Horses as a Crucial Part of One Health
Abstract
:1. Introduction
2. The Horse-environment Relationship
3. The Domestic Horse-human Relationship
3.1. Horse-rider Interactions
3.2. Equine Assisted Therapy
3.3. Socioeconomic Impact of Working Horses
4. Horses in the Medical Field
5. Zoonotic Diseases
6. Non-communicable Diseases
7. Risk Factors
7.1. Climate Change
7.2. Antimicrobial Resistance
7.3. Emerging Diseases
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. One Health. Available online: https://www.who.int/features/qa/one-health/en/ (accessed on 24 February 2020).
- World Health Organization. Neglected Tropical Diseases. Available online: https://www.who.int/neglected_diseases/diseases/en/ (accessed on 24 February 2020).
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Shanko, K.; Kemal, J.; Kenea, D. A Review on Confronting Zoonoses: The Role of Veterinarian and Physician. J. Vet. Sci. Technol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Prasad, S.B.; Rongpi, T.; Arjun, J. Traditional healing with animals (zootherapy) by the major ethnic group of Karbi Anglong district of Assam, India. Int. J. Pharm. Pharm. Sci. 2014, 6, 593–600. [Google Scholar]
- Beever, E.A.; Huntsinger, L.; Petersen, S.L. Conservation challenges emerging from free-roaming horse management: A vexing social-ecological mismatch. Biol. Conserv. 2018, 226, 321–328. [Google Scholar] [CrossRef]
- Beever, E.A.; Herrick, J.E. Effects of feral horses in Great Basin landscapes on soils and ants: Direct and indirect mechanisms. J. Arid Environ. 2006, 66, 96–112. [Google Scholar] [CrossRef]
- Ostermann-Kelm, S.D.; Atwill, E.A.; Rubin, E.S.; Hendrickson, L.E.; Boyce, W.M. Impacts of feral horses on a desert environment. BMC Ecol. 2009, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Valdes-Correcher, E.; Sitters, J.; Wassen, M.; Brion, N.; Venterink, H.O. Herbivore dung quality affects plant community diversity. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Beever, E.A.; Brussard, P.F. Community- and landscape-level responses of reptiles and small mammals to feral-horse grazing in the Great Basin. J. Arid Environ. 2004, 59, 271–297. [Google Scholar] [CrossRef]
- Cherubin, R.C.; Venn, S.E.; Driscoll, D.A.; Doherty, T.S.; Ritchie, E.G. Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecol. Manag. Restor. 2019, 20, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ostermann-Kelm, S.; Atwill, E.R.; Rubin, E.S.; Jorgensen, M.C.; Boyce, W.M. Interactions between feral horses and desert bighorn sheep at water. J. Mammal. 2008, 89, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Perry, N.D.; Morey, P.; San Miguel, G. Dominance of a Natural Water Source by Feral Horses. Southwest Nat. 2015, 60, 390–393. [Google Scholar] [CrossRef]
- Zalba, S.M.; Cozzani, N.C. The impact of feral horses on grassland bird communities in Argentina. Anim. Conserv. 2004, 7, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Vilstrup, J.T.; Seguin-Orlando, A.; Stiller, M.; Ginolhac, A.; Raghavan, M.; Nielsen, S.C.; Weinstock, J.; Froese, D.; Vasiliev, S.K.; Ovodov, N.D.; et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS ONE 2013, 8, e55950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.E.; Gibson, D.J. The effect of seeds of exotic species transported via horse dung on vegetation along trail corridors. Plant Ecol. 2001, 157, 23–35. [Google Scholar] [CrossRef]
- Lopez-Bao, J.V.; Sazatornil, V.; Llaneza, L.; Rodriguez, A. Indirect Effects on Heathland Conservation and Wolf Persistence of Contradictory Policies that Threaten Traditional Free- Ranging Horse Husbandry. Conserv. Lett. 2013, 6, 448–455. [Google Scholar] [CrossRef]
- Levin, P.S.; Ellis, J.; Petrik, R.; Hay, M.E. Indirect effects of feral horses on estuarine communities. Conserv. Biol. 2002, 16, 1364–1371. [Google Scholar] [CrossRef]
- Nimmo, D.G.; Miller, K.K. Ecological and human dimensions of management of feral horses in Australia: A review. Wildl. Res. 2007, 34, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, M.; Brown, W.Y.; Lee, C.; Hinch, G.N. Browse-related behaviors of pastured horses in Australia: A survey. J. Vet. Behav. 2015, 10, 48–53. [Google Scholar] [CrossRef]
- Warmuth, V.; Eriksson, A.; Bower, M.A.; Barker, G.; Barrett, E.; Hanks, B.K.; Li, S.C.; Lomitashvili, D.; Ochir-Goryaeva, M.; Sizonov, G.V.; et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc. Natl. Acad. Sci. USA 2012, 109, 8202–8206. [Google Scholar] [CrossRef] [Green Version]
- Gullone, E. The Biophilia Hypothesis and Life in the 21st Century: Increasing Mental Health or Increasing Pathology? Happiness Stud. 2000, 1, 293–322. [Google Scholar] [CrossRef]
- Barnard-Nguyen, S.; Breit, M.; Anderson, K.A.; Nielsen, J. Pet Loss and Grief: Identifying At-risk Pet Owners during the Euthanasia Process. Anthrozoos 2016, 29, 421–430. [Google Scholar] [CrossRef]
- Hausberger, M.; Roche, H.; Henry, S.; Visser, E.K. A review of the human-horse relationship. Appl. Anim. Behav. Sci. 2008, 109, 1–24. [Google Scholar] [CrossRef]
- Pawshe, M.D.; Badhe, S.R.; Khedkar, C.D.; Pawshe, R.D.; Pundkar, A.Y. Horse Meat. Encycl. Food Health 2016, 3, 353–356. [Google Scholar]
- Harris, M. The Cultural Ecology of India’s Sacred Cattle. Curr. Anthropol. 1992, 33, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Koenig, H.G. Research on religion, spirituality, and mental health: A review. Can. J. Psychiatry 2009, 54, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Rebay-Salisbury, R. Horses, Wagons, and Chariots. Oxford Handbooks Online. 2018. Available online: https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199696826.001.0001/oxfordhb-9780199696826-e-36 (accessed on 24 February 2020).
- Fabech, C.; Näsman, U. The Sösdala Horsemen and the Equestrian Elite of Fifth Century Europe; Aarhus University Press: Aarhus, Denmark, 2017. [Google Scholar]
- Bisdent. “Epona.” Ancient History Encyclopedia. Last modified January 18, 2012. Available online: https://www.ancient.eu/article/153/ (accessed on 24 February 2020).
- Eckardt, F.; Witte, K. Horse-Rider Interaction: A New Method Based on Inertial Measurement Units. J. Equine Vet. Sci. 2017, 55, 1–8. [Google Scholar] [CrossRef]
- Williams, J.; Tabor, G. Rider impacts on equitation. Appl. Anim. Behav. Sci. 2017, 190, 28–42. [Google Scholar] [CrossRef]
- Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S. Kinematic evaluation of the back in the sport horse with back pain. Equine Vet. J. 2004, 36, 707–711. [Google Scholar] [CrossRef]
- Kraft, C.N.; Urban, N.; Ilg, A.; Wallny, T.; Scharfstadt, A.; Jager, M.; Pennekamp, P.H. [Influence of the riding discipline and riding intensity on the incidence of back pain in competitive horseback riders]. Sportverletz Sportschaden 2007, 21, 29–33. [Google Scholar] [CrossRef]
- Von Borstel, U.K.; Visser, E.K.; Hall, C. Indicators of stress in equitation. Appl. Anim. Behav. Sci. 2017, 190, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Benda, W.; McGibbon, N.H.; Grant, K.L. Improvements in muscle symmetry in children with cerebral palsy after equine-assisted therapy (hippotherapy). J. Altern. Complem. Med. 2003, 9, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Zadnikar, M.; Kastrin, A. Effects of hippotherapy and therapeutic horseback riding on postural control or balance in children with cerebral palsy: A meta-analysis. Dev. Med. Child Neurol. 2011, 53, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Silkwood-Sherer, D.; Warmbier, H. Effects of hippotherapy on postural stability, in persons with multiple sclerosis: A pilot study. J. Neurol. Phys. 2007, 31, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollenweber, V.; Drache, M.; Schickendantz, S.; Gerber-Grote, A.; Schiller, P.; Pohlau, D. Study of the effectiveness of hippotherapy on the symptoms of multiple sclerosis-Outline of a randomised controlled multicentre study (MS-HIPPO). Contemp. Clin. Trials Commun. 2016, 3, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Champagne, D.; Dugas, C. Improving gross motor function and postural control with hippotherapy in children with Down syndrome: Case reports. Physiother. Theory Pract. 2010, 26, 564–571. [Google Scholar] [CrossRef]
- Ajzenman, H.F.; Standeven, J.W.; Shurtleff, T.L. Effect of Hippotherapy on Motor Control, Adaptive Behaviors, and Participation in Children With Autism Spectrum Disorder: A Pilot Study. Am. J. Occup. Ther. 2013, 67, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Beinotti, F.; Christofoletti, G.; Correia, N.; Borges, G. Effects of Horseback Riding Therapy on Quality of Life in Patients Post Stroke. Top. Stroke Rehabil. 2013, 20, 226–232. [Google Scholar] [CrossRef]
- Sung, Y.H.; Kim, C.J.; Yu, B.K.; Kim, K.M. A hippotherapy simulator is effective to shift weight bearing toward the affected side during gait in patients with stroke. NeuroRehabilitation 2013, 33, 407–412. [Google Scholar] [CrossRef]
- Winchester, P.; Kendall, K.; Peters, H.; Sears, N.; Winkley, T. The effect of therapeutic horseback riding on gross motor function and gait speed in children who are developmentally delayed. Phys. Occup. Pediatr. 2002, 22, 37–50. [Google Scholar] [CrossRef]
- Meregillano, G. Hippotherapy. Phys. Med. Rehabil. Clin. N. Am. 2004, 15, 843–854. [Google Scholar] [CrossRef]
- Gabriels, R.L.; Pan, Z.; Dechant, B.; Agnew, J.A.; Brim, N.; Mesibov, G. Randomized Controlled Trial of Therapeutic Horseback Riding in Children and Adolescents with Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraceno, B.; Barbui, C. Poverty and mental illness. Can. J. Psychiatry 1997, 42, 285–290. [Google Scholar] [CrossRef]
- Pritchard, J.; Upjohn, M.; Hirson, T. Improving working equine welfare in ‘hardwin’ situations, where gains are difficult, expensive or marginal. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigatu, A.; Abebaw, Z. Socioeconomic impact of Epizootic Lymphangitis (EL) on horse- drawn Taxi business in central Ethiopia. In Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre, New Delhi, India, 29 November–2 December 2010; pp. 83–86. [Google Scholar]
- Chang, C.R.; Sapón, M.; Rodríguez, D. Economic valuation of the impact of the working equine in the peten and chimaltenango communities in Guatemala. In Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre, New Delhi, India, 29 November–2 December 2010; pp. 106–110. [Google Scholar]
- Pritchard, J. What role do working equids play in human livelihoods–and how well is this currently recognised? In Proceedings of the 7th International Colloquium on Working Equids, University of London, London, UK, 1–3 July 2014; pp. 2–6. [Google Scholar]
- Walker-Okello, A. Opportunities for NGOs involved with the draught sector to contribute to national livestock policy frameworks in developing countries. In Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre, New Delhi, India, 29 November–2 December 2010; pp. 80–82. [Google Scholar]
- Kumar, R.S.; Tomar, R.; Kumar, P.R.; Nath, S.; Murugan, G.; Ramesh, S. Comparioson of different working equine communities: Their welfare and socio-economic status in Gwalior, India. In Proceedings of the 6th International Colloquium on Working Equids, India Habitat Centre, New Delhi, India, 29 November–2 December 2010; pp. 96–99. [Google Scholar]
- Kaufmann, S.H.E. Remembering Emil von Behring: From Tetanus Treatment to Antibody Cooperation with Phagocytes. mBio 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Morais, J.F.; Defreitas, M.C.W.; Yamaguchi, I.K.; Dossantos, M.C.; Dasilva, W.D. Snake Antivenoms from Hyperimmunized Horses-Comparison of the Antivenom Activity and Biological Properties of Their Whole Igg and F(Ab’)(2) Fragments. Toxicon 1994, 32, 725–734. [Google Scholar] [CrossRef]
- Maharana, S.; Behera, T.R.; Pattanaik, N. Serum Sickness in Patients Receiving Equine Rabies Immunoglobulin. J. Commun. Dis. 2018, 50, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Kojis, F.G. Serum sickness and anaphylaxis: Analysis of cases of 6,211 patients treated with horse serum for various infections. Am. J. Dis. Child. 1942, 14, 101. [Google Scholar] [CrossRef]
- Wilde, H.; Chomchey, P.; Punyaratabandhu, P.; Phanupak, P.; Chutivongse, S. Purified Equine Rabies Immune Globulin-a Safe and Affordable Alternative to Human Rabies Immune Globulin. Bull. World Health Organ. 1989, 67, 731–736. [Google Scholar]
- Scheel, T.K.H.; Kapoor, A.; Nishiuchi, E.; Brock, K.V.; Yu, Y.P.; Andrus, L.; Gu, M.G.; Renshaw, R.W.; Dubovi, E.J.; McDonough, S.P.; et al. Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc. Natl. Acad. Sci. USA 2015, 112, 2192–2197. [Google Scholar] [CrossRef] [Green Version]
- Tegtmeyer, B.; Echelmeyer, J.; Pfankuche, V.M.; Puff, C.; Todt, D.; Fischer, N.; Durham, A.; Feige, K.; Baumgartner, W.; Steinmann, E.; et al. Chronic equine hepacivirus infection in an adult gelding with severe hepatopathy. Vet. Med. Sci. 2019, 5, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Klier, J.; Bartl, C.; Geuder, S.; Geh, K.J.; Reese, S.; Goehring, L.S.; Winter, G.; Gehlen, H. Immunomodulatory asthma therapy in the equine animal model: A dose-response study and evaluation of a long-term effect. Immun. Inflamm. Dis. 2019, 7, 130–149. [Google Scholar] [CrossRef] [PubMed]
- Wilke, M.M.; Nydam, D.V.; Nixon, A.J. Enhanced early Chondrogenesis in articular defects following arthroscopic mesenchymal stem celli implantation in an equine model. J. Orthop. Res. 2007, 25, 913–925. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C.W.; Fortier, L.A.; Frisbie, D.D.; Nixon, A.J. Equine Models of Articular Cartilage Repair. Cartilage 2011, 2, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fureix, C.; Jego, P.; Henry, S.; Lansade, L.; Hausberger, M. Towards an Ethological Animal Model of Depression? A Study on Horses. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Kumar, B.; Manuja, A.; Gulati, B.R.; Virmani, N.; Tripathi, B.N. Zoonotic Viral Diseases of Equines and Their Impact on Human and Animal Health. Open Virol. J. 2018, 12, 80–98. [Google Scholar] [CrossRef] [Green Version]
- Reperant, L.A.; MacKenzie, J.; Osterhaus, A. Periodic global One Health threats update. One Health 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Day, M.J. One health: The importance of companion animal vector-borne diseases. Parasites Vectors 2011, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Van der Kolk, J.H. The equine species as Trojan horse for Borna Disease Virus-1? Vet. Quart. 2018, 38, 126–128. [Google Scholar] [CrossRef] [Green Version]
- Nobach, D.; Bourg, M.; Herzog, S.; Lange-Herbst, H.; Encarnacao, J.A.; Eickmann, M.; Herden, C. Shedding of Infectious Borna Disease Virus-1 in Living Bicolored White-Toothed Shrews. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Weese, J.S. A Review of Equine Zoonotic Diseases: Risks in Veterinary Medicine. In Proceedings of the Annual Convention of the AAEP, Orlando, FL, USA, 4–8 December 2002; pp. 362–369. [Google Scholar]
- Middleton, D.; Pallister, J.; Klein, R.; Feng, Y.R.; Haining, J.; Arkinstall, R.; Frazer, L.; Huang, J.A.; Edwards, N.; Wareing, M.; et al. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg. Infect. Dis. 2014, 20, 372–379. [Google Scholar] [CrossRef]
- Rupprecht, C.E.; Hanlon, C.A.; Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2002, 2, 327–343. [Google Scholar] [CrossRef]
- Martella, V.; Banyai, K.; Matthijnssens, J.; Buonavoglia, C.; Ciarlet, M. Zoonotic aspects of rotaviruses. Vet. Microbiol. 2010, 140, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shope, R.E. Arbovirus-Related Encephalitis. Yale J. Biol. Med. 1980, 53, 93–99. [Google Scholar] [PubMed]
- Rozo-Lopez, P.; Drolet, B.S.; Londono-Renteria, B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Nunamaker, R.A.; Perez De Leon, A.A.; Campbell, C.L.; Lonning, S.M. Oral infection of Culicoides sonorensis (Diptera: Ceratopogonidae) by vesicular stomatitis virus. J. Med. Entomol. 2000, 37, 784–786. [Google Scholar] [CrossRef]
- Campbell, G.L.; Marfin, A.A.; Lanciotti, R.S.; Gubler, D.J. West Nile virus. Lancet Infect. Dis. 2002, 2, 519–529. [Google Scholar] [CrossRef]
- Uehlinger, F.D.; Clancey, N.P.; Lofstedt, J. Granulocytic anaplasmosis in a horse from Nova Scotia caused by infection with Anaplasma phagocytophilum. Can. Vet. J. 2011, 52, 537–540. [Google Scholar]
- Gajardo, G.; Uberti, B.; Paredes, E. Anthrax in a horse and post-exposure interventions. J. Equine Vet. Sci. 2016, 39, 37–38. [Google Scholar] [CrossRef] [Green Version]
- Schuch, R.; Fischetti, V.A. The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.L.; McAdams-Gallagher, S.C.; Aceto, H. Accuracy of a Mouse Bioassay for the Diagnosis of Botulism in Horses. J. Vet. Intern. Med. 2016, 30, 1293–1299. [Google Scholar] [CrossRef] [Green Version]
- Njoga, E.O.; Onunkwo, J.I.; Ekere, S.O.; Njoga, U.J.; Okoro, W.N. Seroepidemiology of Equine Brucellosis and Role of Horse Carcass Processors in Spread of Brucella Infection in Enugu State, Nigeria. Int. J. Curr. Res. Rev. 2018, 10, 39–45. [Google Scholar] [CrossRef]
- Pappas, G. The changing Brucella ecology: Novel reservoirs, new threats. Int. J. Antimicrob. Agents 2010, 36 (Suppl. 1), S8–S11. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.; Riley, T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zandt, K.E.; Greer, M.T.; Gelhaus, H.C. Glanders: An overview of infection in humans. Orphanet J. Rare Dis. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Wieler, L.H.; Melzer, F.; Elschner, M.C.; Muhammad, G.; Ali, S.; Sprague, L.D.; Neubauer, H.; Saqib, M. Glanders in Animals: A Review on Epidemiology, Clinical Presentation, Diagnosis and Countermeasures. Transbound. Emerg. Dis. 2013, 60, 204–221. [Google Scholar] [CrossRef]
- Adler, B.; Moctezuma, A.D. Leprospira and leptospirosis. Vet. Microbiol. 2010, 140, 287–296. [Google Scholar] [CrossRef]
- Lehmann, B.; Straubinger, R.K.; Gehlen, H. Borreliose beim Pferd – Eine Literaturstudie unter Berücksichtigung aktueller Diagnose und Therapieverfahren sowie Präventionsmaßnahmen. Pferdeheilkunde–Equine Med. 2017, 33, 363–370. [Google Scholar] [CrossRef]
- Kaspar, U.; von Lutzau, K.; Schlattmann, A.; Rosler, U.; Kock, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Vazquez-Boland, J.A.; Giguere, S.; Hapeshi, A.; MacArthur, I.; Anastasi, E.; Valero-Rello, A. Rhodococcus equi: The many facets of a pathogenic actinomycete. Vet. Microbiol. 2013, 167, 9–33. [Google Scholar] [CrossRef]
- Cummings, K.J.; Perkins, G.A.; Khatibzadeh, S.M.; Warnick, L.D.; Aprea, V.A.; Altier, C. Antimicrobial resistance trends among Salmonella isolates obtained from horses in the northeastern United States (2001-2013). Am. J. Vet. Res. 2016, 77, 505–513. [Google Scholar] [CrossRef]
- Khurana, S.K.; Dhama, K.; Prasad, M.; Karthik, K.; Tiwari, R. Zoonotic Pathogens Transmitted from Equines: Diagnosis and Control. Adv. Anim. Vet. Sci. 2015, 3, 32–53. [Google Scholar] [CrossRef]
- Pelkonen, S.; Lindahl, S.B.; Suomala, P.; Karhukorpi, J.; Vuorinen, S.; Koivula, I.; Vaisanen, T.; Pentikainen, J.; Autio, T.; Tuuminen, T. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg. Infect. Dis. 2013, 19, 1041–1048. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; de Nardi, G.; Megid, J.; Franco, M.M.J.; Guerra, S.T.; Portilho, F.V.R.; Rodrigues, S.A.; Paes, A.C. Tetanus in horses: An overview of 70 cases. Pesqui Vet Bras. 2018, 38, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Mukarim, A.; Dechassa, T.; Mahendra, P. Equine Bacterial and Viral Zoonosis: A Systematic Review. Austin J. Trop. Med. Hyg. 2015, 1, 1–6. [Google Scholar]
- Burton, A.J.; Nydam, D.V.; Dearen, T.K.; Mitchell, K.; Bowman, D.D.; Xiao, L. The prevalence of Cryptosporidium, and identification of the Cryptosporidium horse genotype in foals in New York State. Vet. Parasitol. 2010, 174, 139–144. [Google Scholar] [CrossRef]
- Demircan, K.; Onder, Z.; Duzlu, O.; Yildirim, A.; Okur, M.; Ciloglu, A.; Yetismis, G.; Inci, A. First Molecular Detection and Phylogenetic Analyses of Zoonotic Giardia intestinalis in Horses in Turkey. J. Equine Vet. Sci. 2019, 80, 56–60. [Google Scholar] [CrossRef]
- Adam, R.D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 2001, 14, 447–475. [Google Scholar] [CrossRef] [Green Version]
- Venturi, S.S.; da Silva, A.F.; Frazao-Teixeira, E.; de Oliveira, F.C.R.; Consalter, A.; Padilha, F.G.F.; Fonseca, A.B.M.; Ferreira, A.M.R. Characterization of the zoonotic potential of Toxoplasma gondii in horses from Rio de Janeiro State. Acta Trop. 2017, 171, 159–162. [Google Scholar] [CrossRef]
- Sofronic-Milosavljevic, L.; Pozio, E.; Patrascu, I.V.; Skerovic, N.; Gomez Morales, M.A.; Gamble, H.R. Immunodiagnosis of Trichinella infection in the horse. Parasite 2001, 8, S260–S262. [Google Scholar] [CrossRef] [Green Version]
- Pozio, E.; Hoberg, E.; La Rosa, G.; Zarlenga, D.S. Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infect. Genet. Evol. 2009, 9, 606–616. [Google Scholar] [CrossRef]
- Maurice, M.N.; Kazeem, H.M.; Kwanashie, C.N.; Maurice, N.A.; Ngbede, E.O.; Adamu, H.N.; Mshelia, W.P.; Edeh, R.E. Equine Dermatophytosis: A Survey of Its Occurrence and Species Distribution among Horses in Kaduna State, Nigeria. Scientifica 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 24 February 2020).
- Reesink, H.L.; Nixon, A.J.; Su, J.; Liu, S.; Sutton, R.M.; Mann, S.; Watts, A.E.; Peterson, R.P. Galectins-1 and-3 Increase in Equine Post-traumatic Osteoarthritis. Front Vet. Sci. 2018, 5, 288. [Google Scholar] [CrossRef]
- Cooper, J.J.; Albentosa, M.J. Behavioural adaptation in the domestic horse: Potential role of apparently abnormal responses including stereotypic behaviour. Livest Prod. Sci. 2005, 92, 177–182. [Google Scholar] [CrossRef]
- Waters, A.J.; Nicol, C.J.; French, N.P. Factors influencing the development of stereotypic and redirected behaviours in young horses: Findings of a four year prospective epidemiological study. Equine Vet. J. 2002, 34, 572–579. [Google Scholar] [CrossRef] [Green Version]
- McAfee, L.M.; Mills, D.S.; Cooper, J.J. The use of mirrors for the control of stereotypic weaving behaviour in the stabled horse. Appl. Anim. Behav. Sci. 2002, 78, 159–173. [Google Scholar] [CrossRef]
- Mcgreevy, P.D.; French, N.P.; Nicol, C.J. The Prevalence of Abnormal Behaviors in Dressage, Eventing and Endurance Horses in Relation to Stabling. Vet. Rec. 1995, 137, 36–37. [Google Scholar] [CrossRef]
- Morgan, R.; Keen, J.; McGowan, C. Equine metabolic syndrome. Vet. Rec. 2015, 177, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, M.; Sarkijarvi, S.; Hyyppa, S. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials. Animals 2015, 5, 965–977. [Google Scholar] [CrossRef] [Green Version]
- Elfman, L.; Riihimaki, M.; Pringle, J.; Walinder, R. Influence of horse stable environment on human airways. J. Occup. Med. Toxicol. 2009, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Diseases A-Z: Horses. Available online: https://www.petmd.com/horse/conditions (accessed on 24 February 2020).
- Webster, A.J. Farm animal welfare: The five freedoms and the free market. Vet. J. 2001, 161, 229–237. [Google Scholar] [CrossRef]
- Kraft, C.N.; Pennekamp, P.H.; Becker, U.; Young, M.; Diedrich, O.; Luring, C.; von Falkenhausen, M. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: Correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am. J. Sports Med. 2009, 37, 2205–2213. [Google Scholar] [CrossRef]
- Assembly, U.G. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf (accessed on 24 February 2020).
- Patz, J.A.; Hahn, M.B. Climate Change and Human Health: A One Health Approach. Curr. Top. Microbiol. 2013, 366, 141–171. [Google Scholar] [CrossRef]
- De la Roque, S.; Rioux, J.A.; Slingenbergh, J. Climate change: Effects on animal disease systems and implications for surveillance and control. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 2008, 27, 339–354. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Toreti, A.; Bassu, S.; Ceglar, A.; Zampieri, M. Climte Change and Crop Yields. Encycl. Food Secur. Sustain. 2018, 1, 223–227. [Google Scholar] [CrossRef]
- Gilbert, M.; Slingenbergh, J.; Xiao, X. Climate change and avian influenza. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 2008, 27, 459–466. [Google Scholar] [CrossRef]
- Hamer, S.A.; Goldberg, T.L.; Kitron, U.D.; Brawn, J.D.; Anderson, T.K.; Loss, S.R.; Walker, E.D.; Hamer, G.L. Wild Birds and Urban Ecology of Ticks and Tick-borne Pathogens, Chicago, Illinois, USA, 2005-2010. Emerg. Infect. Dis. 2012, 18, 1589–1595. [Google Scholar] [CrossRef]
- Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, migration and emerging zoonoses: West nile virus, lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2003, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Swetnam, D.; Widen, S.G.; Wood, T.G.; Reyna, M.; Wilkerson, L.; Debboun, M.; Symonds, D.A.; Mead, D.G.; Beaty, B.J.; Guzman, H.; et al. Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerg. Infect. Dis. 2018, 24, 2184–2194. [Google Scholar] [CrossRef] [Green Version]
- Zoller, L.; Faulde, M.; Meisel, H.; Ruh, B.; Kimmig, P.; Schelling, U.; Zeier, M.; Kulzer, P.; Becker, C.; Roggendort, M.; et al. Seroprevalence of Hantavirus Antibodies in Germany as Determined by a New Recombinant Enzyme-Immunoassay. Eur. J. Clin. Microbiol. 1995, 14, 305–313. [Google Scholar] [CrossRef]
- Frumkin, H.; Haines, A. Global Environmental Change and Noncommunicable Disease Risks. Annu. Rev. Public Health 2019, 40, 261–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friel, S.; Bowen, K.; Campbell-Lendrum, D.; Frumkin, H.; McMichael, A.J.; Rasanathan, K. Climate Change, Noncommunicable Diseases, and Development: The Relationships and Common Policy Opportunities. Annu. Rev. Public Health 2011, 32, 133–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starr, M.P.; Reynolds, D.M. Streptomycin Resistance of Coliform Bacteria from Turkeys Fed Streptomycin. Am. J. Public Health 1951, 41, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Argudin, M.A.; Deplano, A.; Meghraoui, A.; Dodemont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics 2017, 6. [Google Scholar] [CrossRef]
- Harbarth, S.; Balkhy, H.H.; Goossens, H.; Jarlier, V.; Kluytmans, J.; Laxminarayan, R.; Saam, M.; Van Belkum, A.; Pittet, D.; Healthcare-Associated, W. Antimicrobial resistance: One world, one fight! Antimicrob. Resist. Infect. Control 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.G.; Cissell, R.; Liamthong, S. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Ungemach, F.R.; Mueller-Bahrdt, D.; Abraham, G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. Int. J. Med. Microbiol. 2006, 296, 33–38. [Google Scholar] [CrossRef]
- Maddox, T.W.; Clegg, P.D.; Williams, N.J.; Pinchbeck, G.L. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Equine Vet. J. 2015, 47, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Cuny, C.; Friedrich, A.; Kozytska, S.; Layer, F.; Nubel, U.; Ohlsen, K.; Strommenger, B.; Walther, B.; Wieler, L.; Witte, W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol. 2010, 300, 109–117. [Google Scholar] [CrossRef]
- Cuny, C.; Abdelbary, M.M.H.; Kock, R.; Layer, F.; Scheidemann, W.; Werner, G.; Witte, W. Methicillin-resistant Staphylococcus aureus from infections in horses in Germany are frequent colonizers of veterinarians but rare among MRSA from infections in humans. One Health 2016, 2, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Van Duijkeren, E.; ten Horn, L.; Wagenaar, J.A.; de Bruijn, M.; Laarhoven, L.; Verstappen, K.; de Weerd, W.; Meessen, N.; Duim, B. Suspected Horse-to-Human Transmission of MRSA ST398. Emerg. Infect. Dis. 2011, 17, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.P.; Brady, T.H.; Couetil, L.L.; Liljebjelke, K.; Maurer, J.J.; Wu, C.C. Investigation and control of an outbreak of salmonellosis caused by multidrug-resistant Salmonella typhimurium in a population of hospitalized horses. Vet. Microbiol. 2005, 107, 233–240. [Google Scholar] [CrossRef]
- Isgren, C. Antimicrobial resistance in horses. Vet. Rec. 2018, 183, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, L.J.; James, K.; Mapes, S.M.; Theelen, M.J.; Pusterla, N. Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA. Vet. J. 2017, 220, 91–94. [Google Scholar] [CrossRef]
- Menachery, V.D.; Graham, R.L.; Baric, R.S. Jumping species-a mechanism for coronavirus persistence and survival. Curr. Opin. Virol. 2017, 23, 1–7. [Google Scholar] [CrossRef]
Transmission | |||||||
---|---|---|---|---|---|---|---|
Direct | Indirect | ||||||
Disease | Pathogen | Family | Reservoir | Vector | Vehicle | Reference | |
Viruses | |||||||
Borna Z | Borna Disease Virus-1 | Bornaviridae | Shrew species (Crocidura leucodon) | Olfactory route | [68,69] | ||
Eastern Equine Encephalitis Virus Z,E | Alphavirus | Togaviridae | Wild birds and rodents | Aedes, Culiseta, Culex | [65,70] | ||
Hendra Z,E | Hendravirus | Paramyxoviridae | flying fox (Pteropus bats) | Nasal discharge | [71] | ||
Rabies Z | Lyssavirus | Rhabdoviridae | Chiroptera and Carnivora | Infected tissues and fluids, esp. salvia and liquor of CNS | [70,72] | ||
Rota Z | Group-A-Rotavirus | Reoviridae | Human and animals | Fecal-oral route | [73] | ||
Venezuelan Equine Encephalitis Z,E | Alphavirus | Togaviridae | Rodents | Culex | [70,74] | ||
Vesicular Stomatitis Z | Vesiculovirus | Rhabdoviridae | Unclear, Grasshoppers (Orthoptera: Acrididae) could serve as reservoir | Infected tissues and fluids | Flies Lutzomyia and Simulidae, Mosquito Aedes and Midges Culcoides | [75,76] | |
West Nile Virus Z,E | Flavivirus | Flaviviridae | Birds (mainly Corvidae) | Culex | [77] | ||
Western Equine Encephalitis Z,E | Alphavirus | Togaviridae | Wild birds | Culex and Culiseta | [70,74] | ||
Bacteria | |||||||
Anaplasmosis Z | Anaplasma phagocytophilum | Birds | Ticks (Ixodes species) | [78] | |||
Anthrax Z | Bacillus anthracis | Spore-contaminated environment | Direct contact | Contaminated objects and premises | [79,80] | ||
Botulism Z | Clostridium botulinum | Spore-contaminated environment | Woundinfection | Spore-contaminated food, Inhalation | [81] | ||
Bruccelosis Z | Brucella abortus and Brucella suis | Wildboar, Elk | Infected tissues or fluids | Inhalation in overcrowded areas or consumption of raw meat or undercooked animal products | [82,83] | ||
Clostridiosis Z | Clostridium difficile | ubiquitous | Direct contact | Spore-contaminated environment incl. Food and airborne | [84] | ||
Glanders Z | Burgholderia Mallei | Horses, donkeys and mules | Invasion of abraded or lacerated skin | Inhalation with deep lung deposition | [85,86] | ||
Leptospirosis Z | Leptospira interrogans | Rodents | Infected urine and other fluids | Contaminated soil or water | [70,87] | ||
Lyme Borreliose Z | Borrelia burgdorferi | Rodents and Birds | Tick (Ixodes ricinus) | [88] | |||
Methicillin-Resistant Staphylococcus aureus (MRSA) Z,E | Strains of Staphylococcus aureus | Human | Direct contact | Contaminated environment | [89] | ||
Rhodococcus Equi Z | Rhodococcus equi | Environmental saprotroph | unclear, probably contaminated environment | [90] | |||
Salmonellosis Z | Samonella enterica ssp. enterica serovar typhimurium | Livestock | Fecal-oral route | Foodborne when using infected manure of horses | [91,92] | ||
Streptococcus Z | Streptococcus equi subsp. zooepidemicus | Horse | Direct contact | [93] | |||
Tetanus Z | Clostridium tetani | Soil or feces of horses and livestock | Contaminated environment | [94] | |||
Tuberculosis Z | Mycobacteria avium, bovis and turberculosis | Aerosol and food-borne | [95] | ||||
Parasites | |||||||
Cryptosporidiosis Z | Cryptosporidium parvum | Cattle, Horse and pets | Handling infected animal | Food- and waterborne | [96] | ||
Giardiasis Z | Giardia intestinalis (lamblia) | Mammals and human | Handling infected animal Fecal oral route | Food- and waterborne | [97,98] | ||
Toxoplasmose Z | Toxoplasma gondii | cats | Foodborne by consumption of contaminated horse meat, waterborne | [99] | |||
Trichinellosis Z | Trichinella | Rodents, wildboar and domestic swine | Foodborne by consumption of contaminated horse meat | [100,101] | |||
Fungal infections | |||||||
Dermatophysosis Z | Microsporum canis Micosporum gypseum Trichophyton verrucosum Trichophyton mentagrophytes Trichophyton equinum | Cats and dogs Soil Bovine Rodents and camels Horses | Grooming, touching | Contaminated objects | [102] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lönker, N.S.; Fechner, K.; Abd El Wahed, A. Horses as a Crucial Part of One Health. Vet. Sci. 2020, 7, 28. https://doi.org/10.3390/vetsci7010028
Lönker NS, Fechner K, Abd El Wahed A. Horses as a Crucial Part of One Health. Veterinary Sciences. 2020; 7(1):28. https://doi.org/10.3390/vetsci7010028
Chicago/Turabian StyleLönker, Nelly Sophie, Kim Fechner, and Ahmed Abd El Wahed. 2020. "Horses as a Crucial Part of One Health" Veterinary Sciences 7, no. 1: 28. https://doi.org/10.3390/vetsci7010028