Digestibility Is Similar between Commercial Diets That Provide Ingredients with Different Perceived Glycemic Responses and the Inaccuracy of Using the Modified Atwater Calculation to Calculate Metabolizable Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Diets and Design
2.3. Chemical Analyses and Calculations
2.4. In Vitro Energy Digestibility
2.5. Statistical Analyses
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Verbrugghe, A.; Hesta, M.; Daminet, S.; Polis, I.; Holst, J.J.; Buyse, J.; Wuyts, B.; Janssens, G.P.J. Propionate absorbed from the colon acts as gluconeogenic substrate in a strict carnivore, the domestic cat (felis catus). J. Anim. Physiol. Anim. Nutr. 2012, 96, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- De-Oliveira, L.D.; Carciofi, A.C.; Oliveira, M.C.C.; Vasconcellos, R.S.; Bazolli, R.S.; Pereira, G.T.; Prada, F. Effects of six carbohydrate sources on diet digestibility and postprandial glucose and insulin responses in cats. J. Anim. Sci. 2008, 86, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Gooding, M.A.; Atkinson, J.L.; Duncan, I.J.H.; Niel, L.; Shoveller, A.K. Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement. J. Nutr. Sci. 2015, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.; Kirk, C. Cats and carbohydrates—What are the concerns? In Proceedings of the NAVC Conference, Orlando, FL, USA, 17–21 January 2009. [Google Scholar]
- Tran, Q.D.; Hendriks, W.H.; van der Poell, A.F.B. Effects of extrusion processing on nutrients in dry pet food. J. Sci. Food Agric. 2008, 88, 1487–1493. [Google Scholar] [CrossRef]
- Livesey, G. A perspective on food energy standards for nutrition labelling. Br. J. Nutr. 2001, 85, 271–287. [Google Scholar] [CrossRef] [PubMed]
- AAFCO. Association of American Feed Control Officials: Official Publication; Association of American Feed Control Officials: Atlanta, GA, USA, 2012. [Google Scholar]
- Atwater, W.O. Principles of Nutrition and Nutritive Value of Foods; Department of Agriculture: Washington, DC, USA, 1916; p. 12.
- AAFCO. Association of American Feed Control Officials: Official Publication; Association of American Feed Control Officials: Atlanta, GA, USA, 1997. [Google Scholar]
- Kendall, P.T.; Holme, D.W.; Smith, P.M. Comparative-evaluation of net digestive and absorptive efficiency in dogs and cats fed a variety of contrasting diet types. J. Small Anim. Pract. 1982, 23, 577–587. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dogs and Cats; National Academic Press: Washington, DC, USA, 2006; pp. 26–30. ISBN 0-309-08628-0.
- Rand, J.; Farrow, H.; Fleeman, L.; Appleton, D. Diet in the Prevention of Diabetes and Obesity in Companion Animals. Available online: http://apjcn.nhri.org.tw/server/apjcn/procnutsoc/2000+/2003/Rand.pdf (accessed on 12 June 2017).
- Miller, J.B.; Pang, E.; Bramall, L. Rice—A high or low glycemic index food. Am. J. Clin. Nutr. 1992, 56, 1034–1036. [Google Scholar]
- AOAC. Official Methods of Analyses; Association of Official Analytical Chemists: Arlington, VA, USA, 1997. [Google Scholar]
- Huang, G.; Sauer, W.C.; He, J.; Hwangbo, J.; Wang, X. The nutritive value of hulled and hulless barley for growing pigs. 1. Determination of energy and protein digestibility with the in vivo and in vitro method. J. Anim. Feed Sci. 2003, 12, 759–769. [Google Scholar] [CrossRef]
- Hewson-Hughes, A.K.; Hewson-Hughes, V.L.; Miller, A.T.; Hall, S.R.; Simpson, S.J.; Raubenheimer, D. Geometric analysis of macronutrient selection in the adult domestic cat, felis catus. J. Exp. Biol. 2011, 214, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Backus, R.C.; Cave, N.J.; Keisler, D.H. Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. Br. J. Nutr. 2007, 98, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Coradini, M.; Rand, J.S.; Morton, J.M.; Rawlings, J.M. Effects of two commercially available feline diets on glucose and insulin concentrations, insulin sensitivity and energetic efficiency of weight gain. Br. J. Nutr. 2011, 106, S64–S77. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, G.; Zhang, T.; Zhang, H.; Gao, X.; Xing, X.; Zhao, J.; Yang, F. Effects of dietary protein level on nutrients digestibility and reproductive performance of female mink (neovison vison) during gestation. Anim. Nutr. 2015, 1, 65–69. [Google Scholar] [CrossRef]
- Graham-Thiers, P.M.; Bowen, L.K. Effect of protein source on nitrogen balance and plasma amino acids in exercising horses. J. Anim. Sci. 2011, 89, 729–735. [Google Scholar] [CrossRef] [PubMed]
- SaloVaananen, P.P.; Koivistoinen, P.E. Determination of protein in foods: Comparison of net protein and crude protein (nx6.25) values. Food Chem. 1996, 57, 27–31. [Google Scholar] [CrossRef]
- Bryden, W.L.; Li, X. Amino Acid Digestibility and Poultry Feed Formulation: Expression, Limitations and Application. Available online: http://www.scielo.br/pdf/rbz/v39sspe/31.pdf (accessed on 21 May 2017).
- Schaafsma, G. The protein digestibility-corrected amino acid score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [PubMed]
- Caine, W.R.; Sauer, W.C.; Tamminga, S.; Verstegen, M.W.A.; Schulze, H. Apparent ileal digestibilities of amino acids in newly weaned pigs fed diets with protease-treated soybean meal. J. Anim. Sci. 1997, 75, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.M.; Moughan, P.J.; Wilson, M.N.; Maher, K.; Tasmanjones, C. Comparison of the ileal and fecal digestibility of dietary amino-acids in adult humans and evaluation of the pig as a model animal for digestion studies in man. Br. J. Nutr. 1994, 71, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.J.; Choct, M. Chemical and physical characteristics of grains related to variability in energy and amino acid availability in poultry. Aust. J. Agric. Res. 1999, 50, 689–702. Available online: https://ses.library.usyd.edu.au//bitstream/2123/2262/1/Hughes_R.J._and_Choct_M._1999.pdf (accessed on 24 March 2017). [CrossRef]
- Kane, E.; Morris, J.G.; Rogers, Q.R. Acceptability and digestibility by adult cats of diets made with various sources and levels of fat. J. Anim. Sci. 1981, 53, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Corwin, R.; Jaramillo, D.P.; Wojnicki, F.J.; Coupland, J.N. Acceptability and digestibility of emulsions in a rat model: Effects of solid fat content and lipid type. J. Am. Oil Chem. Soc. 2011, 88, 235–241. [Google Scholar] [CrossRef]
- Earle, K.E.; Kienzle, E.; Opitz, B.; Smith, P.M.; Maskell, I.E. Fiber affects digestibility of organic matter and energy in pet foods. J. Nutr. 1998, 128, 2798S–2800S. Available online: http://jn.nutrition.org/content/128/12/2798S.full (accessed on 22 March 2017). [PubMed]
- Fekete, S.; Hullar, I.; Andrasofszky, E.; Rigo, Z.; Berkenyi, T. Reduction of the energy density of cat foods by increasing their fibre content with a view to nutrients' digestibility. J. Anim. Physiol. Anim. Nutr. 2001, 85, 200–204. [Google Scholar] [CrossRef]
- Ahlstrom, O.; Skrede, A. Comparative nutrient digestibility in dogs, blue foxes, mink and rats. J. Nutr. 1998, 128, 2676S–2677S. Available online: http://jn.nutrition.org/content/128/12/2676S.short (accessed on 11 April 2017). [PubMed]
- Thiess, S.; Becskei, C.; Tomsa, K.; Lutz, T.A.; Wanner, M. Effects of high carbohydrate and high fat diet on plasma metabolite levels and on iv glucose tolerance test in intact and neutered mate cats. J. Feline Med. Surg. 2004, 6, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Marini, J.C.; Van Amburgh, M.E. Nitrogen metabolism and recycling in holstein heifers. J. Anim. Sci. 2003, 81, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Tome, D.; Bos, C. Dietary protein and nitrogen utilization. J. Nutr. 2000, 130, 1868S–1873S. [Google Scholar] [PubMed]
- Kerr, K.R.; Boler, B.M.V.; Morris, C.L.; Liu, K.J.; Swanson, K.S. Apparent total tract energy and macronutrient digestibility and fecal fermentative end-product concentrations of domestic cats fed extruded, raw beef-based, and cooked beef-based diets. J. Anim. Sci. 2012, 90, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Yamka, R.M.; McLeod, K.R.; Harmon, D.L.; Freetly, H.C.; Schoenherr, W.D. The impact of dietary protein source on observed and predicted metabolizable energy of dry extruded dog foods. J. Anim. Sci. 2007, 85, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, C.; Hervera, M.; Dolores Baucells, M. Methods for Predicting the Energy Value of Pet Foods. Available online: http://www.scielo.br/scielo.php?pid=S1516-35982009001300001&script=sci_arttext&tlng=es (accessed on 28 March 2017).
- Kienzle, E.; Opitz, B.; Earle, K.E.; Smith, P.M.; Maskell, I.E.; Iben, C. The development of an improved method of predicting the energy content in prepared dog and cat food. J. Anim. Physiol. Anim. Nutr. 1998, 79, 69–79. [Google Scholar] [CrossRef]
- Laflamme, D.P. Determining metabolizable energy content in commercial pet foods. J. Anim. Physiol. Anim. Nutr. 2001, 85, 222–230. [Google Scholar] [CrossRef]
- Hall, J.A.; Melendez, L.D.; Jewell, D.E. Using gross energy improves metabolizable energy predictive equations for pet foods whereas undigested protein and fiber content predict stool quality. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pet Care in Canada; Euromonitor International Plc: London, UK, 2017; Available online: http://www.euromonitor.com/pet-care-in-canada/report (accessed on 25 May 2017).
- Bureau of Nutritional Sciences. Policy for Labelling and Advertising of Dietary Fiber-Containing Food Products; Health Canada: Ottawa, ON, Canada, 2017. Available online: https://www.canada.ca/en/health-canada/services/publications/food-nutrition/labelling-advertising-dietary-fibre-food-products.html (accessed on 22 March 2017).
Item | HighPGR 2 | MediumPGR 3 | LowPGR 4 |
---|---|---|---|
Moisture, % | 7.16 | 6.76 | 5.31 |
Ash, % | 6.36 | 6.31 | 6.38 |
Crude protein 5, % | 38.02 | 35.86 | 42.06 |
Crude fat, % | 10.83 | 20.02 | 20.42 |
Nitrogen-free extract 6, % | 34.1 | 29.5 | 23.6 |
Starch 7, % | 36.75 | 30.72 | 23.56 |
Crude fiber, % | 1.17 | 1.78 | 2.58 |
Acid detergent fiber, % | 1.88 | 2.95 | 2.43 |
Neutral detergent fiber, % | 7.36 | 12.58 | 10.57 |
Available lysine, % | 1.62 | 1.91 | 2.80 |
GE, kcal/kg | 4916 | 5253 | 5462 |
Calculated ME 8 | 3752 | 4081 | 4137 |
Item | HighPGR | MediumPGR | LowPGR | SEM 1 | p-Value |
---|---|---|---|---|---|
Fecal score 2 | 4.0 | 4.0 | 3.7 | 0.06 | 0.229 |
Fecal output (wet), g/day | 12.2 a | 15.5 b | 16.1 c | 3.95 | 0.050 |
Fecal DM, % | 39.7 | 37.3 | 36.8 | 1.03 | 0.328 |
Fecal output (100% DM), g/day | 4.8 a | 5.8 b | 5.5 a,b | 0.20 | 0.022 |
Fecal output (wet), g/day | 0.07 | 0.08 | 0.08 | 0.01 | 0.369 |
Fecal output (wet) (g)/100 g DM intake | 30.8 | 36.7 | 37.3 | 1.65 | 0.267 |
Fecal energy (cal/g day−1) | 3576 | 3555 | 3478 | 24.7 | 0.243 |
Urine energy (cal/g day−1) | 155 | 143 | 172 | 9.16 | 0.437 |
Urine N (mg/mL) | 3.52 a | 3.36 a | 4.12 b | 0.10 | 0.003 |
Item | HighPGR | MediumPGR | LowPGR | SEM 1 | p-Value |
---|---|---|---|---|---|
Food intake, g/day | 42.8 a | 45.0 b | 45.1 b | 1.2 | <0.001 |
Protein intake, g/day | 14.9 a | 15.0 a | 17.6 b | 0.49 | <0.001 |
Fat intake, g/day | 6.7 a | 10.0 b | 10.3 c | 0.37 | <0.001 |
Fiber intake, g/day | 0.8 a | 1.1 b | 1.4 c | 0.05 | <0.001 |
NFE 2 intake, g/day Calculated NFE intake (kJ/day) 3 | 14.6 a 244.4 | 13.3 b 222.6 | 10.6 c 177.4 | 0.45 | <0.001 |
GE intake, kcal/day | 210.2 a | 236.4 b | 246.2 c | 6.90 | <0.001 |
DM digestibility, % | 87.6 | 86.2 | 87.0 | 0.41 | 0.128 |
DMD 4, % | 91.14 | 90.74 | 92.70 | ||
OM digestibility, % | 90.9 a | 89.5 b | 90.3 a,b | 1.03 | 0.031 |
Protein digestibility, % | 88.7 a | 87.3 b | 91.4 c | 0.49 | <0.001 |
Fat digestibility, % | 92.9 a | 95.4 b | 95.0 b | 0.25 | <0.001 |
Name | HighPGR | MediumPGR | LowPGR | SEM 1 | p-Value |
---|---|---|---|---|---|
Fecal energy, kcal/day | 18.97 | 23.12 | 21.37 | 0.82 | 0.116 |
Urinary energy, kcal/day | 11.42 a | 11.25 a | 13.86 b | 0.41 | 0.011 |
GE, kcal/100 g diet | 491.6 a | 525.3 b | 546.9 c | 3.2 | <0.001 |
Fecal energy, kcal/100 g diet | 44.37 | 50.38 | 47.46 | 1.6 | 0.353 |
Urinary energy, kcal/100 g diet | 19.84 a | 17.31 b | 20.02 c | 0.4 | <0.001 |
Measured ME, kcal/100 g diet | 426.0 a | 457.4 b | 478.7 c | 3.6 | <0.001 |
Calculated ME 2, kcal/100 g diet | 375.2 | 408.1 | 413.7 |
Name | HighPGR | MediumPGR | LowPGR |
---|---|---|---|
Measured ME, kcal/kg as fed | 4259 a | 4574 b | 4787 c |
Calculated ME, kcal/kg as fed | |||
Modified Atwater 1 | 3752 | 4081 | 4137 |
Traditional Atwater 2 NRC 3 | 4176 3778 | 4505 4301 | 4565 4413 |
Calorie surplus per day (kcal/day) | |||
Modified Atwater | 21.7 | 22.2 | 29.3 |
Traditional Atwater NRC | 3.6 21.1 | 3.1 12.1 | 10 16.4 |
Calorie surplus per day, % | |||
Modified Atwater | 11.9 | 10.8 | 13.6 |
Traditional Atwater NRC | 2.0 11.3 | 1.5 6.0 | 4.6 7.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asaro, N.J.; Guevara, M.A.; Berendt, K.; Zijlstra, R.; Shoveller, A.K. Digestibility Is Similar between Commercial Diets That Provide Ingredients with Different Perceived Glycemic Responses and the Inaccuracy of Using the Modified Atwater Calculation to Calculate Metabolizable Energy. Vet. Sci. 2017, 4, 54. https://doi.org/10.3390/vetsci4040054
Asaro NJ, Guevara MA, Berendt K, Zijlstra R, Shoveller AK. Digestibility Is Similar between Commercial Diets That Provide Ingredients with Different Perceived Glycemic Responses and the Inaccuracy of Using the Modified Atwater Calculation to Calculate Metabolizable Energy. Veterinary Sciences. 2017; 4(4):54. https://doi.org/10.3390/vetsci4040054
Chicago/Turabian StyleAsaro, Natalie J., Marcial A. Guevara, Kimberley Berendt, Ruurd Zijlstra, and Anna K. Shoveller. 2017. "Digestibility Is Similar between Commercial Diets That Provide Ingredients with Different Perceived Glycemic Responses and the Inaccuracy of Using the Modified Atwater Calculation to Calculate Metabolizable Energy" Veterinary Sciences 4, no. 4: 54. https://doi.org/10.3390/vetsci4040054
APA StyleAsaro, N. J., Guevara, M. A., Berendt, K., Zijlstra, R., & Shoveller, A. K. (2017). Digestibility Is Similar between Commercial Diets That Provide Ingredients with Different Perceived Glycemic Responses and the Inaccuracy of Using the Modified Atwater Calculation to Calculate Metabolizable Energy. Veterinary Sciences, 4(4), 54. https://doi.org/10.3390/vetsci4040054