Cats and Carbohydrates: The Carnivore Fantasy?
Abstract
:1. Introduction
2. Definition, Classification and Function of Dietary Carbohydrates
2.1. Classification of Carbohydrates
2.2. Glucose Metabolism and Homeostasis
3. Carbohydrate Digestion and Absorption
3.1. Reduced Digestive Enzyme Capacity
3.2. Alterations of Monosaccharide Absorption
3.3. Carbohydrate Digestibility
4. Carbohydrate Metabolism
4.1. Lack of Glucokinase Activity and Possible Compensation Mechanisms
4.2. High Gluconeogenic Activity and Link with Protein Requirement
5. Taste, Food Selection and Macronutrient Balancing
5.1. Feline Sweet Blindness
5.2. Nutritional Geometry
6. Carbohydrates in Pet Food
6.1. Conventional Dry and Canned Pet Foods
6.2. Alternative Pet Diets
7. Energy Efficiency, Weight Gain and Obesity
7.1. Risk Factors of Feline Obesity
7.2. Macronutrients and Weight Gain
8. Diabetes Mellitus, Insulin Sensitivity and Postprandial Glycaemia
8.1. Risk Factors of Feline Diabetes Mellitus
8.2. The Carbohydrate-Diabetes Hypothesis
8.3. Response to Intravenous Glucose and Oral Carbohydrate Administration
8.4. Macronutrients and Glucose Tolerance
8.5. Low-Carbohydrate Diets as Diabetes Treatment
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Plantinga, E.A.; Bosch, G.; Hendriks, W.H. Estimation of the dietary nutrient profile of free-roaming feral cats: Possible implications for nutrition of domestic cats. Br. J. Nutr. 2011, 106, S35–S48. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.L.; Rogers, Q.R.; Morris, J.G. Nutrition of the domestic cat, a mammalian carnivore. Annu. Rev. Nutr. 1984, 4, 521–562. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G. Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Rev. 2002, 15, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Zoran, D.L. The carnivore connection to nutrition in cats. J. Am. Vet. Med. Assoc. 2002, 221, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Verbrugghe, A.; Hesta, M.; Daminet, S.; Janssens, G.P. Nutritional modulation of insulin resistance in the true carnivorous cat: A review. Crit. Rev. Food. Sci. Nutr. 2012, 52, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Verbrugghe, A.; Bakovic, M. Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis. Nutrients 2013, 5, 2811–2835. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.; Izquierdo, O.; Eirmann, L.; Binder, S. Myths and misperceptions about ingredients used in commercial pet foods. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P. Letter to the editor: Cats and carbohydrates. Top. Companion Anim. Med. 2008, 23, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Buffington, C.A. Dry foods and risk of disease in cats. Can. Vet. J. 2008, 49, 561–563. [Google Scholar] [PubMed]
- Rand, J.S.; Fleeman, L.M.; Farrow, H.A.; Appleton, D.J.; Lederer, R. Canine and feline diabetes mellitus: Nature or nurture? J. Nutr. 2004, 134, 2072S–2080S. [Google Scholar] [PubMed]
- National Research Council (NRC). Carbohydrates and fibre. In Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006; pp. 49–80. [Google Scholar]
- Slavin, J.L. Structure, nomenclature, and properties of carbohydrates. In Biochemical, Physiological and Molecular Aspects of Human Nutrition, 3rd ed.; Stipanuk, M.H., Caudill, M.A., Eds.; Elsevier: St. Louis, MO, USA, 2013; pp. 50–68. [Google Scholar]
- Asp, N.G. Classification and methodology of food carbohydrates as related to nutritional effects. Am. J. Clin. Nutr. 1995, 61, 930S–937S. [Google Scholar] [PubMed]
- Depauw, S.; Hesta, M.; Whitehouse-Tedd, K.; Vanhaecke, L.; Verbrugghe, A.; Janssens, G.P. Animal fibre: The forgotten nutrient in strict carnivores? First insights in the cheetah. J. Anim. Physiol. Anim. Nutr. 2013, 97, 146–154. [Google Scholar] [CrossRef] [PubMed]
- McGrane, M.M. Carbohydrate metabolism: Synthesis and oxidation. In Biochemical, Physiological, and Molecular Aspects of Human Nutrition, 3rd ed.; Stipanuk, M.H., Caudill, M.A., Eds.; Elsevier: St. Louis, MO, USA, 2013; pp. 209–255. [Google Scholar]
- Hoenig, M.; Pach, N.; Thomaseth, K.; Devries, F.; Ferguson, D.C. Evaluation of long-term glucose homeostasis in lean and obese cats by use of continuous glucose monitoring. Am. J. Vet. Res. 2012, 73, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. Amino acid metabolism. In Biochemical, Physiological, and Molecular Aspects of Human Nutrition, 3rd ed.; Stipanuk, M.H., Caudill, M.A., Eds.; Elsevier: St. Louis, MO, USA, 2013; pp. 287–330. [Google Scholar]
- Bánhegyi, G.; Braun, L.; Csala, M.; Puskás, F.; Mandl, J. Ascorbate metabolism and its regulation in animals. Free Radic. Biol. Med. 1997, 23, 793–803. [Google Scholar] [CrossRef]
- Larmas, M.; Scheinin, A. Studies on dog saliva. 3. Observations on enzymes acting on ester bonds and glycosyl compounds. Acta Odontol. Scand. 1972, 30, 357–370. [Google Scholar] [CrossRef] [PubMed]
- McGeachin, R.L.; Akin, J.R. Amylase levels in the tissues and body fluids of the domestic cat (felis catus). Comp. Biochem. Physiol. B 1979, 63, 437–439. [Google Scholar] [CrossRef]
- Kienzle, E. Carbohydrate-metabolism of the cat. 2. Digestion of starch. J. Anim. Physiol. Anim. Nutr. 1993, 69, 102–114. [Google Scholar] [CrossRef]
- Kienzle, E. Carbohydrate-metabolism of the cat. 3. Digestion of sugars. J. Anim. Physiol. Anim. Nutr. 1993, 69, 203–210. [Google Scholar] [CrossRef]
- Shirazi-Beechey, S.P.; Moran, A.W.; Batchelor, D.J.; Daly, K.; Al-Rammahi, M. Glucose sensing and signalling; regulation of intestinal glucose transport. Proc. Nutr. Soc. 2011, 70, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Wood, H.O. The surface area of the intestinal mucosa in the rat and in the cat. J. Anat. 1944, 78, 103–105. [Google Scholar] [PubMed]
- Wolffram, S.; Eggenberger, E.; Scharrer, E. Kinetics of d-glucose transport across the intestinal brush-border membrane of the cat. Comp. Biochem. Physiol. A Comp. Physiol. 1989, 94, 111–115. [Google Scholar] [CrossRef]
- Buddington, R.K.; Chen, J.W.; Diamond, J.M. Dietary regulation of intestinal brush-border sugar and amino acid transport in carnivores. Am. J. Physiol. 1991, 261, R793–R801. [Google Scholar] [PubMed]
- Batchelor, D.J.; Al-Rammahi, M.; Moran, A.W.; Brand, J.G.; Li, X.; Haskins, M.; German, A.J.; Shirazi-Beechey, S.P. Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: Two species of different dietary habit. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R67–R75. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G.; Trudell, J.; Pencovic, T. Carbohydrate digestion by the domestic cat (felis catus). Br. J. Nutr. 1977, 37, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E. Carbohydrate-metabolism of the cat. 1. Activity of amylase in the gastrointestinal-tract of the cat. J. Anim. Physiol. Anim. Nutr. 1993, 69, 92–101. [Google Scholar] [CrossRef]
- De-Oliveira, L.D.; Carciofi, A.C.; Oliveira, M.C.; Vasconcellos, R.S.; Bazolli, R.S.; Pereira, G.T.; Prada, F. Effects of six carbohydrate sources on diet digestibility and postprandial glucose and insulin responses in cats. J. Anim. Sci. 2008, 86, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Vinuela, E.; Salas, M.; Sols, A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J. Biol. Chem. 1963, 238, 1175–1177. [Google Scholar] [PubMed]
- Ballard, F.J. Glucose utilization in mammalian liver. Comp. Biochem. Physiol. 1965, 14, 437–443. [Google Scholar] [CrossRef]
- Vandercammen, A.; Van Schaftingen, E. Species and tissue distribution of the regulatory protein of glucokinase. Biochem. J. 1993, 294, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Washizu, T.; Tanaka, A.; Sako, T.; Washizu, M.; Arai, T. Comparison of the activities of enzymes related to glycolysis and gluconeogenesis in the liver of dogs and cats. Res. Vet. Sci. 1999, 67, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Inoue, A.; Takeguchi, A.; Washizu, T.; Bonkobara, M.; Arai, T. Comparison of expression of glucokinase gene and activities of enzymes related to glucose metabolism in livers between dog and cat. Vet. Res. Commun. 2005, 29, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Hiskett, E.K.; Suwitheechon, O.U.; Lindbloom-Hawley, S.; Boyle, D.L.; Schermerhorn, T. Lack of glucokinase regulatory protein expression may contribute to low glucokinase activity in feline liver. Vet. Res. Commun. 2009, 33, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Kawaue, T.; Abe, M.; Kuramoto, E.; Kawakami, E.; Sako, T.; Washizu, T. Comparison of glucokinase activities in the peripheral leukocytes between dogs and cats. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 120, 53–56. [Google Scholar] [CrossRef]
- Schermerhorn, T. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front. Endocrinol. (Lausanne) 2013, 4, 188. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.; Jordan, E.T.; Glushka, J.; Kley, S.; Patil, A.; Waldron, M.; Prestegard, J.H.; Ferguson, D.C.; Wu, S.; Olson, D.E. Effect of macronutrients, age, and obesity on 6- and 24 h postprandial glucose metabolism in cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R1798–R1807. [Google Scholar] [CrossRef] [PubMed]
- Printen, J.A.; Brady, M.J.; Saltiel, A.R. Ptg, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 1997, 275, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.K.; O’Doherty, R.M.; Anderson, P.; Newgard, C.B. Overexpression of protein targeting to glycogen (ptg) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone- and substrate-mediated regulatory mechanisms. J. Biol. Chem. 1998, 273, 26421–26425. [Google Scholar] [CrossRef] [PubMed]
- Rogers, Q.R.; Morris, J.G.; Freedland, R.A. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme 1977, 22, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Kettelhut, I.; Foss, M.; Migliorini, R. Glucose-homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am. J. Physiol. 1980, 239, R437–R444. [Google Scholar] [PubMed]
- Kley, S.; Hoenig, M.; Glushka, J.; Jin, E.S.; Burgess, S.C.; Waldron, M.; Jordan, E.T.; Prestegard, J.H.; Ferguson, D.C.; Wu, S.; et al. The impact of obesity, sex, and diet on hepatic glucose production in cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R936–R943. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Murgatroyd, P.R.; Batt, R.M. Net protein oxidation is adapted to dietary protein intake in domestic cats (felis silvestris catus). J. Nutr. 2002, 132, 456–460. [Google Scholar] [PubMed]
- Russell, K.; Lobley, G.E.; Millward, D.J. Whole-body protein turnover of a carnivore, felis silvestris catus. Br. J. Nutr. 2003, 89, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.; Thomaseth, K.; Waldron, M.; Ferguson, D.C. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R227–R234. [Google Scholar] [CrossRef] [PubMed]
- Eisert, R. Hypercarnivory and the brain: Protein requirements of cats reconsidered. J. Comp. Physiol. B 2011, 181, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ackermans, M.T.; Pereira Arias, A.M.; Bisschop, P.H.; Endert, E.; Sauerwein, H.P.; Romijn, J.A. The quantification of gluconeogenesis in healthy men by (2)H2O and [2-(13)c]glycerol yields different results: Rates of gluconeogenesis in healthy men measured with (2)H2O are higher than those measured with [2-(13)c]glycerol. J. Clin. Endocrinol. Metab. 2001, 86, 2220–2226. [Google Scholar] [PubMed]
- Hewson-Hughes, A.K.; Hewson-Hughes, V.L.; Miller, A.T.; Hall, S.R.; Simpson, S.J.; Raubenheimer, D. Geometric analysis of macronutrient selection in the adult domestic cat, felis catus. J. Exp. Biol. 2011, 214, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Hewson-Hughes, A.K.; Hewson-Hughes, V.L.; Colyer, A.; Miller, A.T.; Hall, S.R.; Raubenheimer, D.; Simpson, S.J. Consistent proportional macronutrient intake selected by adult domestic cats (felis catus) despite variations in macronutrient and moisture content of foods offered. J. Comp. Physiol. B 2013, 183, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Hewson-Hughes, A.K.; Gilham, M.S.; Upton, S.; Colyer, A.; Butterwick, R.; Miller, A.T. The effect of dietary starch level on postprandial glucose and insulin concentrations in cats and dogs. Br. J. Nutr. 2011, 106, S105–S109. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Feeding behavior of dogs and cats. In Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006; pp. 22–27. [Google Scholar]
- Kane, E.; Rogers, Q.R.; Morris, J.G.; Leung, P.M.B. Feeding behavior of the cat fed laboratory and commercial diets. Nutr. Res. 1981, 1, 499–507. [Google Scholar] [CrossRef]
- Osbak, K.K.; Colclough, K.; Saint-Martin, C.; Beer, N.L.; Bellanné-Chantelot, C.; Ellard, S.; Gloyn, A.L. Update on mutations in glucokinase (gck), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 2009, 30, 1512–1526. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.A. Species differences in taste preferences. J. Comp. Physiol. Psychol. 1956, 49, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Bartoshuk, L.M.; Harned, M.A.; Parks, L.H. Taste of water in the cat: Effects on sucrose preference. Science 1971, 171, 699–701. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.; Maller, O.; Rogers, J. Flavor preferences in cats (felis-catus and panthera sp). J. Comp. Physiol. Psychol. 1977, 91, 1118–1127. [Google Scholar] [CrossRef]
- White, T.; Boudreau, J. Taste preferences of cat for neurophysiologically active compounds. Physiol. Psychol. 1975, 3, 405–410. [Google Scholar] [CrossRef]
- Boudreau, J.C. Chemical stimulus determinants of cat neural taste responses to meats. J. Am. Oil Chem. Soc. 1977, 54, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Pfaffmann, C. Gustatory nerve impulses in rat, cat and rabbit. J. Neurophysiol. 1955, 18, 429–440. [Google Scholar] [PubMed]
- Beidler, L.M.; Fishman, I.Y.; Hardiman, C.W. Species differences in taste responses. Am. J. Physiol. 1955, 181, 235–239. [Google Scholar] [PubMed]
- Li, X.; Li, W.; Wang, H.; Cao, J.; Maehashi, K.; Huang, L.; Bachmanov, A.A.; Reed, D.R.; Legrand-Defretin, V.; Beauchamp, G.K.; et al. Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet. 2005, 1, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, W.; Wang, H.; Bayley, D.L.; Cao, J.; Reed, D.R.; Bachmanov, A.A.; Huang, L.; Legrand-Defretin, V.; Beauchamp, G.K.; et al. Cats lack a sweet taste receptor. J. Nutr. 2006, 136, 1932S–1934S. [Google Scholar] [PubMed]
- Li, X.; Glaser, D.; Li, W.; Johnson, W.E.; O’Brien, S.J.; Beauchamp, G.K.; Brand, J.G. Analyses of sweet receptor gene (tas1r2) and preference for sweet stimuli in species of carnivora. J. Hered. 2009, 100, S90–S100. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.E.; Kane, E.; Rogers, Q.R.; Morris, J.G. Self-selection of dietary casein and soy-protein by the cat. Physiol. Behav. 1985, 34, 583–594. [Google Scholar] [CrossRef]
- Hewson-Hughes, A.K.; Colyer, A.; Simpson, S.J.; Raubenheimer, D. Balancing macronutrient intake in a mammalian carnivore: Disentangling the influences of flavour and nutrition. R. Soc. Open Sci. 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P.; Abood, S.K.; Fascetti, A.J.; Freeman, L.M.; Michel, K.E.; Bauer, C.; Kemp, B.L.; Doren, J.R.; Willoughby, K.N. Pet feeding practices of dog and cat owners in the United States and Australia. J. Am. Vet. Med. Assoc. 2008, 232, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Robertson, I.D. The influence of diet and other factors on owner-perceived obesity in privately owned cats from metropolitan Perth, Western Australia. Prev. Vet. Med. 1999, 40, 75–85. [Google Scholar] [CrossRef]
- American Association of Feed Control Officials (AAFCO). Official publication. 2017. Available online: http://www.aafco.org/Publications (accessed on 25 September 2017).
- The European Pet Food Industry Federation (FEDIAF). 2017. Available online: http://www.fediaf.org/self-regulation/nutrition.html (accessed on 25 September 2017).
- Villaverde, C.; Fascetti, A.J. Macronutrients in feline health. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Crane, S.W.; Cowell, C.S.; Stout, N.P.; Moser, E.A.; Millican, J.; Romano, P.J.; Crane, S.E. Commercial pet foods. In Small Animal Clinical Nutrition, 5th ed.; Hand, M.S., Thatcher, C.D., Remillard, R.L., Roudebush, P., Novotny, B.J., Eds.; Mark Morris Institute: Topeka, KS, USA, 2014; pp. 157–190. [Google Scholar]
- Van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef] [PubMed]
- Karr-Lilienthal, L.K.; Merchen, N.R.; Grieshop, C.M.; Smeets-Peeters, M.J.; Fahey, G.C. Selected gelling agents in canned dog food affect nutrient digestibilities and fecal characteristics of ileal cannulated dogs. Arch. Tierernahr. 2002, 56, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Michel, K.E. Unconventional diets for dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Remillard, R.L. Homemade diets: Attributes, pitfalls, and a call for action. Top. Companion Anim. Med. 2008, 23, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Parr, J.M.; Remillard, R.L. Handling alternative dietary requests from pet owners. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 667–688. [Google Scholar] [CrossRef] [PubMed]
- Buff, P.R.; Carter, R.A.; Bauer, J.E.; Kersey, J.H. Natural pet food: A review of natural diets and their impact on canine and feline physiology. J. Anim. Sci. 2014, 92, 3781–3791. [Google Scholar] [CrossRef] [PubMed]
- Hamper, B.A.; Bartges, J.W.; Kirk, C.A. Evaluation of two raw diets vs a commercial cooked diet on feline growth. J. Feline Med. Surg. 2016, 19, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Finley, R.; Reid-Smith, R.; Weese, J.S. Human health implications of Salmonella-contaminated natural pet treats and raw pet food. Clin. Infect. Dis. 2006, 42, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, D.P.; Joffe, D.J. Raw food diets in companion animals: A critical review. Can. Vet. J. 2011, 52, 50–54. [Google Scholar] [PubMed]
- Köhler, B.; Stengel, C.; Neiger, R. Dietary hyperthyroidism in dogs. J. Small Anim. Pract. 2012, 53, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.M.; Michel, K.E. Evaluation of raw food diets for dogs. J. Am. Vet. Med. Assoc. 2001, 218, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, S.; de Roover, K.; Paepe, D.; Hesta, M.; Van der Meulen, E.; Daminet, S. Dietary hyperthyroidism in a Rottweiler. Vlaams Diergeneeskundig Tijdschrift 2014, 83, 306–311. [Google Scholar]
- Cave, N.J.; Allan, F.J.; Schokkenbroek, S.L.; Metekohy, C.A.; Pfeiffer, D.U. A cross-sectional study to compare changes in the prevalence and risk factors for feline obesity between 1993 and 2007 in New Zealand. Prev. Vet. Med. 2012, 107, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Association of Pet Obesity Prevention. U.S. Pets Get Fatter, Owners Disagree with Veterinarians on Nutritional Issues. Available online: http://petobesityprevention.org/2016-u-s-pet-obesity-statistics/ (accessed on 10 March 2016).
- Donoghue, S.; Scarlett, J.M. Diet and feline obesity. J. Nutr. 1998, 128, 2776S–2778S. [Google Scholar] [PubMed]
- Scarlett, J.M.; Donoghue, S.; Saidla, J.; Wills, J. Overweight cats: Prevalence and risk factors. Int. J. Obes. Relat. Metab. Disord. 1994, 18, S22–S28. [Google Scholar] [PubMed]
- Allan, F.J.; Pfeiffer, D.U.; Jones, B.R.; Esslemont, D.H.; Wiseman, M.S. A cross-sectional study of risk factors for obesity in cats in New Zealand. Prev. Vet. Med. 2000, 46, 183–196. [Google Scholar] [CrossRef]
- German, A.J. The growing problem of obesity in dogs and cats. J. Nutr. 2006, 136, 1940S–1946S. [Google Scholar] [PubMed]
- Laflamme, D.P. Understanding and managing obesity in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P. Companion animals symposium: Obesity in dogs and cats: What is wrong with being fat? J. Anim. Sci. 2012, 90, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Kealy, R.D.; Lawler, D.F.; Ballam, J.M.; Mantz, S.L.; Biery, D.N.; Greeley, E.H.; Lust, G.; Segre, M.; Smith, G.K.; Stowe, H.D. Effects of diet restriction on life span and age-related changes in dogs. J. Am. Vet. Med. Assoc. 2002, 220, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Bland, I.M.; Guthrie-Jones, A.; Taylor, R.D.; Hill, J. Dog obesity: Veterinary practices’ and owners’ opinions on cause and management. Prev. Vet. Med. 2010, 94, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Pretlow, R.A.; Corbee, R.J. Similarities between obesity in pets and children: The addiction model. Br. J. Nutr. 2016, 116, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Sabin, R.; Holt, S.; Bradley, R.; Harper, E.J. Influence of feeding regimen on body condition in the cat. J. Small Anim. Pract. 2000, 41, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E.; Bergler, R. Human-animal relationship of owners of normal and overweight cats. J. Nutr. 2006, 136, 1947S–1950S. [Google Scholar] [PubMed]
- Harper, E.J.; Stack, D.M.; Watson, T.D.; Moxham, G. Effects of feeding regimens on bodyweight, composition and condition score in cats following ovariohysterectomy. J. Small Anim. Pract. 2001, 42, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Courcier, E.A.; O’Higgins, R.; Mellor, D.J.; Yam, P.S. Prevalence and risk factors for feline obesity in a first opinion practice in Glasgow, Scotland. J. Feline Med. Surg. 2010, 12, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Lund, E.M.; Armstrong, P.J.; Kirk, C.A.; Klausner, J.S. Prevalence and risk factors for obesity in adult cats from private us veterinary practices. Int. J. Appl. Res. Vet. Med. 2005, 3, 88–96. [Google Scholar]
- Rowe, E.; Browne, W.; Casey, R.; Gruffydd-Jones, T.; Murray, J. Risk factors identified for owner-reported feline obesity at around one year of age: Dry diet and indoor lifestyle. Prev. Vet. Med. 2015, 121, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.; Fascetti, A.J.; Villaverde, C.; Wong, R.K.; Ramsey, J.J. Effect of water content in a canned food on voluntary food intake and body weight in cats. J. Am. Vet. Res. 2011, 72, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Cameron, K.M.; Morris, P.J.; Hackett, R.M.; Speakman, J.R. The effect of increasing water content to reduce the energy density of the diet on body mass changes following caloric restriction in domestic cats. J. Anim. Physiol. Anim. Nutr. 2011, 95, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Iwazaki, E.; Suchy, S.A.; Pallotto, M.R.; Swanson, K.S. Effects of feeding frequency and dietary water content on voluntary physical activity in healthy adult cats. J. Anim. Sci. 2014, 92, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.E.; Colyer, A.; Morris, P.J. The effect of reducing dietary energy density via the addition of water to a dry diet, on body weight, energy intake and physical activity in adult neutered cats. J. Nutr. Sci. 2014, 3, e21. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.G.; Post, M.; Bosch, G. The effect of changing the moisture levels of dry extruded and wet canned diets on physical activity in cats. J. Nutr. Sci. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Colliard, L.; Paragon, B.M.; Lemuet, B.; Bénet, J.J.; Blanchard, G. Prevalence and risk factors of obesity in an urban population of healthy cats. J. Feline Med. Surg. 2009, 11, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Corbee, R.J. Obesity in show cats. J. Anim. Physiol. Anim. Nutr. (Berl.) 2014, 98, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Öhlund, M.; Egenvall, A.; Fall, T.; Hansson-Hamlin, H.; Röcklinsberg, H.; Holst, B.S. Environmental risk factors for diabetes mellitus in cats. J. Vet. Intern. Med. 2017, 31, 29–35. [Google Scholar] [CrossRef] [PubMed]
- McCann, T.M.; Simpson, K.E.; Shaw, D.J.; Butt, J.A.; Gunn-Moore, D.A. Feline diabetes mellitus in the U.K.: The prevalence within an insured cat population and a questionnaire-based putative risk factor analysis. J. Feline Med. Surg. 2007, 9, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Lederer, R.; Rand, J.S.; Jonsson, N.N.; Hughes, I.P.; Morton, J.M. Frequency of feline diabetes mellitus and breed predisposition in domestic cats in Australia. Vet. J. 2009, 179, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.S.; Bobbermien, L.M.; Hendrikz, J.K.; Copland, M. Over-representation of Burmese cats with diabetes mellitus. Aust. Vet. J. 1997, 75, 402–405. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.G.; Gostelow, R.; Orme, C.; Church, D.B.; Niessen, S.J.M.; Verheyen, K.; Brodbelt, D.C. Epidemiology of diabetes mellitus among 193.435 cats attending primary-care veterinary practices in England. J. Vet. Intern. Med. 2016, 30, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Öhlund, M.; Fall, T.; Ström Holst, B.; Hannson-Hamlin, H.; Bonnett, B.; Egenvall, A. Incidence of diabetes mellitus in insured Swedish cats in relation to age, breed and sex. J. Vet. Intern. Med. 2015, 29, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Courcier, E.A.; Mellor, D.J.; Pendlebury, E.; Evans, C.; Yam, P.S. An investigation into the epidemiology of feline obesity in Great Britain: Results of a cross-sectional study of 47 companion animal practises. Vet. Rec. 2012, 171. [Google Scholar] [CrossRef] [PubMed]
- Sallander, M.; Eliasson, J.; Hedhammar, A. Prevalence and risk factors for the development of diabetes mellitus in Swedish cats. Acta Vet. Scand. 2012, 54. [Google Scholar] [CrossRef] [PubMed]
- Prahl, A.; Guptill, L.; Glickman, N.W.; Tetrick, M.; Glickman, L.T. Time trends and risk factors for diabetes mellitus in cats presented to veterinary teaching hospitals. J. Feline Med. Surg. 2007, 9, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Panciera, D.L.; Thomas, C.B.; Eicker, S.W.; Atkins, C.E. Epizootiologic patterns of diabetes mellitus in cats: 333 cases (1980–1986). J. Am. Vet. Med. Assoc. 1990, 197, 1504–1508. [Google Scholar] [PubMed]
- Kienzle, E.; Moik, K. A pilot study of the body weight of pure-bred client-owned adult cats. Br. J. Nutr. 2011, 106, S113–S115. [Google Scholar] [CrossRef] [PubMed]
- Slingerland, L.I.; Fazilova, V.V.; Plantinga, E.A.; Kooistra, H.S.; Beynen, A.C. Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors in the development of feline type 2 diabetes mellitus. Vet. J. 2009, 179, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Scarlett, J.M.; Donoghue, S. Associations between body condition and disease in cats. J Am Vet. Med. Assoc. 1998, 212, 1725–1731. [Google Scholar] [PubMed]
- Pereira-Lancha, L.O.; Coelho, D.F.; de Campos-Ferraz, P.L.; Lancha, A.H. Body fat regulation: Is it a result of a simple energy balance or a high fat intake? J. Am. Coll. Nutr. 2010, 29, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.G.; Dumon, H.J.; Siliart, B.S.; Martin, L.J.; Sergheraert, R.; Biourge, V.C. Effects of dietary fat and energy on body weight and composition after gonadectomy in cats. Am. J. Vet. Res. 2004, 65, 1708–1713. [Google Scholar] [CrossRef] [PubMed]
- Backus, R.C.; Cave, N.J.; Keisler, D.H. Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. Br. J. Nutr. 2007, 98, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Coradini, M.; Rand, J.S.; Morton, J.M.; Rawlings, J.M. Effects of two commercially available feline diets on glucose and insulin concentrations, insulin sensitivity and energetic efficiency of weight gain. Br. J. Nutr. 2011, 106, S64–S77. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M. The cat as a model for human obesity and diabetes. J. Diabetes Sci. Technol. 2012, 6, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Osto, M.; Zini, E.; Reusch, C.E.; Lutz, T.A. Diabetes from humans to cats. Gen. Comp. Endocrinol. 2013, 182, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.W.; Reusch, C.E. Animal models of disease: Classification and etiology of diabetes in dogs and cats. J. Endocrinol. 2014, 222, T1–T9. [Google Scholar] [CrossRef] [PubMed]
- Gilor, C.; Niessen, S.J.M.; Furrow, E.; DiBartola, S.P. What’s in a name? Classification of diabetes mellitus in veterinary medicine and why it matters. J. Vet. Intern. Med. 2016, 30, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Verbrugghe, A.; Hesta, M.; Gommeren, K.; Daminet, S.; Wuyts, B.; Buyse, J.; Janssens, G.P. Oligofructose and inulin modulate glucose and amino acid metabolism through propionate production in normal-weight and obese cats. Br. J. Nutr. 2009, 102, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.; Alexander, S.; Holson, J.; Ferguson, D.C. Influence of glucose dosage on interpretation of intravenous glucose tolerance tests in lean and obese cats. J. Vet. Intern. Med. 2002, 16, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.; Thomaseth, K.; Brandao, J.; Waldron, M.; Ferguson, D.C. Assessment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats. Domest. Anim. Endocrinol. 2006, 31, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Appleton, D.J.; Rand, J.S.; Priest, J.; Sunvold, G.D. Determination of reference values for glucose tolerance, insulin tolerance, and insulin sensitivity tests in clinically normal cats. Am. J. Vet. Res. 2001, 62, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Verbrugghe, A.; Hesta, M.; Van Weyenberg, S.; Papadopoulos, G.A.; Gommeren, K.; Daminet, S.; Bosmans, T.; Polis, I.; Buyse, J.; Janssens, G.P. The glucose and insulin response to isoenergetic reduction of dietary energy sources in a true carnivore: The domestic cat (felis catus). Br. J. Nutr. 2010, 104, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Curry, D.L.; Morris, J.G.; Rogers, Q.R.; Stern, J.S. Dynamics of insulin and glucagon secretion by the isolated perfused cat pancreas. Comp. Biochem. Physiol. A Comp. Physiol. 1982, 72, 333–338. [Google Scholar] [CrossRef]
- Church, D.B. A comparison of intravenous and oral glucose tolerance tests in the dog. Res. Vet. Sci. 1980, 29, 353–359. [Google Scholar] [PubMed]
- Hahn, R.G.; Ljunggren, S.; Larsen, F.; Nyström, T. A simple intravenous glucose tolerance test for assessment of insulin sensitivity. Theor. Biol. Med. Model. 2011, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zini, E.; Osto, M.; Franchini, M.; Guscetti, F.; Donath, M.Y.; Perren, A.; Heller, R.S.; Linscheid, P.; Bouwman, M.; Ackermann, M.; et al. Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 2009, 52, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceriello, A.; Colagiuri, S. International diabetes federation guideline for management of postmeal glucose: A review of recommendations. Diabet. Med. 2008, 25, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.; Jordan, E.T.; Ferguson, D.C.; de Vries, F. Oral glucose leads to a differential response in glucose, insulin, and GLP-1 in lean versus obese cats. Domest. Anim. Endocrinol. 2010, 38, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E. Blood sugar levels and renal sugar excretion after the intake of high carbohydrate diets in cats. J. Nutr. 1994, 124, 2563S–2567S. [Google Scholar] [PubMed]
- Hewson-Hughes, A.K.; Gilham, M.S.; Upton, S.; Colyer, A.; Butterwick, R.; Miller, A.T. Postprandial glucose and insulin profiles following a glucose-loaded meal in cats and dogs. Br. J. Nutr. 2011, 106, S101–S104. [Google Scholar] [CrossRef] [PubMed]
- Thiess, S.; Becskei, C.; Tomsa, K.; Lutz, T.A.; Wanner, M. Effects of high carbohydrate and high fat diet on plasma metabolite levels and on i.V. Glucose tolerance test in intact and neutered male cats. J. Feline Med. Surg. 2004, 6, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Appleton, D.; Rand, J.; Priest, J.; Sunvold, G.; Vickers, J. Dietary carbohydrate source affects glucose concentrations, insulin secretion, and food intake in overweight cats. Nutr. Res. 2004, 24, 447–467. [Google Scholar] [CrossRef]
- Carciofi, A.C.; Takakura, F.S.; de-Oliveira, L.D.; Teshima, E.; Jeremias, J.T.; Brunetto, M.A.; Prada, F. Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. J. Anim. Physiol. Anim. Nutr. (Berl.) 2008, 92, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.; Ueda, K.; Lee, P.; Oda, H.; Ishioka, K.; Sako, T. Influence of various carbohydrate sources on postprandial glucose, insulin and nefa concentrations in obese cats. Pol. J. Vet. Sci. 2016, 19, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Farrow, H.A.; Rand, J.S.; Morton, J.M.; O’Leary, C.A.; Sunvold, G.D. Effect of dietary carbohydrate, fat, and protein on postprandial glycemia and energy intake in cats. J. Vet. Intern. Med. 2013, 27, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.; Anderson, W.; Pazak, H.; Hodgkins, E.; Ballam, J.; Laflamme, D. Use of a high-protein diet in the management of feline diabetes mellitus. Vet. Ther. 2001, 2, 238–246. [Google Scholar] [PubMed]
- Mazzaferro, E.M.; Greco, D.S.; Turner, A.S.; Fettman, M.J. Treatment of feline diabetes mellitus using an alpha-glucosidase inhibitor and a low-carbohydrate diet. J. Feline Med. Surg. 2003, 5, 183–189. [Google Scholar] [CrossRef]
- Bennett, N.; Greco, D.S.; Peterson, M.E.; Kirk, C.; Mathes, M.; Fettman, M.J. Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate-high fiber diet in the management of feline diabetes mellitus. J. Feline Med. Surg. 2006, 8, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.D.; Mahony, O.; Rozanski, E.A.; Freeman, L.M. Effects of diet on glucose control in cats with diabetes mellitus treated with twice daily insulin glargine. J. Feline Med. Surg. 2009, 11, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, A.H.; Cannon, M.; Church, D.; Fleeman, L.; Harvey, A.; Hoenig, M.; Peterson, M.E.; Reusch, C.E.; Taylor, S.; Rosenberg, D.; et al. ISFM consensus guidelines on the practical management of diabetes mellitus in cats. J. Feline Med. Surg. 2015, 17, 235–250. [Google Scholar] [CrossRef] [PubMed]
Feral Cat | Domestic Cat | |||||
Nutrient profile based on dietary habits and compositional data of consumed prey species [1] | Nutrient profile selected when offered wet diet only [50] | Nutrient profile when offered diets with different texture and moisture content [51] | ||||
3 wet | 1 wet 3 dry | 3 wet 1 dry | 3 wet 3 dry | 1 wet 1 dry | ||
Daily Energy Intake (%ME) from: | ||||||
Crude protein | 52% | 52% | 46% | 44% | 42% | 48% |
Crude fat | 46% | 36% | 39% | 35% | 38% | 41% |
Nitrogen-free extract | 2% | 12% | 15% | 21% | 20% | 11% |
Factors Predisposing Cats to | ||
---|---|---|
Obesity | Diabetes Mellitus | |
Animal factors | ||
Mixed breed [69,89,101,108] Norwegian Forest, British Shorthair, Persian [109] | Breed | Tonkinese, Norwegian Forest, Burmese Russian Blue, and Abyssinian [110,111,112,113,114,115] |
Middle age [69,89,101,108,116] | Age | Older than 7 years [112,113,114,115,117,118,119] |
Male [69,89,101,108,116,120] | Gender | Male [102,110,111,112,113,115,117,118,119,120] |
Neutered [69,89,101,108,116] | Sexual status | Neutered [111,118,119] |
Lifestyle factors | ||
Inactive cat [69,89,90,102] | Physical activity | Inactive cat [110,111,117,121] |
Indoor confinement [69,89,102] | Housing | Indoor confinement [110,121] |
Dietary factors | ||
Dry food: No influence [69,86,90,100] Increased risk [89,101,102] | Diet type | Dry food: No influence [121] Reduced risk [117] Increased risk [110] |
Free choice feeding: Increased risk [97,99] No influence [69,86,89,90,108] | Feeding method | Free choice feeding and greedy eating behaviour [110] |
Homemade food, human foods and/or treats [98] | Other dietary inclusions | |
Obese cats are up to four times more likely to develop diabetes mellitus [110,111,113,117,118,119,122] |
Cats: | Intraday glucose fluctuations are small, glucose homeostasis is maintained within a strictly regulated concentration range of 3.9–6.7 mmol/L [16] | |
IV glucose for 10d, clamp blood glucose at 25–30 mmol/L (=untreated diabetes mellitus) leads to B-cell dysfunction and β-cell loss [139] | ||
Humans: | Post-meal hyperglycaemia = plasma glucose concentration >7.8 mmol/L 2 h after meal [140] | |
Carbohydrate Administration | Glucose Concentration | |
IV 1 g/kgBW glucose [132] |
| |
Oral 2 g/kgBW glucose [141] |
| |
High glucose diet [142]: Glucose: 34%ME, 5 g/kgBW/day |
| |
Glucose-loaded meal [143]: 13 g/kg BW high protein test meal (protein 64%ME, NFE 7%ME) +2 g/kgBW glucose |
| |
Diets with various starch sources [142] NFE content/intake:
|
| |
Extruded diets with the same starch source,
but various starch levels [52] NFE content/intake:
|
|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verbrugghe, A.; Hesta, M. Cats and Carbohydrates: The Carnivore Fantasy? Vet. Sci. 2017, 4, 55. https://doi.org/10.3390/vetsci4040055
Verbrugghe A, Hesta M. Cats and Carbohydrates: The Carnivore Fantasy? Veterinary Sciences. 2017; 4(4):55. https://doi.org/10.3390/vetsci4040055
Chicago/Turabian StyleVerbrugghe, Adronie, and Myriam Hesta. 2017. "Cats and Carbohydrates: The Carnivore Fantasy?" Veterinary Sciences 4, no. 4: 55. https://doi.org/10.3390/vetsci4040055
APA StyleVerbrugghe, A., & Hesta, M. (2017). Cats and Carbohydrates: The Carnivore Fantasy? Veterinary Sciences, 4(4), 55. https://doi.org/10.3390/vetsci4040055