Animal Models of Cancer-Associated Hypercalcemia
Abstract
:1. Introduction
1.1. Factors Associated with Humoral Hypercalcemia of Malignancy
1.2. Local Osteolytic Hypercalcemia
1.3. Animal Models of HHM and LOH
1.4. Spontaneous and Experimentally-Induced Animal Models of HHM and LOH
1.4.1. Spontaneous CAH in Dogs and Experimental Models
1.4.2. Spontaneous CAH in Cats and Experimental Models
1.4.3. Spontaneous CAH in Horses
1.4.4. Spontaneous CAH in Exotic Species
1.4.5. Spontaneous and Experimentally-Induced CAH in Rodent Models
2. Mouse Models of CAH
2.1. Rat Models of CAH
2.2. Rabbit Model of CAH
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seccareccia, D. Cancer-related hypercalcemia. Can. Fam. Phys. 2010, 56, 244–246. [Google Scholar]
- Mundy, G.R.; Martin, T.J. The hypercalcemia of malignancy: Pathogenesis and management. Metabolism 1982, 31, 1247–1277. [Google Scholar] [CrossRef]
- Roodman, G.D. Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 1997, 80, 1557–1563. [Google Scholar] [CrossRef]
- Shu, S. Pathogenesis and Treatments of Humoral Hypercalcemia of Malignancy in Adult T-Cell. Leukemia/Lymphoma Induced by Human T Lymphotropic Virus Type. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2009. [Google Scholar]
- Muggia, F.M. Overview of cancer-related hypercalcemia: Epidemiology and etiology. Semin. Oncol. 1990, 17, 3–9. [Google Scholar] [PubMed]
- Szymanski, J.J.; Otrock, Z.K.; Patel, K.K.; Scott, M.G. Incidence of humoral hypercalcemia of malignancy among hypercalcemic patients with cancer. Clin. Chim. Acta 2016, 453, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Gastanaga, V.M.; Schwartzberg, L.S.; Jain, R.K.; Pirolli, M.; Quach, D.; Quigley, J.M.; Mu, G.; Scott, W.; Liede, A. Prevalence of hypercalcemia among cancer patients in the United States. Cancer Med. 2016, 8, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Mirrakhimov, A.E. Hypercalcemia of malignancy: An update on pathogenesis and management. N. Am. J. Med. Sci. 2015, 7, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.F.; Horst, R.; Deftos, L.J.; Cadman, E.C.; Lang, R.; Broadus, A.E. Biochemical evaluation of patients with cancer-associated hypercalcemia: Evidence for humoral and nonhumoral groups. N. Engl. J. Med. 1980, 303, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Fukumoto, S.; Takeda, S.; Takeuchi, Y.; Ishikawa, T.; Miura, M.; Hata, K.; Hane, M.; Tamura, Y.; Tanaka, Y.; et al. Differences in bone and vitamin D metabolism between primary hyperparathyroidism and malignancy-associated hypercalcemia. J. Clin. Endocrinol. Metab. 1996, 81, 607–611. [Google Scholar] [PubMed]
- Shivnani, S.B.; Shelton, J.M.; Richardson, J.A.; Maalouf, N.M. Hypercalcemia of malignancy with simultaneous elevation in serum parathyroid hormone—Related peptide and 1,25-dihydroxyvitamin D in a patient with metastatic renal cell carcinoma. Endocr. Pract. 2009, 15, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Richard, V. Regulation of Parathyroid Hormone-Related Protein in Adult T-Cell Leukemia/Lymphoma in a Severe Combined Immuno-Deficient/Beige Mouse Model of Humoral Hypercalcemia of Malignancy. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2003. [Google Scholar]
- Kanaji, N.; Watanabe, N.; Kita, N.; Bandoh, S.; Tadokoro, A.; Ishii, T.; Dobashi, H.; Matsunaga, T. Paraneoplastic syndromes associated with lung cancer. World J. Clin. Oncol. 2014, 5, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Bundred, N.J.; Ratcliffe, W.A.; Walker, R.A.; Coley, S.; Morrison, J.M.; Ratcliffe, J.G. Parathyroid hormone related protein and hypercalcaemia in breast cancer. BMJ 1991, 303, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Aoki, K.; Katayama, I.; Nishioka, K.; Umeda, T. Humoral hypercalcemia of malignancy with elevated plasma PTHrP, TNF alpha and IL-6 in cutaneous squamous cell carcinoma. J. Dermatol. 1996, 23, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Fujii, Y.; Ono, M.; Nomura, H.; Shizume, K. Production of interleukin 1 alpha-like factor and colony-stimulating factor by a squamous cell carcinoma of the thyroid (T3M-5) derived from a patient with hypercalcemia and leukocytosis. Cancer Res. 1987, 47, 6474–6480. [Google Scholar] [PubMed]
- Oyajobi, B.O. Multiple myeloma/hypercalcemia. Arthritis Res. Ther. 2007, 9, S4. [Google Scholar] [CrossRef] [PubMed]
- Sternlicht, H.; Glezerman, I.G. Hypercalcemia of malignancy and new treatment options. Ther. Clin. Risk Manag. 2015, 11, 1779–1788. [Google Scholar] [PubMed]
- Meuten, D.J.; Kociba, G.J.; Capen, C.C.; Chew, D.J.; Segre, G.V.; Levine, L.; Tashjian, A.H., Jr.; Nagode, L.A. Hypercalcemia in dogs with lymphosarcoma. Biochemical, ultrastructural, and histomorphometric investigations. Lab. Investig. 1983, 49, 553–562. [Google Scholar] [PubMed]
- Okada, Y.; Tsukadal, J.; Nakano, K.; Tonai, S.; Mine, S.; Tanaka, Y. Macrophage inflammatory protein-1alpha induces hypercalcemia in adult T-cell leukemia. J. Bone Miner. Res. 2004, 19, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Gagel, R.F. Calcitriol: The major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood 1993, 82, 1383–1394. [Google Scholar] [PubMed]
- Seymour, J.F.; Gagel, R.F.; Hagemeister, F.B.; Dimopoulos, M.A.; Cabanillas, F. Calcitriol production in hypercalcemic and normocalcemic patients with non-Hodgkin lymphoma. Ann. Intern. Med. 1994, 121, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Fournel-Fleury, C.; Ponce, F.; Felman, P.; Blavier, A.; Bonnefont, C.; Chabanne, L.; Marchal, T.; Cadore, J.L.; Goy-Thollot, I.; Ledieu, D.; et al. Canine T-cell lymphomas: A morphological, immunological, and clinical study of 46 new cases. Vet. Pathol. 2002, 39, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Nadella, M.V.; Kisseberth, W.C.; Nadella, K.S.; Thudi, N.K.; Thamm, D.H.; McNiel, E.A.; Yilmaz, A.; Boris-Lawrie, K.; Rosol, T.J. NOD/SCID mouse model of canine T-cell lymphoma with humoral hypercalcaemia of malignancy: Cytokine gene expression profiling and in vivo bioluminescent imaging. Vet. Comp. Oncol. 2008, 6, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Rosol, T.J.; Nagode, L.A.; Couto, C.G.; Hammer, A.S.; Chew, D.J.; Peterson, J.L.; Ayl, R.D.; Steinmeyer, C.L.; Capen, C.C. Parathyroid hormone (PTH)-related protein, PTH, and 1,25-dihydroxyvitamin D in dogs with cancer-associated hypercalcemia. Endocrinology 1992, 131, 1157–1164. [Google Scholar] [PubMed]
- Bennett, P.F.; DeNicola, D.B.; Bonney, P.; Glickman, N.W.; Knapp, D.W. Canine anal sac adenocarcinomas: Clinical presentation and response to therapy. J. Vet. Intern. Med. 2002, 16, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Grone, A.; Weckmann, M.T.; Blomme, E.A.; Capen, C.C.; Rosol, T.J. Dependence of humoral hypercalcemia of malignancy on parathyroid hormone-related protein expression in the canine anal sac apocrine gland adenocarcinoma (CAC-8) nude mouse model. Vet. Pathol. 1998, 35, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Bergman, P.J. Paraneoplastic hypercalcemia. Top. Companion Anim. Med. 2012, 27, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Daniels, E.; Sakakeeny, C. Hypercalcemia: Pathophysiology, clinical signs, and emergent treatment. J. Am. Anim. Hosp. Assoc. 2015, 51, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Messinger, J.S.; Windham, W.R.; Ward, C.R. Ionized hypercalcemia in dogs: A retrospective study of 109 cases (1998–2003). J. Vet. Intern. Med. 2009, 23, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Bae, B.K.; Kim, C.W.; Choi, U.S.; Choi, E.W.; Jee, H.; Kim, D.Y.; Lee, C.W. Hypercalcemia and high parathyroid hormone-related peptide concentration in a dog with a complex mammary carcinoma. Vet. Clin. Pathol. 2007, 36, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Scruggs, J.L.; Nobrega-Lee, M.; Fry, M.M.; Applegate, R. Hypercalcemia and parathyroid hormone-related peptide expression in a dog with thyroid carcinoma and histiocytic sarcoma. Vet. Clin. Pathol. 2015, 44, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Finch, N.C. Hypercalcaemia in cats: The complexities of calcium regulation and associated clinical challenges. J. Feline Med. Surg. 2016, 18, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Savary, K.C.; Price, G.S.; Vaden, S.L. Hypercalcemia in cats: A retrospective study of 71 cases (1991–1997). J. Vet. Intern. Med. 2000, 14, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Klausner, J.S.; Bell, F.W.; Hayden, D.W.; Hegstad, R.L.; Johnston, S.D. Hypercalcemia in two cats with squamous cell carcinomas. J. Am. Vet. Med. Assoc. 1990, 196, 103–105. [Google Scholar] [PubMed]
- Dust, A.; Norris, A.M.; Valli, V.E. Cutaneous lymphosarcoma with IgG monoclonal gammopathy, serum hyperviscosity and hypercalcemia in a cat. Can. Vet. J. 1982, 23, 235–239. [Google Scholar] [PubMed]
- Engelman, R.W.; Tyler, R.D.; Good, R.A.; Day, N.K. Hypercalcemia in cats with feline-leukemia-virus-associated leukemia-lymphoma. Cancer 1985, 56, 777–781. [Google Scholar] [CrossRef]
- Zenoble, R.D.; Rowland, G.N. Hypercalcemia and proliferative, myelosclerotic bone reaction associated with feline leukovirus infection in a cat. J. Am. Vet. Med. Assoc. 1979, 175, 591–595. [Google Scholar] [PubMed]
- Bolliger, A.P.; Graham, P.A.; Richard, V.; Rosol, T.J.; Nachreiner, R.F.; Refsal, K.R. Detection of parathyroid hormone-related protein in cats with humoral hypercalcemia of malignancy. Vet. Clin. Pathol. 2002, 31, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Yuki, M.; Nitta, M.; Omachi, T. Parathyroid hormone-related protein-induced hypercalcemia due to osteosarcoma in a cat. Vet. Clin. Pathol. 2015, 44, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Axiak, S.; Johnson, P.J. Paraneoplastic manifestations of cancer in horses. Equine Vet. Educ. 2012, 24, 367–376. [Google Scholar] [CrossRef]
- Taylor, S.D.; Haldorson, G.J.; Vaughan, B.; Pusterla, N. Gastric neoplasia in horses. J. Vet. Intern. Med. 2009, 23, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.H.; Sharma, P.; LeRoy, B.E.; Howerth, E.W. Hypercalcemia and high serum parathyroid hormone-related protein concentration in a horse with multiple myeloma. J. Am. Vet. Med. Assoc. 2004, 225, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, N.; Stacy, B.A.; Vernau, W.; de Cock, H.E.; Magdesian, K.G. Immunoglobulin A monoclonal gammopathy in two horses with multiple myeloma. Vet. Rec. 2004, 155, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Rosol, T.J.; Nagode, L.A.; Robertson, J.T.; Leeth, B.D.; Steinmeyer, C.L.; Allen, C.M. Humoral hypercalcemia of malignancy associated with ameloblastoma in a horse. J. Am. Vet. Med. Assoc. 1994, 204, 1930–1933. [Google Scholar] [PubMed]
- Stewart, A.F. Clinical practice. Hypercalcemia associated with cancer. N. Engl. J. Med. 2005, 352, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Rosner, M.H.; Dalkin, A.C. Onco-nephrology: The pathophysiology and treatment of malignancy-associated hypercalcemia. Clin. J. Am. Soc. Nephrol 2012, 7, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Clines, G.A. Mechanisms and treatment of hypercalcemia of malignancy. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, H.M. PTHrP and skeletal development. Ann. N. Y. Acad. Sci. 2006, 1068, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rosol, T.J.; Capen, C.C.; Horst, R.L. Effects of infusion of human parathyroid hormone-related protein-(1-40) in nude mice: Histomorphometric and biochemical investigations. J. Bone Miner. Res. 1988, 3, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Toribio, R.E.; Brown, H.A.; Novince, C.M.; Marlow, B.; Hernon, K.; Lanigan, L.G.; Hildreth, B.E., 3rd; Werbeck, J.L.; Shu, S.T.; Lorch, G.; et al. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J. 2010, 24, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- McCauley, L.K.; Martin, T.J. Twenty-five years of PTHrP progress: From cancer hormone to multifunctional cytokine. J. Bone Miner. Res. 2012, 27, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Soki, F.N.; Park, S.I.; McCauley, L.K. The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol. 2012, 8, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Fraser, W.D.; Robinson, J.; Lawton, R.; Durham, B.; Gallacher, S.J.; Boyle, I.T.; Beastall, G.H.; Logue, F.C. Clinical and laboratory studies of a new immunoradiometric assay of parathyroid hormone-related protein. Clin. Chem. 1993, 39, 414–419. [Google Scholar] [PubMed]
- Henderson, J.E.; Shustik, C.; Kremer, R.; Rabbani, S.A.; Hendy, G.N.; Goltzman, D. Circulating concentrations of parathyroid hormone-like peptide in malignancy and in hyperparathyroidism. J. Bone Miner. Res. 1990, 5, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, W.A.; Norbury, S.; Stott, R.A.; Heath, D.A.; Ratcliffe, J.G. Immunoreactivity of plasma parathyrin-related peptide: Three region-specific radioimmunoassays and a two-site immunoradiometric assay compared. Clin. Chem. 1991, 37, 1781–1787. [Google Scholar] [PubMed]
- Segura Dominguez, A.; Olivie, M.A.A.; Sousa, T.R.; Alvarez, M.L.T.; Perez, D.R.; Novoa, R.A.; Garcia-Mayor, R.V. Plasma parathyroid hormone related-protein levels in patients with cancer, normocalcemic and hypercalcemic. Clin. Chim. Acta 1996, 244, 163–172. [Google Scholar] [CrossRef]
- Greenfield, E.M.; Shaw, S.M.; Gornik, S.A.; Banks, M.A. Adenyl cyclase and interleukin 6 are downstream effectors of parathyroid hormone resulting in stimulation of bone resorption. J. Clin. Investig. 1995, 96, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Leibbrandt, A.; Penninger, J.M. RANK/RANKL: Regulators of immune responses and bone physiology. Ann. N. Y. Acad. Sci. 2008, 1143, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Guise, T.A.; Mohammad, K.S.; Clines, G.; Stebbins, E.G.; Wong, D.H.; Higgins, L.S.; Vessella, R.; Corey, E.; Padalecki, S.; Suva, L.; et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 2006, 12, 6213s–6216s. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, K.; Saupe, J.; Pauls, A.; von Herrath, D. Hypercalcemia and elevated serum 1,25-dihydroxyvitamin D3 in a patient with Hodgkin’s lymphoma. Klin. Wochenschr. 1986, 64, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Lentzsch, S.; Gries, M.; Janz, M.; Bargou, R.; Dorken, B.; Mapara, M.Y. Macrophage inflammatory protein 1-alpha (MIP-1 alpha ) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003, 101, 3568–3573. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Choi, S.J.; Kurihara, N.; Koide, M.; Oba, Y.; Roodman, G.D. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 2001, 97, 3349–3353. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, M.; Kato, C.; Manno, M.; Ogaki, M.; Satou, T.; Itoh, T.; Kusunoki, T.; Tanimori, Y.; Fujiwara, K.; Matsuoka, H.; et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol. Cell. Biochem. 2007, 304, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Blind, E.; Knappe, V.; Raue, F.; Pfeilschifter, J.; Ziegler, R. Tumor necrosis factor alpha inhibits the stimulatory effect of the parathyroid hormone-related protein on cyclic AMP formation in osteoblast-like cells via protein kinase C+. Biochem. Biophys. Res. Commun. 1992, 182, 341–347. [Google Scholar] [CrossRef]
- Johnson, R.A.; Boyce, B.F.; Mundy, G.R.; Roodman, G.D. Tumors producing human tumor necrosis factor induced hypercalcemia and osteoclastic bone resorption in nude mice. Endocrinology 1989, 124, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Li, P.; Yao, Z.; Zhang, Q.; Badell, I.R.; Schwarz, E.M.; O’Keefe, R.J.; Xing, L. TNF-alpha and pathologic bone resorption. Keio J. Med. 2005, 54, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Pepper, K.; Jaowattana, U.; Starsiak, M.D.; Halkar, R.; Hornaman, K.; Wang, W.; Dayamani, P.; Tangpricha, V. Renal cell carcinoma presenting with paraneoplastic hypercalcemic coma: A case report and review of the literature. J. Gen. Intern. Med. 2007, 22, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Sims, N.A.; Jenkins, B.J.; Quinn, J.M.; Nakamura, A.; Glatt, M.; Gillespie, M.T.; Ernst, M.; Martin, T.J. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J. Clin. Investig. 2004, 113, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Vanderschueren, B.; Dumon, J.C.; Oleffe, V.; Heymans, C.; Gerain, J.; Body, J.J. Circulating concentrations of interleukin-6 in cancer patients and their pathogenic role in tumor-induced hypercalcemia. Cancer Immunol. Immunother. 1994, 39, 286–290. [Google Scholar] [CrossRef] [PubMed]
- de la Mata, J.; Uy, H.L.; Guise, T.A.; Story, B.; Boyce, B.F.; Mundy, G.R.; Roodman, G.D. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J. Clin. Investig. 1995, 95, 2846–2852. [Google Scholar] [CrossRef] [PubMed]
- Wano, Y.; Hattori, T.; Matsuoka, M.; Takatsuki, K.; Chua, A.O.; Gubler, U.; Greene, W.C. Interleukin 1 gene expression in adult T cell leukemia. J. Clin. Investig. 1987, 80, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, I.; Kawano, M.; Sone, T.; Iwato, K.; Tanaka, H.; Ishikawa, H.; Kitamura, N.; Lee, K.; Shigeno, C.; Konishi, J.; et al. Production of interleukin 1 beta, a potent bone resorbing cytokine, by cultured human myeloma cells. Cancer Res. 1989, 49, 4242–4246. [Google Scholar] [PubMed]
- Akatsu, T.; Takahashi, N.; Udagawa, N.; Imamura, K.; Yamaguchi, A.; Sato, K.; Nagata, N.; Suda, T. Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J. Bone Miner. Res. 1991, 6, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Guise, T.A.; Garrett, I.R.; Bonewald, L.F.; Mundy, G.R. Interleukin-1 receptor antagonist inhibits the hypercalcemia mediated by interleukin-1. J. Bone Miner. Res. 1993, 8, 583–587. [Google Scholar] [CrossRef] [PubMed]
- McCauley, L.K.; Rosol, T.J.; Stromberg, P.C.; Capen, C.C. Effects of interleukin-1 alpha and cyclosporin A in vivo and in vitro on bone and lymphoid tissues in mice. Toxicol Pathol. 1991, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, M.; Boyce, B.; Aufdemorte, T.; Bonewald, L.; Mundy, G.R. Infusions of recombinant human interleukins 1 alpha and 1 beta cause hypercalcemia in normal mice. Proc. Natl. Acad. Sci. USA 1988, 85, 5235–5239. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jin, H.M.; Kim, K.; Song, I.; Youn, B.U.; Matsuo, K.; Kim, N. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 2009, 183, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, N.; Maeno, M.; Suzuki, N.; Fujisaki, K.; Tanaka, H.; Ogiso, B.; Ito, K. IL-1 alpha stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci. 2005, 77, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Kitaura, H.; Zhou, P.; Ross, F.P.; Teitelbaum, S.L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Investig. 2005, 115, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Caverzasio, J.; Rizzoli, R.; Vallotton, M.B.; Dayer, J.M.; Bonjour, J.P. Stimulation by interleukin-1 of renal calcium reabsorption in thyroparathyroidectomized rats. J. Bone Miner. Res. 1993, 8, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.J.; Southby, J.; Danks, J.A.; Stillwell, R.G.; Hayman, J.A.; Henderson, M.A.; Bennett, R.C.; Martin, T.J. Localization of parathyroid hormone-related protein in breast cancer metastases: Increased incidence in bone compared with other sites. Cancer Res. 1991, 51, 3059–3061. [Google Scholar] [PubMed]
- Kohno, N.; Kitazawa, S.; Fukase, M.; Sakoda, Y.; Kanbara, Y.; Furuya, Y.; Ohashi, O.; Ishikawa, Y.; Saitoh, Y. The expression of parathyroid hormone-related protein in human breast cancer with skeletal metastases. Surg. Today 1994, 24, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Schilling, T. In vivo models of hypercalcemia of malignancy. In Hypercalcemia of Malignancy; Springer: Berlin/Heidelberg, Germany, 1994; pp. 44–75. [Google Scholar]
- Guise, T.A.; Chirgwin, J.M. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin. Orthop. Relat. Res. 2003, 415, S32–S38. [Google Scholar] [CrossRef] [PubMed]
- Insogna, K.L.; Stewart, A.F.; Vignery, A.M.; Weir, E.C.; Namnum, P.A.; Baron, R.E.; Kirkwood, J.M.; Deftos, L.M.; Broadus, A.E. Biochemical and histomorphometric characterization of a rat model for humoral hypercalcemia of malignancy. Endocrinology 1984, 114, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, Y.; Imai, Y.; Itoh, F.; Kojima, M.; Isaji, M.; Shibata, N. Rat model of the hypercalcaemia induced by parathyroid hormone-related protein: Characteristics of three bisphosphonates. Eur. J. Pharmacol. 2005, 507, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Merrick, C.H.; Schleis, S.E.; Smith, A.N.; Mallett, C.L.; Graff, E.C.; Johnson, C. Hypercalcemia of malignancy associated with renal cell carcinoma in a dog. J. Am. Anim. Hosp. Assoc. 2013, 49, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, M.; Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Rowell, J.L.; McCarthy, D.O.; Alvarez, C.E. Dog models of naturally occurring cancer. Trends Mol. Med. 2011, 17, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Heath, H., 3rd; Weller, R.E.; Mundy, G.R. Canine lymphosarcoma: A model for study of the hypercalcemia of cancer. Calcif. Tissue Int. 1980, 30, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Grone, A.; Rosol, T.J.; Baumgartner, W.; Capen, C.C. Effects of humoral hypercalcemia of malignancy on the parathyroid gland in nude mice. Vet. Pathol. 1992, 29, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Meier, V.; Polton, G.; Cancedda, S.; Roos, M.; Laganga, P.; Emmerson, T.; Bley, C.R. Outcome in dogs with advanced (stage 3b) anal sac gland carcinoma treated with surgery or hypofractionated radiation therapy. Vet. Comp. Oncol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Merryman, J.I.; Rosol, T.J.; Brooks, C.L.; Capen, C.C. Separation of parathyroid hormone-like activity from transforming growth factor-alpha and -beta in the canine adenocarcinoma (CAC-8) model of humoral hypercalcemia of malignancy. Endocrinology 1989, 124, 2456–2463. [Google Scholar] [CrossRef] [PubMed]
- Yarrington, J.T.; Hoffman, W.; Macy, D. Animal model of human disease. Pseudohyperparathyroidism. Animal model: Hypercalcemia associated with lymphosarcoma (pseudohyperparathyroidism) in dogs. Am. J. Pathol. 1977, 89, 531–534. [Google Scholar] [PubMed]
- Hewison, M.; Kantorovich, V.; Liker, H.R.; van Herle, A.J.; Cohan, P.; Zehnder, D.; Adams, J.S. Vitamin D-mediated hypercalcemia in lymphoma: Evidence for hormone production by tumor-adjacent macrophages. J. Bone Miner. Res. 2003, 18, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Gerber, B.; Hauser, B.; Reusch, C.E. Serum levels of 25-hydroxycholecalciferol and 1,25-dihydroxycholecalciferol in dogs with hypercalcaemia. Vet. Res. Commun. 2004, 28, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Kubota, A.; Kano, R.; Mizuno, T.; Hisasue, M.; Moore, P.F.; Watari, T.; Tsujimoto, H.; Hasegawa, A. Parathyroid hormone-related protein (PTHrP) produced by dog lymphoma cells. J. Vet. Med. Sci. 2002, 64, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Mellanby, R.J.; Craig, R.; Evans, H.; Herrtage, M.E. Plasma concentrations of parathyroid hormone-related protein in dogs with potential disorders of calcium metabolism. Vet. Rec. 2006, 159, 833–838. [Google Scholar] [PubMed]
- Grivennikov, S.I.; Karin, M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis. 2011, 70, i104–i108. [Google Scholar] [CrossRef] [PubMed]
- Geigy, C.; Riond, B.; Bley, C.R.; Grest, P.; Kircher, P.; Lutz, H. Multiple myeloma in a dog with multiple concurrent infectious diseases and persistent polyclonal gammopathy. Vet. Clin. Pathol. 2013, 42, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Matus, R.E.; Leifer, C.E.; MacEwen, E.G.; Hurvitz, A.I. Prognostic factors for multiple myeloma in the dog. J. Am. Vet. Med. Assoc. 1986, 188, 1288–1292. [Google Scholar] [PubMed]
- Galson, D.L.; Silbermann, R.; Roodman, G.D. Mechanisms of multiple myeloma bone disease. Bonekey Rep. 2012, 1, 135. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Riber, C.; Satué, K.; Trigo, P.; Gómez-Díez, M.; Castejón, F.M. Multiple myeloma in horses, dogs and cats: A comparative review focused on clinical signs and pathogenesis. In Multiple Myeloma—A Quick Reflection on the Fast Progress; InTech.: Rijeka, Croatia, 2013; pp. 289–326. [Google Scholar]
- Seelig, D.M.; Perry, J.A.; Avery, A.C.; Avery, P.R. Monoclonal gammopathy without hyperglobulinemia in 2 dogs with IgA secretory neoplasms. Vet. Clin. Pathol. 2010, 39, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Tripp, C.D.; Bryan, J.N.; Wills, T.B. Presumptive increase in protein-bound serum calcium in a dog with multiple myeloma. Vet. Clin. Pathol. 2009, 38, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Attaelmannan, M.; Levinson, S.S. Understanding and identifying monoclonal gammopathies. Clin. Chem. 2000, 46, 1230–1238. [Google Scholar] [PubMed]
- Rikimaru, K.; Matsumoto, F.; Hayashi, E.; Bando, H.; Nagayama, M. Evaluation of serum concentration of parathyroid hormone-related protein and its implication in hypercalcemia in squamous cell carcinoma of the head and neck. Int. J. Oral Maxillofac. Surg. 1995, 24, 365–368. [Google Scholar] [CrossRef]
- Lumachi, F.; Brunello, A.; Roma, A.; Basso, U. Cancer-induced hypercalcemia. Anticancer Res. 2009, 29, 1551–1555. [Google Scholar] [PubMed]
- Shu, S.T.; Martin, C.K.; Thudi, N.K.; Dirksen, W.P.; Rosol, T.J. Osteolytic bone resorption in adult T-cell leukemia/lymphoma. Leuk. Lymphoma 2010, 51, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hiraga, T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem. Biophys. Res. Commun. 2005, 328, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Supsavhad, W.; Dirksen, W.P.; Martin, C.K.; Rosol, T.J. Animal models of head and neck squamous cell carcinoma. Vet. J. 2016, 210, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Tannehill-Gregg, S.; Kergosien, E.; Rosol, T.J. Feline head and neck squamous cell carcinoma cell line: Characterization, production of parathyroid hormone-related protein, and regulation by transforming growth factor-beta. In Vitro Cell Dev. Biol. Anim. 2001, 37, 676–683. [Google Scholar] [CrossRef]
- Martin, C.K.; Dirksen, W.P.; Shu, S.T.; Werbeck, J.L.; Thudi, N.K.; Yamaguchi, M.; Wolfe, T.D.; Heller, K.N.; Rosol, T.J. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma. Oral Oncol. 2012, 48, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.K.; Tannehill-Gregg, S.H.; Wolfe, T.D.; Rosol, T.J. Bone-invasive oral squamous cell carcinoma in cats: Pathology and expression of parathyroid hormone-related protein. Vet. Pathol. 2011, 48, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Divers, T.J.; Rowland, P.H. Hypercalcaemia and erythrocytosis in a mare associated with a metastatic carcinoma. Equine Vet. J. 1995, 27, 316–318. [Google Scholar] [CrossRef] [PubMed]
- De Wit, M.; Schoemaker, N.J.; Kik, M.J.; Westerhof, I. Hypercalcemia in two Amazon parrots with malignant lymphoma. Avian Dis. 2003, 47, 223–228. [Google Scholar] [CrossRef]
- Gkonos, P.J.; Hayes, T.; Burtis, W.; Jacoby, R.; McGuire, J.; Baron, R.; Stewart, A.F. Squamous carcinoma model of humoral hypercalcemia of malignancy. Endocrinology 1984, 115, 2384–2390. [Google Scholar] [CrossRef] [PubMed]
- Manishen, W.J.; Sivananthan, K.; Orr, F.W. Resorbing bone stimulates tumor cell growth. A role for the host microenvironment in bone metastasis. Am. J. Pathol. 1986, 123, 39–45. [Google Scholar] [PubMed]
- Barrett, C.P.; Cubitt, J.G.; Donati, E.J. Elevated serum calcium concentrations in mammary tumor bearing C3H/Fg mice without bony metastases. Lab. Anim. Sci. 1978, 28, 34–37. [Google Scholar] [PubMed]
- Delmonte, L.; Liebelt, A.G.; Liebelt, R.A. Granulopoiesis and thrombopoiesis in mice bearing transplanted mammary cancer. Cancer Res. 1966, 26, 149–159. [Google Scholar] [PubMed]
- Asosingh, K.; Radl, J.; van Riet, I.; van Camp, B.; Vanderkerken, K. The 5TMM series: A useful in vivo mouse model of human multiple myeloma. Hematol J. 2000, 1, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Garrett, I.R.; Dallas, S.; Radl, J.; Mundy, G.R. A murine model of human myeloma bone disease. Bone 1997, 20, 515–520. [Google Scholar] [CrossRef]
- Gao, L.; Deng, H.; Zhao, H.; Hirbe, A.; Harding, J.; Ratner, L.; Weilbaecher, K. HTLV-1 Tax transgenic mice develop spontaneous osteolytic bone metastases prevented by osteoclast inhibition. Blood 2005, 106, 4294–4302. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, K.; Yamaguchi, K.; Watanabe, K.; Eto, S.; Abe, K. Interleukin-4 blocks parathyroid hormone-related protein-induced hypercalcemia in vivo. Biochem. Biophys. Res. Commun. 1991, 178, 694–698. [Google Scholar] [CrossRef]
- Yates, A.J.; Gutierrez, G.E.; Smolens, P.; Travis, P.S.; Katz, M.S.; Aufdemorte, T.B.; Boyce, B.F.; Hymer, T.K.; Poser, J.W.; Mundy, G.R. Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption, and bone metabolism in vivo and in vitro in rodents. J. Clin. Investig. 1988, 81, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Oyajobi, B.O.; Anderson, D.M.; Traianedes, K.; Williams, P.J.; Yoneda, T.; Mundy, G.R. Therapeutic efficacy of a soluble receptor activator of nuclear factor kappaB-IgG Fc fusion protein in suppressing bone resorption and hypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Res. 2001, 61, 2572–2578. [Google Scholar] [PubMed]
- Yoneda, T.; Alsina, M.A.; Chavez, J.B.; Bonewald, L.; Nishimura, R.; Mundy, G.R. Evidence that tumor necrosis factor plays a pathogenetic role in the paraneoplastic syndromes of cachexia, hypercalcemia, and leukocytosis in a human tumor in nude mice. J. Clin. Investig. 1991, 87, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Nakai, M.; Moriyama, K.; Scott, L.; Ida, N.; Kunitomo, T.; Mundy, G.R. Neutralizing antibodies to human interleukin 6 reverse hypercalcemia associated with a human squamous carcinoma. Cancer Res. 1993, 53, 737–740. [Google Scholar] [PubMed]
- Sato, K.; Mimura, H.; Han, D.C.; Kakiuchi, T.; Ueyama, Y.; Ohkawa, H.; Okabe, T.; Kondo, Y.; Ohsawa, N.; Tsushima, T.; et al. Production of bone-resorbing activity and colony-stimulating activity in vivo and in vitro by a human squamous cell carcinoma associated with hypercalcemia and leukocytosis. J. Clin. Investig. 1986, 78, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Strewler, G.J.; Williams, R.D.; Nissenson, R.A. Human renal carcinoma cells produce hypercalcemia in the nude mouse and a novel protein recognized by parathyroid hormone receptors. J. Clin. Investig. 1983, 71, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Strewler, G.J.; Wronski, T.J.; Halloran, B.P.; Miller, S.C.; Leung, S.C.; Williams, R.D.; Nissenson, R.A. Pathogenesis of hypercalcemia in nude mice bearing a human renal carcinoma. Endocrinology 1986, 119, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Bringhurst, F.R.; Bierer, B.E.; Godeau, F.; Neyhard, N.; Varner, V.; Segre, G.V. Humoral hypercalcemia of malignancy. Release of a prostaglandin-stimulating bone-resorbing factor in vitro by human transitional-cell carcinoma cells. J. Clin. Investig. 1986, 77, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Yamaguchi, K.; Honda, S.; Nagasaki, K.; Tsuchihashi, T.; Mori, M.; Kimura, S.; Abe, K. Production of parathyroid hormone-related protein in tumour xenografts in nude mice presenting with hypercalcaemia. Br. J. Cancer 1991, 63, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Satoh, T.; Shizume, K.; Yamakawa, Y.; Ono, Y.; Demura, H.; Akatsu, T.; Takahashi, N.; Suda, T. Prolonged decrease of serum calcium concentration by murine gamma-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice. Cancer Res. 1992, 52, 444–449. [Google Scholar] [PubMed]
- El Abdaimi, K.; Papavasiliou, V.; Goltzman, D.; Kremer, R. Expression and regulation of parathyroid hormone-related peptide in normal and malignant melanocytes. Am. J. Physiol. Cell Physiol. 2000, 279, C1230–C1238. [Google Scholar] [PubMed]
- Hiraga, T.; Nakajima, T.; Ozawa, H. Bone resorption induced by a metastatic human melanoma cell line. Bone 1995, 16, 349–356. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamada, S. Ascites sarcoma 180, a tumor associated with hypercalcemia, secretes potent bone-resorbing factors including transforming growth factor alpha, interleukin-1 alpha and interleukin-6. Bone Miner. 1994, 27, 219–233. [Google Scholar] [CrossRef]
- Nagata, N.; Akatsu, T.; Kugai, N.; Yasutomo, Y.; Kinoshita, T.; Kosano, H.; Shimauchi, T.; Takatani, O.; Ueyama, Y. The tumor cells (FA-6) established from a pancreatic cancer associated with humoral hypercalcemia of malignancy: A simultaneous production of parathyroid hormone-like activity and transforming growth factor activity. Endocrinol. Jpn. 1989, 36, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, C.; Kostenuik, P.J.; Morony, S.; Starnes, C.; Weimann, B.; Van, G.; Scully, S.; Qi, M.; Lacey, D.L.; Dunstan, C.R. Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Res. 2000, 60, 783–787. [Google Scholar] [PubMed]
- Morony, S.; Warmington, K.; Adamu, S.; Asuncion, F.; Geng, Z.; Grisanti, M.; Tan, H.L.; Capparelli, C.; Starnes, C.; Weimann, B.; et al. The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 2005, 146, 3235–3243. [Google Scholar] [CrossRef] [PubMed]
- Otte, A.; Gohring, G.; Steinemann, D.; Schlegelberger, B.; Groos, S.; Langer, F.; Kreipe, H.H.; Schambach, A.; Neumann, T.; Hillemanns, P.; et al. A tumor-derived population (SCCOHT-1) as cellular model for a small cell ovarian carcinoma of the hypercalcemic type. Int. J. Oncol. 2012, 41, 765–775. [Google Scholar] [PubMed]
- Richard, V.; Lairmore, M.D.; Green, P.L.; Feuer, G.; Erbe, R.S.; Albrecht, B.; D’Souza, C.; Keller, E.T.; Dai, J.; Rosol, T.J. Humoral hypercalcemia of malignancy: Severe combined immunodeficient/beige mouse model of adult T-cell lymphoma independent of human T-cell lymphotropic virus type-1 tax expression. Am. J. Pathol. 2001, 158, 2219–2228. [Google Scholar] [CrossRef]
- Shu, S.T.; Nadella, M.V.; Dirksen, W.P.; Fernandez, S.A.; Thudi, N.K.; Werbeck, J.L.; Lairmore, M.D.; Rosol, T.J. A novel bioluminescent mouse model and effective therapy for adult T-cell leukemia/lymphoma. Cancer Res. 2007, 67, 11859–11866. [Google Scholar] [CrossRef] [PubMed]
- Takaori-Kondo, A.; Imada, K.; Yamamoto, I.; Kunitomi, A.; Numata, Y.; Sawada, H.; Uchiyama, T. Parathyroid hormone-related protein-induced hypercalcemia in SCID mice engrafted with adult T-cell leukemia cells. Blood 1998, 91, 4747–4751. [Google Scholar] [PubMed]
- Alsina, M.; Boyce, B.; Devlin, R.D.; Anderson, J.L.; Craig, F.; Mundy, G.R.; Roodman, G.D. Development of an in vivo model of human multiple myeloma bone disease. Blood 1996, 87, 1495–1501. [Google Scholar] [PubMed]
- Yaccoby, S.; Ling, W.; Zhan, F.; Walker, R.; Barlogie, B.; Shaughnessy, J.D., Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007, 109, 2106–2111. [Google Scholar] [CrossRef] [PubMed]
- Otte, A.; Rauprich, F.; Hillemanns, P.; Park-Simon, T.W.; von der Ohe, J.; Hass, R. In vitro and in vivo therapeutic approach for a small cell carcinoma of the ovary hypercalcaemic type using a SCCOHT-1 cellular model. Orphanet J. Rare Dis. 2014, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Tashjian, A.H., Jr.; Voelkel, E.F.; Levine, L. Plasma concentrations of 13,14-dihydro-15-keto-prostaglandin E2 in rabbits bearing the VX2 carcinoma: Effects of hydrocortisone and indomethacin. Prostaglandins 1977, 14, 309–317. [Google Scholar] [CrossRef]
- Tashjian, A.H., Jr.; Voelkel, E.F., Jr.; Robinson, D.R.; Levine, L. Dietary menhaden oil lowers plasma prostaglandins and calcium in mice bearing the prostaglandin-producing HSDM1 fibrosarcoma. J. Clin. Investig. 1984, 74, 2042–2048. [Google Scholar] [CrossRef] [PubMed]
- Riddle, C.V.; Lee, M.Y.; Lee, M.J. Morphological characterization of a granulocytosis/hypercalcemia-inducing murine mammary carcinoma cell line. Anat. Rec. 1987, 219, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Baylink, D.J. Hypercalcemia, excessive bone resorption, and neutrophilia in mice bearing a mammary carcinoma. Proc. Soc. Exp. Biol. Med. 1983, 172, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Kaushansky, K.; Judkins, S.A.; Lottsfeldt, J.L.; Waheed, A.; Shadduck, R.K. Mechanisms of tumor-induced neutrophilia: Constitutive production of colony-stimulating factors and their synergistic actions. Blood 1989, 74, 115–122. [Google Scholar] [PubMed]
- Lee, M.Y.; Rosse, C. Replacement of fatty marrow by active granulocytopoietic bone marrow following transplantation of mammary carcinoma into mice. Anat. Rec. 1979, 195, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Menu, E.; de Leenheer, E.; de Raeve, H.; Coulton, L.; Imanishi, T.; Miyashita, K.; van Valckenborgh, E.; van Riet, I.; van Camp, B.; Horuk, R.; et al. . Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: A study in the 5TMM model. Clin. Exp. Metastasis 2006, 23, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Guise, T.A.; Yoneda, T.; Yates, A.J.; Mundy, G.R. The combined effect of tumor-produced parathyroid hormone-related protein and transforming growth factor-alpha enhance hypercalcemia in vivo and bone resorption in vitro. J. Clin. Endocrinol. Metab. 1993, 77, 40–45. [Google Scholar] [PubMed]
- Iguchi, H.; Tanaka, S.; Ozawa, Y.; Kashiwakuma, T.; Kimura, T.; Hiraga, T.; Ozawa, H.; Kono, A. An experimental model of bone metastasis by human lung cancer cells: The role of parathyroid hormone-related protein in bone metastasis. Cancer Res. 1996, 56, 4040–4043. [Google Scholar] [PubMed]
- Iguchi, H.; Aramaki, Y.; Maruta, S.; Takiguchi, S. Effects of anti-parathyroid hormone-related protein monoclonal antibody and osteoprotegerin on PTHrP-producing tumor-induced cachexia in nude mice. J. Bone Miner. Metab. 2006, 24, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Lorch, G.; Viatchenko-Karpinski, S.; Ho, H.T.; Dirksen, W.P.; Toribio, R.E.; Foley, J.; Gyorke, S.; Rosol, T.J. The calcium-sensing receptor is necessary for the rapid development of hypercalcemia in human lung squamous cell carcinoma. Neoplasia 2011, 13, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Bockman, R.S.; Bellin, A.; Repo, M.A.; Hickok, N.J.; Kameya, T. In vivo and in vitro biological activities of two human cell lines derived from anaplastic lung cancers. Cancer Res. 1983, 43, 4511–4516. [Google Scholar] [PubMed]
- Wysolmerski, J.J.; Vasavada, R.; Foley, J.; Weir, E.C.; Burtis, W.J.; Kukreja, S.C.; Guise, T.A.; Broadus, A.E.; Philbrick, W.M. Transactivation of the PTHrP gene in squamous carcinomas predicts the occurrence of hypercalcemia in athymic mice. Cancer Res. 1996, 56, 1043–1049. [Google Scholar] [PubMed]
- Asahi, Y.; Kubonishi, I.; Imamura, J.; Kamioka, M.; Matsushita, H.; Furihata, M.; Ohtsuki, Y.; Miyoshi, I. Establishment of a clonal cell line producing granulocyte colony-stimulating factor and parathyroid hormone-related protein from a lung cancer patient with leukocytosis and hypercalcemia. Jpn. J. Cancer Res. 1996, 87, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Feuer, G.; Zack, J.A.; Harrington, W.J., Jr.; Valderama, R.; Rosenblatt, J.D.; Wachsman, W.; Baird, S.M.; Chen, I.S. Establishment of human T-cell leukemia virus type I T-cell lymphomas in severe combined immunodeficient mice. Blood 1993, 82, 722–731. [Google Scholar] [PubMed]
- Parrula, C.; Zimmerman, B.; Nadella, P.; Shu, S.; Rosol, T.; Fernandez, S.; Lairmore, M.; Niewiesk, S. Expression of tumor invasion factors determines systemic engraftment and induction of humoral hypercalcemia in a mouse model of adult T-cell leukemia. Vet. Pathol. 2009, 46, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.E.; Herring, B.; Wilson, L.A.; Rickford, M.S.; Zhang, M.; Goldman, C.K.; Tso, J.Y.; Waldmann, T.A. IL-2Ralpha-Directed monoclonal antibodies provide effective therapy in a murine model of adult T-cell leukemia by a mechanism other than blockade of IL-2/IL-2Ralpha interaction. Cancer Res. 2000, 60, 6977–6984. [Google Scholar] [PubMed]
- Linehan, W.M.; Kish, M.L.; Chen, S.L.; Andriole, G.L.; Santora, A.C. Human prostate carcinoma causes hypercalcemia in athymic nude mice and produces a factor with parathyroid hormone-like bioactivity. J. Urol. 1986, 135, 616–620. [Google Scholar] [PubMed]
- Colloton, M.; Shatzen, E.; Wiemann, B.; Starnes, C.; Scully, S.; Henley, C.; Martin, D. Cinacalcet attenuates hypercalcemia observed in mice bearing either Rice H-500 Leydig cell or C26-DCT colon tumors. Eur. J. Pharmacol. 2013, 712, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Shirahata, A.; Fukushima, S.; Kokubo, S.; Teramura, K.; Usuda, S. Effects of YM175, a new-generation bisphosphonate, on hypercalcemia induced by tumor-derived bone resorbing factors in rats. Jpn. J. Pharmacol. 1998, 76, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.E.; Golub, M.S.; Sowers, J.R.; Brickman, A.S.; Nyby, M.; Troyer, H.; Rude, R.K.; Singer, F.R.; Horst, R.; Deftos, L.J. Hypercalcemia in association with a Leydig cell tumor in the rat: A model for tumor-induced hypercalcemia in man. Life Sci. 1982, 30, 1509–1515. [Google Scholar] [CrossRef]
- Rice, B.F.; Roth, L.M.; Cole, F.E.; MacPhee, A.A.; Davis, K.; Ponthier, R.L.; Sternberg, W.H. Hypercalcemia and neoplasia. Biologic, biochemical, and ultrastructural studies of a hypercalcemia-producing Leydig cell tumor of the rat. Lab. Investig. 1975, 33, 428–439. [Google Scholar] [PubMed]
- Sica, D.A.; Martodam, R.R.; Aronow, J.; Mundy, G.R. The hypercalcemic rat Leydig cell tumor—A model of the humoral hypercalcemia of malignancy. Calcif. Tissue Int. 1983, 35, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Silve, C.; Santora, A.; Spiegel, A. A factor produced by cultured rat Leydig tumor (Rice 500) cells associated with humoral hypercalcemia stimulates adenosine 3′,5′-monophosphate production via the parathyroid hormone receptor in human skin fibroblasts. J. Clin. Endocrinol. Metab. 1985, 60, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Troyer, H.; Sowers, J.R.; Babich, E. Leydig cell tumor induced hypercalcemia in the Fischer rat: Morphometric and histochemical evidence for a humoral factor that activates osteoclasts. Am. J. Pathol. 1982, 108, 284–290. [Google Scholar] [PubMed]
- Gaich, G.; Burtis, W.J. Measurement of circulating parathyroid hormone-related protein in rats with humoral hypercalcemia of malignancy using a two-site immunoradiometric assay. Endocrinology 1990, 127, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Martodam, R.R.; Thornton, K.S.; Sica, D.A.; D’Souza, S.M.; Flora, L.; Mundy, G.R. The effects of dichloromethylene diphosphonate on hypercalcemia and other parameters of the humoral hypercalcemia of malignancy in the rat Leydig cell tumor. Calcif. Tissue Int. 1983, 35, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Sartori, L.; Insogna, K.L.; Barrett, P.Q. Renal phosphate transport in humoral hypercalcemia of malignancy. Am. J. Physiol. 1988, 255, F1078–F1084. [Google Scholar] [PubMed]
- de Miguel, F.; Garcia-Canero, R.; Esbrit, P. Co-purification of calcium transport-stimulating and DNA synthesis-stimulating agents with parathormone-like activity isolated from the hypercalcaemic strain of the Walker 256 tumour. Eur. J. Cancer 1991, 27, 1022–1026. [Google Scholar] [CrossRef]
- D’Souza, S.M.; Ibbotson, K.J.; Smith, D.D.; Mundy, G.R. Production of a macromolecular bone-resorbing factor by the hypercalcemic variant of the walker rat carcinosarcoma. Endocrinology 1984, 115, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Ibbotson, K.J.; D’Souza, S.M.; Ng, K.W.; Osborne, C.K.; Niall, M.; Martin, T.J.; Mundy, G.R. Tumor-derived growth factor increases bone resorption in a tumor associated with humoral hypercalcemia of malignancy. Science 1983, 221, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Insogna, K.L.; Weir, E.C.; Wu, T.L.; Stewart, A.F.; Broadus, A.E.; Burtis, W.J.; Centrella, M. Co-purification of transforming growth factor beta-like activity with PTH-like and bone-resorbing activities from a tumor associated with humoral hypercalcemia of malignancy. Endocrinology 1987, 120, 2183–2185. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, M.; Seibel, M.J.; Woitge, H.W.; Krempien, B.; Bauss, F. Association between histomorphometry and biochemical markers of bone turnover in a longitudinal rat model of parathyroid hormone-related peptide (PTHrP)-mediated tumor osteolysis. Bone 2000, 26, 475–483. [Google Scholar] [CrossRef]
- Torres, R.; de la Piedra, C.; Rapado, A. Osseous and intestinal compartments in the humoral hypercalcemia of malignancy associated to Walker 256 tumor in rats. Oncology 1993, 50, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Verguizas, J.; Loarte, D.; de Miguel, F.; Esbrit, P. Effects of transforming growth factor beta1 on cell growth and parathyroid hormone-related protein in Walker 256 tumor cells. Life Sci. 1999, 65, 1807–1816. [Google Scholar] [CrossRef]
- Guaitani, A.; Polentarutti, N.; Filippeschi, S.; Marmonti, L.; Corti, F.; Italia, C.; Coccioli, G.; Donelli, M.G.; Mantovani, A.; Garattini, S. Effects of disodium etidronate in murine tumor models. Eur. J. Cancer Clin. Oncol. 1984, 20, 685–693. [Google Scholar] [CrossRef]
- Guaitani, A.; Sabatini, M.; Coccioli, G.; Cristina, S.; Garattini, S.; Bartosek, I. An experimental rat model of local bone cancer invasion and its responsiveness to ethane-1-hydroxy-1,1-bis(phosphonate). Cancer Res. 1985, 45, 2206–2209. [Google Scholar] [PubMed]
- Johannesson, A.J.; Onkelinx, C.; Rodan, G.A.; Raisz, L.G. Thionapthene-2-carboxylic acid: A new antihypercalcemic agent. Endocrinology 1985, 117, 1508–1511. [Google Scholar] [CrossRef] [PubMed]
- Krempien, B.; Manegold, C. Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate Cl2MBP. Cancer 1993, 72, 91–98. [Google Scholar] [CrossRef]
- Weiss, J.; Walker, S.T.; Fallon, M.; Goldfarb, S. In vivo and in vitro effects of WR-2721 in experimental hypercalcemia in the rat. J. Pharmacol. Exp. Ther. 1986, 238, 969–973. [Google Scholar] [PubMed]
- Nakanish, I.M.; Yamate, J.; Ide, M.; Sawamoto, O.; Kuwamur, M.; Kotani, T.; Nakatsuji, S. Humoral hypercalcemia of malignancy in female F344 rats implanted with a transplantable rat pulmonary carcinoma line (IP). J. Vet. Med. Sci. 2001, 63, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Gullino, P.M.; Pettigrew, H.M.; Grantham, F.H. N-nitrosomethylurea as mammary gland carcinogen in rats. J. Natl. Cancer Inst. 1975, 54, 401–414. [Google Scholar] [PubMed]
- Ikeda, K.; Matsumoto, T.; Fukumoto, S.; Kurokawa, K.; Ueyama, Y.; Fujishige, K.; Tamaoki, N.; Saito, T.; Ohtake, K.; Ogata, E. A hypercalcemic nude rat model that completely mimics human syndrome of humoral hypercalcemia of malignancy. Calcif. Tissue Int. 1988, 43, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Stoica, G.; Koestner, A.; Capen, C.C. Characterization of N-ethyl-N-nitrosourea-induced mammary tumors in the rat. Am. J. Pathol. 1983, 110, 161–169. [Google Scholar] [PubMed]
- Michigami, T.; Yamato, H.; Suzuki, H.; Nagai-Itagaki, Y.; Sato, K.; Ozono, K. Conflicting actions of parathyroid hormone-related protein and serum calcium as regulators of 25-hydroxyvitamin D(3)-1 alpha-hydroxylase expression in a nude rat model of humoral hypercalcemia of malignancy. J. Endocrinol. 2001, 171, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Onuma, E.; Azuma, Y.; Saito, H.; Tsunenari, T.; Watanabe, T.; Hirabayashi, M.; Sato, K.; Yamada-Okabe, H.; Ogata, E. Increased renal calcium reabsorption by parathyroid hormone-related protein is a causative factor in the development of humoral hypercalcemia of malignancy refractory to osteoclastic bone resorption inhibitors. Clin. Cancer Res. 2005, 11, 4198–4203. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Hawthorne, M.; Uselding, L.; Albinescu, D.; Moriarty, R.; Christov, K.; Mehta, R. Prevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in rats by 1alpha-hydroxyvitamin D(5). J. Natl. Cancer Inst. 2000, 92, 1836–1840. [Google Scholar] [CrossRef] [PubMed]
- Doppelt, S.H.; Slovik, D.M.; Neer, R.M.; Nolan, J.; Zusman, R.M.; Potts, J.T., Jr. Gut-mediated hypercalcemia in rabbits bearing VX2 carcinoma: New mechanism for tumor-induced hypercalcemia. Proc. Natl. Acad. Sci. USA 1982, 79, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Hough, A., Jr.; Seyberth, H., Jr.; Oates, J.; Hartmann, W. Changes in bone and bone marrow of rabbits bearing the VX-2 carcinoma. A comparison of local and distant effects. Am. J. Pathol. 1977, 87, 537–552. [Google Scholar] [PubMed]
- Seyberth, H.W.; Hubbard, W.C.; Oelz, O.; Sweetman, B.J.; Watson, J.T.; Oates, J.A. Prostaglandin-mediated hypercalcemia in the VX2 carcinoma-bearing rabbit. Prostaglandins 1977, 14, 319–331. [Google Scholar] [CrossRef]
- Voelkel, E.F.; Tashjian, A.H., Jr.; Franklin, R.; Wasserman, E.; Levine, L. Hypercalcemia and tumor-prostaglandins: The VX2 carcinoma model in the rabbit. Metabolism 1975, 24, 973–986. [Google Scholar] [CrossRef]
- Young, D.M.; Ward, J.M.; Prieur, D.J. Hypercalcemia of malignancy. Animal model: VX-2 carcinoma of rabbits. Am. J. Pathol. 1978, 93, 619–622. [Google Scholar] [PubMed]
- Wolfe, H.J.; Bitman, W.R.; Voelkel, E.F.; Griffiths, H.J.; Tashjian, A.H. Systemic effects of the VX2 carcinoma on the osseous skeleton. A quantitative study of trabecular bone. Lab. Investig. 1978, 38, 208–215. [Google Scholar] [PubMed]
Species | Tumors Associated with CAH | Reference |
---|---|---|
Humans | Lung cancer | [2,5,7,13] |
Breast cancer | [2,5,7,14] | |
Squamous cell carcinoma | [15,16] | |
Multiple myeloma | [2,17,18] | |
Adult T-cell lymphoma | [2,3,4,19,20] | |
Less common: colorectal cancer, multiple endocrine neoplasia, prostate cancer, urinary tract cancers, pancreatic cancer, non-Hodgkin’s lymphoma | [2,7,21,22] | |
Dog | Lymphoma (usually T-cell type) | [19,23,24,25] |
Apocrine gland adenocarcinoma of the anal sac | [25,26,27] | |
Multiple myeloma | [28,29,30] | |
Less common: thyroid carcinoma, thymoma, various bone tumors, squamous cell carcinoma, mammary carcinoma/adenocarcinoma, melanoma, primary lung tumors, chronic lymphocytic leukemia, renal angiomyxoma, nasal carcinoma, renal cell carcinoma | [29,31,32] | |
Cat | Squamous cell carcinoma | [33,34,35] |
Lymphoma | [36,37,38] | |
Multiple myeloma | [34,39] | |
Less common: osteosarcoma, fibrosarcoma, bronchogenic carcinoma | [34,39,40] | |
Horse | Squamous cell carcinoma, especially gastric | [41,42] |
Lymphoma | [40] | |
Less common: multiple myeloma, ameloblastoma | [43,44,45] |
Factor | Mechanism |
---|---|
Parathyroid hormone-related protein (PTHrP) | HHM; LOH |
Macrophage inflammatory protein-1α (MIP-1α) | HHM; LOH |
Calcitriol (1,25-(OH)2 vitamin D3) | HHM |
Receptor activator of nuclear factor-κB ligand (RANKL) | LOH |
Interleukin-1 (IL-1), IL-3, IL-6, IL-8, IL-11 | LOH; HHM |
Tumor necrosis factor-α (TNF-α), TNF-β | LOH; HHM |
Macrophage colony stimulating factor (M-CSF) | LOH; HHM |
Granulocyte macrophage-colony stimulating factor (GM-CSF) | LOH; HHM |
Various, less common cytokines (prostaglandin E2, TGF-α) | LOH; HHM |
Type of model | Model Name and Tumor Origin | Strain | References |
---|---|---|---|
Allogenic | HSDM1 fibrosarcoma | Swiss albino mice | [119] |
CE mammary carcinoma | BALB/cfC3H | [120,121] | |
5T2MM and 5T33MM multiple myeloma | C57BL/KalwRiJ | [122,123] | |
Transgenic | Tax+ lymphoma/leukemia | Tax+ C57B6/SJL | [124] |
Infusion | PTHrP, IL-1, IL-11, TNF-α | - | [50,125,126] |
Induction | Cutaneous administration of dimethylbenzanthracene induced squamous cell carcinoma | CD1 mice | [50,118] |
Xenograft | Lung cancer | Nude mice | [127,128,129] |
Squamous cell carcinoma | [128,130] | ||
Renal cell carcinoma | [131,132] | ||
Urothelial cancer | [133] | ||
Esophageal carcinoma | [134,135] | ||
Melanoma | [136,137] | ||
Mammary cancer | [138] | ||
Pancreatic cancer | [139] | ||
Colon cancer | [140,141] | ||
Ovarian cancer | [142] | ||
Adult T-cell leukemia/lymphoma | SCID, NOD/scid | [143,144,145] | |
Multiple myeloma | [146,147] | ||
Ovarian cancer | [148] |
Type of Model | Model Name | Tumor | Strain | References |
---|---|---|---|---|
Allogenic | Rice-500 | Leydig cell | Fisher rat | [169,170,171] |
Walker 256 | Mammary gland carcinoma | Fisher rat | [181,182,183] | |
IP | Pulmonary carcinoma | Fisher rat | [189] | |
Infusion | PTHrP | - | - | [126,168] |
Induction | Nitrosourea compounds | Mammary gland carcinoma | Sprague-Dawley | [192] |
Xenograft | Uterine carcinoma | Uterine carcinoma | Human | [190,192,195] |
Xenograft | OMC-1 | Fibrosarcoma | Human | [193] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohart, N.A.; Elshafae, S.M.; Breitbach, J.T.; Rosol, T.J. Animal Models of Cancer-Associated Hypercalcemia. Vet. Sci. 2017, 4, 21. https://doi.org/10.3390/vetsci4020021
Kohart NA, Elshafae SM, Breitbach JT, Rosol TJ. Animal Models of Cancer-Associated Hypercalcemia. Veterinary Sciences. 2017; 4(2):21. https://doi.org/10.3390/vetsci4020021
Chicago/Turabian StyleKohart, Nicole A., Said M. Elshafae, Justin T. Breitbach, and Thomas J. Rosol. 2017. "Animal Models of Cancer-Associated Hypercalcemia" Veterinary Sciences 4, no. 2: 21. https://doi.org/10.3390/vetsci4020021
APA StyleKohart, N. A., Elshafae, S. M., Breitbach, J. T., & Rosol, T. J. (2017). Animal Models of Cancer-Associated Hypercalcemia. Veterinary Sciences, 4(2), 21. https://doi.org/10.3390/vetsci4020021