg. 2020, 47, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Ede, T.; von Keyserlingk, M.A.G.; Weary, D.M. Efficacy of xylazine in neonatal calves via different routes of administration. Vet. J. 2019, 247, 57–60. [Google Scholar] [CrossRef]
- Figueiredo, J.; Muir, W.; Smith, J.; Wolfrom, G. Sedative and analgesic effects of romifidine in horses. Int. J. Appl. Res. Vet. Med. 2005, 3, 249–258. [Google Scholar]
- Selmi, A.L.; Barbudo-Selmi, G.R.; Mendes, G.M.; Figueiredo, J.P.; Lins, B.T. Sedative, analgesic and cardiorespiratory effects of romifidine in cats. Vet. Anaesth. Analg. 2004, 31, 195–206. [Google Scholar] [CrossRef]
- Navarrete, R.; Domínguez, J.M.; del Mar Granados, M.; Morgaz, J.; Fernández, A.; Gómez-Villamandos, R.J. Sedative effects of three doses of romifidine in comparison with medetomidine in cats. Vet. Anaesth. Analg. 2011, 38, 178–185. [Google Scholar] [CrossRef]
- England, G.C.W.; Flack, T.E.; Hollingworth, E.; Hammond, R. Sedative effects of romifidine in the dog. J. Small Anim. Pract. 1996, 37, 19–25. [Google Scholar] [CrossRef]
- Belda, E.; Laredo, F.G.; Escobar, M.; Soler, M.; Lucas, X.; Agut, A. Sedative and cardiorespiratory effects of three doses of romifidine in comparison with medetomidine in five cats. Vet. Rec. 2008, 162, 82–87. [Google Scholar] [CrossRef]
- Zeiler, G.E.; Dzikiti, B.T.; Fosgate, G.T.; Stegmann, F.G.; Venter, F.J.; Rioja, E. Anaesthetic, analgesic and cardiorespiratory effects of intramuscular medetomidine-ketamine combination alone or with morphine or tramadol for orchiectomy in cats. Vet. Anaesth. Analg. 2014, 41, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Harrison, K.A.; Robertson, S.A.; Levy, J.K.; Isaza, N.M. Evaluation of medetomidine, ketamine and buprenorphine for neutering feral cats. J. Feline Med. Surg. 2011, 13, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Grint, N.J.; Alderson, B.; Dugdale, A.H.A. A comparison of acepromazine-buprenorphine and medetomidine-buprenorphine for preanesthetic medication of dogs. J. Am. Vet. Med. Assoc. 2010, 237, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Curro, T.G.; Okeson, D.; Zimmerman, D.; Armstrong, D.L.; Simmons, L.G. Xylazine–midazolam–ketamine versus medetomidine–midazolam–ketamine anesthesia in captive siberian tigers (Panthera Tigris Altaica). J. Zoo Wildl. Med. 2004, 35, 320–327. [Google Scholar] [CrossRef]
- Miller, M.; Weber, M.; Neiffer, D.; Mangold, B.; Fontenot, D.; Stetter, M. Anesthetic induction of captive tigers (Panthera tigris) using a medetomidine–ketamine combination. J. Zoo Wildl. Med. 2003, 34, 307–308. [Google Scholar] [CrossRef]
- Shilo, Y.; Lapid, R.; King, R.; Bdolah-Abram, T.; Epstein, A. Immobilization of red fox (Vulpes vulpes) with medetomidine-ketamine or medetomidine-midazolam and antagonism with atipamezole. J. Zoo Wildl. Med. 2010, 41, 28–34. [Google Scholar] [CrossRef]
- Pratt, S.; Cunneen, A.; Perkins, N.; Farry, T.; Kidd, L.; McEwen, M.; Rainger, J.; Truchetti, G.; Goodwin, W. Total intravenous anaesthesia with ketamine, medetomidine and guaifenesin compared with ketamine, medetomidine and midazolam in young horses anaesthetised for computerised tomography. Equine Vet. J. 2019, 51, 510–516. [Google Scholar] [CrossRef]
- Sanchez, R.F.; Mellor, D.; Mould, J. Effects of medetomidine and medetomidine-butorphanol combination on Schirmer tear test 1 readings in dogs. Vet. Ophthalmol. 2006, 9, 33–37. [Google Scholar] [CrossRef]
- Kanda, T.; Ishihara, S.; Oka, M.; Sako, K.; Sato, Y.; Maeta, N.; Tamura, K.; Furumoto, K.; Furukawa, T. Temporal effects of intramuscular administration of medetomidine hydrochloride or xylazine hydrochloride to healthy dogs on tear flow measured by use of a schirmer tear test I. Am. J. Vet. Res. 2016, 77, 346–350. [Google Scholar] [CrossRef]
- Abdelhakiem, M.A.H.; Elmeligy, E.; Al-lethie, A. Effect of xylazine HCl and/or Ketamine HCl on the Tear production in clinically healthy dogs. Adv. Anim. Vet. Sci. 2019, 7, 1015–1020. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Stagnoli, A.; Zubin, E.; Boschi, P.; Sabbioni, A.; Simonazzi, B. The effect of intramuscular dexmedetomidine-butorphanol combination on tear production in dogs. Can. Vet. J. = La Rev. Vet. Can. 2019, 60, 55–59. [Google Scholar]
- Dodam, J.R.; Branson, K.R.; Martin, D.D. Effects of intramuscular sedative and opioid combinations on tear production in dogs. Vet. Ophthalmol. 1998, 1, 57–59. [Google Scholar] [CrossRef]
- Kanda, T.; Shimizu, Y.; Hanazono, C.; Maki, S.; Maeta, N.; Itoi, T.; Furumoto, K.; Okamura, Y.; Itoh, Y.; Furukawa, T. Effect of intramuscular administration of medetomidine and xylazine on tear flow measured by the Schirmer tear test I in healthy cats. J. Feline Med. Surg. 2018, 21, 788–792. [Google Scholar] [CrossRef]
- Ghaffari, M.S.; Malmasi, A.; Bokaie, S. Effect of acepromazine or xylazine on tear production as measured by Schirmer tear test in normal cats. Vet. Ophthalmol. 2010, 13, 1–3. [Google Scholar] [CrossRef]
- Selk Ghaffari, M.; Brooks, D.E.; Sabzevari, A.; Ghamsari, S.M.; Mansoor Lakooraj, H.; Shad, H. Effects of intravenous detomidine on schirmer tear test results in clinically normal horses. J. Equine Vet. Sci. 2017, 55, 97–99. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Dubau, M.; Sabbioni, A.; Simonazzi, B.; Angelone, M. Effects of intravenous romifidine, detomidine, detomidine combined with butorphanol, and xylazine on tear production in horses. Equine Vet. Educ. 2018. [Google Scholar] [CrossRef]
- Kanda, T.; Kajiyama, A.; Morimitsu, W.; Nishino, Y.; Oishi, Y.; Shimizu, Y.; Maeta, N.; Furumoto, K.; Itoh, Y.; Furukawa, T. Effect of medetomidine on tear flow measured by Schirmer tear test I in normal pigs. J. Vet. Med. Sci. 2019, 81, 538–540. [Google Scholar] [CrossRef]
- Moore, C.P. Disease and surgery of the lacrimal secretory system. In Veterinary ophthalmology; Gelatt, K.N., Ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 1999; pp. 583–607. [Google Scholar]
- Meng, I.D.; Barton, S.T.; Mecum, N.E.; Kurose, M. Corneal sensitivity following lacrimal gland excision in the rat. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3347–3354. [Google Scholar] [CrossRef]
- Rahmanian-Schwarz, A.; Held, M.; Knoeller, T.; Amr, A.; Schaller, H.-E.; Jaminet, P. The effect of repetitive intraperitoneal anesthesia by application of fentanyl-medetomidine and midazolam in laboratory rats. J. Investig. Surg. 2012, 25, 123–126. [Google Scholar] [CrossRef]
- Bellini, L.; Banzato, T.; Contiero, B.; Zotti, A. Evaluation of three medetomidine-based protocols for chemical restraint and sedation for non-painful procedures in companion rats (Rattus norvegicus). Vet. J. 2014, 200, 456–458. [Google Scholar] [CrossRef]
- Tsukamoto, A.; Niino, N.; Sakamoto, M.; Ohtani, R.; Inomata, T. The validity of anesthetic protocols for the surgical procedure of castration in rats. Exp. Anim. 2018, 67, 329–336. [Google Scholar] [CrossRef]
- Weber, R.; Ramos-Cabrer, P.; Wiedermann, D.; Van Camp, N.; Hoehn, M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006, 29, 1303–1310. [Google Scholar] [CrossRef]
- Hedenqvist, P.; Roughan, J.V.; Flecknell, P.A. Sufentanil and medetomidine anaesthesia in the rat and its reversal with atipamezole and butorphanol. Lab. Anim. 2000, 34, 244–251. [Google Scholar] [CrossRef]
- Hu, C.; Flecknell, P.A.; Liles, J.H. Fentanyl and medetomidine anaesthesia in the rat and its reversal using atipamazole and either nalbuphine or butorphanol. Lab. Anim. 1992, 26, 15–22. [Google Scholar] [CrossRef]
- Pawela, C.P.; Biswal, B.B.; Hudetz, A.G.; Schulte, M.L.; Li, R.; Jones, S.R.; Cho, Y.R.; Matloub, H.S.; Hyde, J.S. A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. Neuroimage 2009, 46, 1137–1147. [Google Scholar] [CrossRef]
- Weisse, I.; Hoefke, W.; Greenberg, S.; Gaida, W.; Stötzer, H.; Kreuzer, H. Ophthalmological and pharmacological studies after administration of clonidine in rats. Arch. Toxicol. 1978, 41, 89–98. [Google Scholar] [CrossRef]
- Brightman, A.H.; Manning, J.P.; Benson, G.J.; Musselman, E.E. Decreased tear production associated with general anesthesia in the horse. J. Am. Vet. Med. Assoc. 1983, 182, 243–244. [Google Scholar]
- Hegarty, D.M.; David, L.L.; Aicher, S.A. Lacrimal gland denervation alters tear protein composition and impairs ipsilateral eye closures and corneal nociception. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5217–5224. [Google Scholar] [CrossRef]
- Nakamura, S.; Kimura, Y.; Mori, D.; Imada, T.; Izuta, Y.; Shibuya, M.; Sakaguchi, H.; Oonishi, E.; Okada, N.; Matsumoto, K.; et al. Restoration of tear secretion in a murine dry eye model by oral administration of palmitoleic acid. Nutrients 2017, 9, 364. [Google Scholar] [CrossRef]
- Powell, C.C.; Martin, C.L. Distribution of cholinergic and adrenergic nerve fibers in the lacrimal glands of dogs. Am. J. Vet. Res. 1989, 50, 2084–2088. [Google Scholar]
- Ding, C.; Walcott, B.; Keyser, K.T. Sympathetic neural control of the mouse lacrimal gland. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1513–1520. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Verstegen, J.P. Hemodynamic Effects of Medetomidine in the Dog: A Dose Titration Study. Vet. Surg. 1998, 27, 612–622. [Google Scholar] [CrossRef]
- Lamont, L.A.; Bulmer, B.J.; Grimm, K.A.; Tranquilli, W.J.; Sisson, D.D. Cardiopulmonary evaluation of the use of medetomidine hydrochloride in cats. Am. J. Vet. Res. 2001, 62, 1745–1762. [Google Scholar] [CrossRef]
- Ding, C.; Walcott, B.; Keyser, K.T. The α1- and β1-Adrenergic Modulation of Lacrimal Gland Function in the Mouse. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1504–1510. [Google Scholar] [CrossRef]
- Ikeda-Kurosawa, C.; Higashio, H.; Nakano, M.; Okubo, M.; Satoh, Y.; Kurosaka, D.; Saino, T. α1-Adrenoceptors relate Ca2+ modulation and protein secretions in rat lacrimal gland. Biomed. Res. 2015, 36, 357–369. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanda, T.; Mizoguchi, Y.; Furumoto, K.; Shimizu, Y.; Maeta, N.; Furukawa, T. Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Vet. Sci. 2020, 7, 42. https://doi.org/10.3390/vetsci7020042
Kanda T, Mizoguchi Y, Furumoto K, Shimizu Y, Maeta N, Furukawa T. Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Veterinary Sciences. 2020; 7(2):42. https://doi.org/10.3390/vetsci7020042
Chicago/Turabian StyleKanda, Teppei, Yuka Mizoguchi, Kayo Furumoto, Yuki Shimizu, Noritaka Maeta, and Toshinori Furukawa. 2020. "Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats" Veterinary Sciences 7, no. 2: 42. https://doi.org/10.3390/vetsci7020042
APA StyleKanda, T., Mizoguchi, Y., Furumoto, K., Shimizu, Y., Maeta, N., & Furukawa, T. (2020). Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Veterinary Sciences, 7(2), 42. https://doi.org/10.3390/vetsci7020042