Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drug Treatment
2.3. Measurement
2.4. Observation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Granholm, M.; McKusick, B.C.; Westerholm, F.C.; Aspegrén, J.C. Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole. Vet. Anaesth. Analg. 2006, 33, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Pollock, C.G.; Schumacher, J.; Orosz, S.E.; Ramsay, E.C. Sedative effects of medetomidine in pigeons (Columba livia). J. Avian Med. Surg. 2001, 15, 95–100. [Google Scholar] [CrossRef]
- Hayashi, K.; Nishimura, R.; Yamaki, A.; Kim, H.; Matsunaga, S.; Sasaki, N.; Takeuchi, A. Comparison of sedative effects induced by medetomidine, medetomidine-midazolam and medetomidine-butorphanol in dogs. J. Vet. Med. Sci. 1994, 56, 951–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rioja, E.; Kerr, C.L.; Enouri, S.S.; McDonell, W.N. Sedative and cardiopulmonary effects of medetomidine hydrochloride and xylazine hydrochloride and their reversal with atipamezole hydrochloride in calves. Am. J. Vet. Res. 2008, 69, 319–329. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jee, H.C.; Jeong, S.M.; Park, C.S.; Kim, M.C. Comparison of anaesthetic and cardiorespiratory effects of xylazine or medetomidine in combination with tiletamine/zolazepam in pigs. Vet. Rec. 2010, 167, 245–249. [Google Scholar] [CrossRef]
- Girard, N.M.; Leece, E.A.; Cardwell, J.; Adams, V.J.; Brearley, J.C. The sedative effects of low-dose medetomidine and butorphanol alone and in combination intravenously in dogs. Vet. Anaesth. Analg. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Bryant, C.E.; England, G.C.; Clarke, K.W. Comparison of the sedative effects of medetomidine and xylazine in horses. Vet. Rec. 1991, 129, 421–423. [Google Scholar] [CrossRef]
- Jalanka, H.H. Medetomidine- and medetomidine-ketamine-induced immobilization in blue foxes (Alopex lagopus) and its reversal by atipamezole. Acta Vet. Scand. 1990, 31, 63–71. [Google Scholar]
- England, G.C.W.; Clarke, K.W.; Goossens, L. A comparison of the sedative effects of three α 2 -adrenoceptor agonists (romifidine, detomidine and xylazine) in the horse. J. Vet. Pharmacol. Ther. 1992, 15, 194–201. [Google Scholar] [CrossRef]
- Rohrbach, H.; Korpivaara, T.; Schatzmann, U.; Spadavecchia, C. Comparison of the effects of the alpha-2 agonists detomidine, romifidine and xylazine on nociceptive withdrawal reflex and temporal summation in horses. Vet. Anaesth. Analg. 2009, 36, 384–395. [Google Scholar] [CrossRef]
- Hopfensperger, M.J.; Messenger, K.M.; Papich, M.G.; Sherman, B.L. The use of oral transmucosal detomidine hydrochloride gel to facilitate handling in dogs. J. Vet. Behav. 2013, 8, 114–123. [Google Scholar] [CrossRef]
- Bloor, B.C.; Frankland, M.; Alper, G.; Raybould, D.; Weitz, J.; Shurtliff, M. Hemodynamic and sedative effects of dexmedetomidine in dog. J. Pharmacol. Exp. Ther. 1992, 263, 690–697. [Google Scholar] [PubMed]
- Cagnardi, P.; Villa, R.; Ravasio, G.; Lucatello, L.; Di Cesare, F.; Capolongo, F.; Boccardo, A.; Pravettoni, D. Pharmacokinetics and sedative effects of dexmedetomidine in dairy calves. N. Z. Vet. J. 2017, 65, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Samimi, A.S.; Molaei, M.M.; Azari, O.; Ebrahimpour, F. Comparative evaluation of sedative and clinical effects of dexmedetomidine and xylazine in dromedary calves (Camelus dromedarius). Vet. Anaesth. Analg. 2020, 47, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Ede, T.; von Keyserlingk, M.A.G.; Weary, D.M. Efficacy of xylazine in neonatal calves via different routes of administration. Vet. J. 2019, 247, 57–60. [Google Scholar] [CrossRef]
- Figueiredo, J.; Muir, W.; Smith, J.; Wolfrom, G. Sedative and analgesic effects of romifidine in horses. Int. J. Appl. Res. Vet. Med. 2005, 3, 249–258. [Google Scholar]
- Selmi, A.L.; Barbudo-Selmi, G.R.; Mendes, G.M.; Figueiredo, J.P.; Lins, B.T. Sedative, analgesic and cardiorespiratory effects of romifidine in cats. Vet. Anaesth. Analg. 2004, 31, 195–206. [Google Scholar] [CrossRef]
- Navarrete, R.; Domínguez, J.M.; del Mar Granados, M.; Morgaz, J.; Fernández, A.; Gómez-Villamandos, R.J. Sedative effects of three doses of romifidine in comparison with medetomidine in cats. Vet. Anaesth. Analg. 2011, 38, 178–185. [Google Scholar] [CrossRef]
- England, G.C.W.; Flack, T.E.; Hollingworth, E.; Hammond, R. Sedative effects of romifidine in the dog. J. Small Anim. Pract. 1996, 37, 19–25. [Google Scholar] [CrossRef]
- Belda, E.; Laredo, F.G.; Escobar, M.; Soler, M.; Lucas, X.; Agut, A. Sedative and cardiorespiratory effects of three doses of romifidine in comparison with medetomidine in five cats. Vet. Rec. 2008, 162, 82–87. [Google Scholar] [CrossRef]
- Zeiler, G.E.; Dzikiti, B.T.; Fosgate, G.T.; Stegmann, F.G.; Venter, F.J.; Rioja, E. Anaesthetic, analgesic and cardiorespiratory effects of intramuscular medetomidine-ketamine combination alone or with morphine or tramadol for orchiectomy in cats. Vet. Anaesth. Analg. 2014, 41, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, K.A.; Robertson, S.A.; Levy, J.K.; Isaza, N.M. Evaluation of medetomidine, ketamine and buprenorphine for neutering feral cats. J. Feline Med. Surg. 2011, 13, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Grint, N.J.; Alderson, B.; Dugdale, A.H.A. A comparison of acepromazine-buprenorphine and medetomidine-buprenorphine for preanesthetic medication of dogs. J. Am. Vet. Med. Assoc. 2010, 237, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Curro, T.G.; Okeson, D.; Zimmerman, D.; Armstrong, D.L.; Simmons, L.G. Xylazine–midazolam–ketamine versus medetomidine–midazolam–ketamine anesthesia in captive siberian tigers (Panthera Tigris Altaica). J. Zoo Wildl. Med. 2004, 35, 320–327. [Google Scholar] [CrossRef]
- Miller, M.; Weber, M.; Neiffer, D.; Mangold, B.; Fontenot, D.; Stetter, M. Anesthetic induction of captive tigers (Panthera tigris) using a medetomidine–ketamine combination. J. Zoo Wildl. Med. 2003, 34, 307–308. [Google Scholar] [CrossRef]
- Shilo, Y.; Lapid, R.; King, R.; Bdolah-Abram, T.; Epstein, A. Immobilization of red fox (Vulpes vulpes) with medetomidine-ketamine or medetomidine-midazolam and antagonism with atipamezole. J. Zoo Wildl. Med. 2010, 41, 28–34. [Google Scholar] [CrossRef]
- Pratt, S.; Cunneen, A.; Perkins, N.; Farry, T.; Kidd, L.; McEwen, M.; Rainger, J.; Truchetti, G.; Goodwin, W. Total intravenous anaesthesia with ketamine, medetomidine and guaifenesin compared with ketamine, medetomidine and midazolam in young horses anaesthetised for computerised tomography. Equine Vet. J. 2019, 51, 510–516. [Google Scholar] [CrossRef]
- Sanchez, R.F.; Mellor, D.; Mould, J. Effects of medetomidine and medetomidine-butorphanol combination on Schirmer tear test 1 readings in dogs. Vet. Ophthalmol. 2006, 9, 33–37. [Google Scholar] [CrossRef]
- Kanda, T.; Ishihara, S.; Oka, M.; Sako, K.; Sato, Y.; Maeta, N.; Tamura, K.; Furumoto, K.; Furukawa, T. Temporal effects of intramuscular administration of medetomidine hydrochloride or xylazine hydrochloride to healthy dogs on tear flow measured by use of a schirmer tear test I. Am. J. Vet. Res. 2016, 77, 346–350. [Google Scholar] [CrossRef]
- Abdelhakiem, M.A.H.; Elmeligy, E.; Al-lethie, A. Effect of xylazine HCl and/or Ketamine HCl on the Tear production in clinically healthy dogs. Adv. Anim. Vet. Sci. 2019, 7, 1015–1020. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Stagnoli, A.; Zubin, E.; Boschi, P.; Sabbioni, A.; Simonazzi, B. The effect of intramuscular dexmedetomidine-butorphanol combination on tear production in dogs. Can. Vet. J. = La Rev. Vet. Can. 2019, 60, 55–59. [Google Scholar]
- Dodam, J.R.; Branson, K.R.; Martin, D.D. Effects of intramuscular sedative and opioid combinations on tear production in dogs. Vet. Ophthalmol. 1998, 1, 57–59. [Google Scholar] [CrossRef]
- Kanda, T.; Shimizu, Y.; Hanazono, C.; Maki, S.; Maeta, N.; Itoi, T.; Furumoto, K.; Okamura, Y.; Itoh, Y.; Furukawa, T. Effect of intramuscular administration of medetomidine and xylazine on tear flow measured by the Schirmer tear test I in healthy cats. J. Feline Med. Surg. 2018, 21, 788–792. [Google Scholar] [CrossRef]
- Ghaffari, M.S.; Malmasi, A.; Bokaie, S. Effect of acepromazine or xylazine on tear production as measured by Schirmer tear test in normal cats. Vet. Ophthalmol. 2010, 13, 1–3. [Google Scholar] [CrossRef]
- Selk Ghaffari, M.; Brooks, D.E.; Sabzevari, A.; Ghamsari, S.M.; Mansoor Lakooraj, H.; Shad, H. Effects of intravenous detomidine on schirmer tear test results in clinically normal horses. J. Equine Vet. Sci. 2017, 55, 97–99. [Google Scholar] [CrossRef]
- Leonardi, F.; Costa, G.L.; Dubau, M.; Sabbioni, A.; Simonazzi, B.; Angelone, M. Effects of intravenous romifidine, detomidine, detomidine combined with butorphanol, and xylazine on tear production in horses. Equine Vet. Educ. 2018. [Google Scholar] [CrossRef]
- Kanda, T.; Kajiyama, A.; Morimitsu, W.; Nishino, Y.; Oishi, Y.; Shimizu, Y.; Maeta, N.; Furumoto, K.; Itoh, Y.; Furukawa, T. Effect of medetomidine on tear flow measured by Schirmer tear test I in normal pigs. J. Vet. Med. Sci. 2019, 81, 538–540. [Google Scholar] [CrossRef]
- Moore, C.P. Disease and surgery of the lacrimal secretory system. In Veterinary ophthalmology; Gelatt, K.N., Ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 1999; pp. 583–607. [Google Scholar]
- Meng, I.D.; Barton, S.T.; Mecum, N.E.; Kurose, M. Corneal sensitivity following lacrimal gland excision in the rat. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3347–3354. [Google Scholar] [CrossRef]
- Rahmanian-Schwarz, A.; Held, M.; Knoeller, T.; Amr, A.; Schaller, H.-E.; Jaminet, P. The effect of repetitive intraperitoneal anesthesia by application of fentanyl-medetomidine and midazolam in laboratory rats. J. Investig. Surg. 2012, 25, 123–126. [Google Scholar] [CrossRef]
- Bellini, L.; Banzato, T.; Contiero, B.; Zotti, A. Evaluation of three medetomidine-based protocols for chemical restraint and sedation for non-painful procedures in companion rats (Rattus norvegicus). Vet. J. 2014, 200, 456–458. [Google Scholar] [CrossRef]
- Tsukamoto, A.; Niino, N.; Sakamoto, M.; Ohtani, R.; Inomata, T. The validity of anesthetic protocols for the surgical procedure of castration in rats. Exp. Anim. 2018, 67, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.; Ramos-Cabrer, P.; Wiedermann, D.; Van Camp, N.; Hoehn, M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006, 29, 1303–1310. [Google Scholar] [CrossRef]
- Hedenqvist, P.; Roughan, J.V.; Flecknell, P.A. Sufentanil and medetomidine anaesthesia in the rat and its reversal with atipamezole and butorphanol. Lab. Anim. 2000, 34, 244–251. [Google Scholar] [CrossRef]
- Hu, C.; Flecknell, P.A.; Liles, J.H. Fentanyl and medetomidine anaesthesia in the rat and its reversal using atipamazole and either nalbuphine or butorphanol. Lab. Anim. 1992, 26, 15–22. [Google Scholar] [CrossRef]
- Pawela, C.P.; Biswal, B.B.; Hudetz, A.G.; Schulte, M.L.; Li, R.; Jones, S.R.; Cho, Y.R.; Matloub, H.S.; Hyde, J.S. A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. Neuroimage 2009, 46, 1137–1147. [Google Scholar] [CrossRef] [Green Version]
- Weisse, I.; Hoefke, W.; Greenberg, S.; Gaida, W.; Stötzer, H.; Kreuzer, H. Ophthalmological and pharmacological studies after administration of clonidine in rats. Arch. Toxicol. 1978, 41, 89–98. [Google Scholar] [CrossRef]
- Brightman, A.H.; Manning, J.P.; Benson, G.J.; Musselman, E.E. Decreased tear production associated with general anesthesia in the horse. J. Am. Vet. Med. Assoc. 1983, 182, 243–244. [Google Scholar]
- Hegarty, D.M.; David, L.L.; Aicher, S.A. Lacrimal gland denervation alters tear protein composition and impairs ipsilateral eye closures and corneal nociception. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5217–5224. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Kimura, Y.; Mori, D.; Imada, T.; Izuta, Y.; Shibuya, M.; Sakaguchi, H.; Oonishi, E.; Okada, N.; Matsumoto, K.; et al. Restoration of tear secretion in a murine dry eye model by oral administration of palmitoleic acid. Nutrients 2017, 9, 364. [Google Scholar] [CrossRef]
- Powell, C.C.; Martin, C.L. Distribution of cholinergic and adrenergic nerve fibers in the lacrimal glands of dogs. Am. J. Vet. Res. 1989, 50, 2084–2088. [Google Scholar]
- Ding, C.; Walcott, B.; Keyser, K.T. Sympathetic neural control of the mouse lacrimal gland. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1513–1520. [Google Scholar] [CrossRef] [Green Version]
- Pypendop, B.H.; Verstegen, J.P. Hemodynamic Effects of Medetomidine in the Dog: A Dose Titration Study. Vet. Surg. 1998, 27, 612–622. [Google Scholar] [CrossRef]
- Lamont, L.A.; Bulmer, B.J.; Grimm, K.A.; Tranquilli, W.J.; Sisson, D.D. Cardiopulmonary evaluation of the use of medetomidine hydrochloride in cats. Am. J. Vet. Res. 2001, 62, 1745–1762. [Google Scholar] [CrossRef]
- Ding, C.; Walcott, B.; Keyser, K.T. The α1- and β1-Adrenergic Modulation of Lacrimal Gland Function in the Mouse. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1504–1510. [Google Scholar] [CrossRef] [Green Version]
- Ikeda-Kurosawa, C.; Higashio, H.; Nakano, M.; Okubo, M.; Satoh, Y.; Kurosaka, D.; Saino, T. α1-Adrenoceptors relate Ca2+ modulation and protein secretions in rat lacrimal gland. Biomed. Res. 2015, 36, 357–369. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanda, T.; Mizoguchi, Y.; Furumoto, K.; Shimizu, Y.; Maeta, N.; Furukawa, T. Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Vet. Sci. 2020, 7, 42. https://doi.org/10.3390/vetsci7020042
Kanda T, Mizoguchi Y, Furumoto K, Shimizu Y, Maeta N, Furukawa T. Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Veterinary Sciences. 2020; 7(2):42. https://doi.org/10.3390/vetsci7020042
Chicago/Turabian StyleKanda, Teppei, Yuka Mizoguchi, Kayo Furumoto, Yuki Shimizu, Noritaka Maeta, and Toshinori Furukawa. 2020. "Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats" Veterinary Sciences 7, no. 2: 42. https://doi.org/10.3390/vetsci7020042
APA StyleKanda, T., Mizoguchi, Y., Furumoto, K., Shimizu, Y., Maeta, N., & Furukawa, T. (2020). Effect of Intramuscular Medetomidine Administration on Tear Flow in Rats. Veterinary Sciences, 7(2), 42. https://doi.org/10.3390/vetsci7020042