In Vitro Research Tools in the Field of Human Immediate Drug Hypersensitivity and Their Present Use in Small Animal Veterinary Medicine
Abstract
:1. Introduction
2. Type I DHR Pathogenesis (Figure 1)
3. Humoral In Vitro Tests
3.1. Serum Histamine Concentrations
Application in Veterinary Medicine
3.2. Serum Tryptase Concentrations
Application in Veterinary Medicine
3.3. Circulating IgE Levels
3.3.1. Total IgE
3.3.2. Drug-Specific IgE
3.3.3. Application in Veterinary Medicine
3.4. Other Humoral Markers Investigated in Type I Hypersensitivity Research
3.4.1. Other Degranulation Enzymes
3.4.2. Cytokine Profiles
3.4.3. Leukotrienes
3.4.5. Platelet Activation Factor Levels
3.4.6. Liver Injury Biomarkers
4. Cellular in Vitro Tests
4.1. Basophil-Related Tests
4.1.1. Measurement of Basophil Secretions
4.1.2. Quantification of Basophil Membrane Markers
4.1.3. Other Basophil-Based Tests
4.1.4. Applications in Veterinary Medicine
4.2. Drug-Specific Lymphocyte Detection
4.2.1. Lymphocyte Transformation Test (LTT)
4.2.2. Application in Veterinary Medicine
5. Genetic In Vitro Tests
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Demoly, P.; Adkinson, N.F.; Brockow, K.; Castells, M.; Chiriac, A.M.; Greenberger, P.A.; Khan, D.A.; Lang, D.M.; Park, H.S.; Pichler, W.; et al. International consensus on drug allergy. Allergy 2014, 69, 420–437. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, M.; Breckenridge, A.M.; Kitteringham, N.R.; Park, B.K. Adverse drug reactions. BMJ 1998, 316, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Trepanier, L.A. Idiosyncratic drug toxicity affecting the liver, skin, and bone marrow in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Voie, K.L.; Campbell, K.L.; Lavergne, S.N. Drug hypersensitivity reactions targeting the skin in dogs and cats. J. Vet. Intern. Med. 2012, 26, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.F.; Phillips, E.J.; Wiese, M.D.; Heddle, R.J.; Brown, S.G. Immediate-type hypersensitivity drug reactions. Br. J. Clin. Pharmacol. 2014, 78, 1–13. [Google Scholar] [CrossRef] [PubMed]
- SLavergne, N.; Danhof, R.S.; Volkman, E.M.; Trepanier, L.A. Association of drug-serum protein adducts and anti-drug antibodies in dogs with sulphonamide hypersensitivity: A naturally occurring model of idiosyncratic drug toxicity. Clin. Exp. Allergy 2006, 36, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, S.N.; Drescher, N.J.; Trepanier, L.A. Anti-myeloperoxidase and anti-cathepsin G antibodies in sulphonamide hypersensitivity. Clin. Exp. Allergy 2008, 38, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, S.N.; Trepanier, L.A. Anti-platelet antibodies in a natural animal model of sulphonamide-associated thrombocytopaenia. Platelets 2007, 18, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, C.; Celik, G.; Rouzaire, P.; Whitaker, P.; Bonadonna, P.; Rodrigues-Cernadas, J.; Vultaggio, A.; Brockow, K.; Caubet, J.C.; Makowska, J.; et al. In vitro tests for Drug Allergy Task Force of, in vitro tests for drug hypersensitivity reactions: An ENDA/EAACI drug allergy interest group position paper. Allergy 2016, 71, 1103–1134. [Google Scholar] [CrossRef] [PubMed]
- Elzagallaai, A.A.; Rieder, M.J. In vitro testing for diagnosis of idiosyncratic adverse drug reactions: Implications for pathophysiology. Br. J. Clin. Pharmacol. 2015, 80, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, C.; Sanz, M.L.; Gamboa, P.; Garcia-Aviles, M.C.; Fernandez, J.; Torres, M.J. In vitro methods for diagnosing nonimmediate hypersensitivity reactions to drugs. J. Investig. Allergol. Clin. Immunol. 2013, 23, 213–225. [Google Scholar] [PubMed]
- Kleine-Tebbe, J.; Erdmann, S.; Knol, E.F.; MacGlashan, D.W., Jr.; Poulsen, L.K.; Gibbs, B.F. Diagnostic tests based on human basophils: Potentials, pitfalls and perspectives. Int. Arch. Allergy Immunol. 2006, 141, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Schnyder, B.; Brockow, K. Pathogenesis of drug allergy—Current concepts and recent insights. Clin. Exp. Allergy 2015, 45, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Uyttebroek, A.P.; Sabato, V.; Bridts, C.H.; Ebo, D.G. In vitro diagnosis of immediate IgE-mediated drug hypersensitivity: Warnings and (unmet) needs. Immunol. Allergy Clin. N. Am. 2014, 34, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Sala-Cunill, A.; Cardona, V. Biomarkers of anaphylaxis, beyond tryptase. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.G.; Hourihane, J.O.; Bousquet, J.; Bruijnzeel-Koomen, C.; Dreborg, S.; Haahtela, T.; Kowalski, M.L.; Mygind, N.; Ring, J.; van Cauwenberge, P.; et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 2001, 56, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.G.O. New nomenclature and clinical aspects of allergic diseases. In Allergy Frontiers: Classification and Pathomechanisms; Springer: Philadelphia, USA, 2009; Volume 2, pp. 31–42. [Google Scholar]
- Baldo, B.A.; Pham, N.H. Histamine-releasing and allergenic properties of opioid analgesic drugs: Resolving the two. Anaesth. Intensive Care 2012, 40, 216–235. [Google Scholar] [PubMed]
- Subramanian, H.; Gupta, K.; Ali, H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allergy Clin. Immunol. 2016, 138, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, P. The basics of histamine biology. Ann. Allergy Asthma Immunol. 2011, 106, S2–S5. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.J.; Kovacic, J.P. Histamine: Metabolism, physiology, and pathophysiology with applications in veterinary medicine. J. Vet. Emerg. Crit. Care 2009, 19, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Grant, J.A. Mediators of anaphylaxis. Immunol. Allergy Clin. N. Am. 2007, 27, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Berroa, F.; Lafuente, A.; Javaloyes, G.; Ferrer, M.; Moncada, R.; Goikoetxea, M.J.; Urbain, C.M.; Sanz, M.L.; Gastaminza, G. The usefulness of plasma histamine and different tryptase cut-off points in the diagnosis of peranaesthetic hypersensitivity reactions. Clin. Exp. Allergy 2014, 44, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.Q.; Kemp, S.F. Pathophysiology of anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Simons, F.E.; Sheikh, A. Evidence-based management of anaphylaxis. Allergy 2007, 62, 827–829. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, U.; Moreschi, C. Post-mortem diagnosis of anaphylaxis: A difficult task in forensic medicine. Forensic Sci. Int. 2011, 204, 1–5. [Google Scholar] [CrossRef] [PubMed]
- AGuedes, G.; Papich, M.G.; Rude, E.P.; Rider, M.A. Comparison of plasma histamine levels after intravenous administration of hydromorphone and morphine in dogs. J. Vet. Pharmacol. Ther. 2007, 30, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Gyongyosi, M.; Kaszaki, J.; Wolfard, A.; Mojzes, L.; Nemeth, J.; Jambrik, Z. Acute myocardial infarction enhances the portal venous histamine level in dogs. Inflamm. Res. 1997, 46, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Kadosawa, T.; Takagi, S.; Kim, G.; Ohsaki, T.; Bosnakovski, D.; Okumura, M.; Fujinaga, T. Relationship of disease progression and plasma histamine concentrations in 11 dogs with mast cell tumors. J. Vet. Intern. Med. 2003, 17, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Kitoh, K.; Katoh, H.; Kitagawa, H.; Nagase, M.; Sasaki, N.; Sasaki, Y. Role of histamine in heartworm extract-induced shock in dogs. Am. J. Vet. Res. 2001, 62, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.N.; Ping, N.N.; Xiao, X.; Zhu, Y.B.; Liu, J.; Cao, Y.X. The severe adverse reaction to vitamin K1 injection is anaphylactoid reaction but not anaphylaxis. PLoS ONE 2014, 9, e90199. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, D.; Sui, Y.; Cui, H.; Yu, Y. Experimental study on anaphylaxis of qingkailing injection and its components on Beagle dogs. J. Tradit. Chin. Med. 2012, 32, 641–645. [Google Scholar] [CrossRef]
- Hieda, Y.; Kageura, M.; Hara, K.; Takamoto, M.; Fukuma, Y.; Kashimura, S. An experimental model of death from anaphylactic shock with compound 48/80 and postmortem changes in levels of histamine in blood. Forensic Sci. Int. 1990, 45, 159–169. [Google Scholar] [CrossRef]
- Anfinsen, K.P.; Berghoff, N.; Priestnall, S.L.; Suchodolski, J.S.; Steiner, J.M.; Allenspach, K. Urinary and faecal N-methylhistamine concentrations do not serve as markers for mast cell activation or clinical disease activity in dogs with chronic enteropathies. Acta Vet. Scand. 2014, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, M.; Momoi, Y.; Iwasaki, T. Plasma histamine concentration and histamine detection in peripheral blood eosinophils in cats. J. Feline Med. Surg. 2006, 8, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol. Allergy Clin. N. Am. 2006, 26, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B.; Bradford, T.R.; Rouse, C.; Irani, A.M.; Rasp, G.; van der Zwan, J.K.; van der Linden, P.W. Development of a new, more sensitive immunoassay for human tryptase: Use in systemic anaphylaxis. J. Clin. Immunol. 1994, 14, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B.; Yunginger, J.W.; Miller, J.; Bokhari, R.; Dull, D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J. Clin. Investig. 1989, 83, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Dybendal, T.; Guttormsen, A.B.; Elsayed, S.; Askeland, B.; Harboe, T.; Florvaag, E. Screening for mast cell tryptase and serum IgE antibodies in 18 patients with anaphylactic shock during general anaesthesia. Acta Anaesthesiol. Scand. 2003, 47, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Laroche, D.; Vergnaud, M.C.; Sillard, B.; Soufarapis, H.; Bricard, H. Biochemical markers of anaphylactoid reactions to drugs. Comparison of plasma histamine and tryptase. Anesthesiology 1991, 75, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Decuyper, I.I.; Ebo, D.G.; Uyttebroek, A.P.; Hagendorens, M.M.; Faber, M.A.; Bridts, C.H.; Sabato, V. Quantification of specific IgE antibodies in immediate drug hypersensitivity: More shortcomings than potentials? Clin. Chim. Acta 2016, 460, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Simons, F.E. Anaphylaxis. J. Allergy Clin. Immunol. 2008, 121, S402–S407. [Google Scholar] [CrossRef] [PubMed]
- Simons, F.E. Anaphylaxis: Recent advances in assessment and treatment. J. Allergy Clin. Immunol. 2009, 124, 625–636; quiz 637–638. [Google Scholar] [CrossRef] [PubMed]
- Simons, F.E.; Frew, A.J.; Ansotegui, I.J.; Bochner, B.S.; Golden, D.B.; Finkelman, F.D.; Leung, D.Y.; Lotvall, J.; Marone, G.; Metcalfe, D.D.; et al. Risk assessment in anaphylaxis: Current and future approaches. J. Allergy Clin. Immunol. 2007, 120, S2–S24. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Blackman, K.E.; Heddle, R.J. Can serum mast cell tryptase help diagnose anaphylaxis? Emerg. Med. Australas 2004, 16, 120–124. [Google Scholar] [CrossRef] [PubMed]
- De Schryver, S.; Halbrich, M.; Clarke, A.; la Vieille, S.; Eisman, H.; Alizadehfar, R.; Joseph, L.; Morris, J.; Ben-Shoshan, M. Tryptase levels in children presenting with anaphylaxis: Temporal trends and associated factors. J. Allergy Clin. Immunol. 2016, 137, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shoshan, M.; Clarke, A.E. Anaphylaxis: Past, present and future. Allergy 2011, 66, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shmuel, D.L.; Cortes, Y. Anaphylaxis in dogs and cats. J. Vet. Emerg. Crit. Care 2013, 23, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Kawarai, S.; Masuda, K.; Ohmori, K.; Matsuura, S.; Yasuda, N.; Nagata, M.; Sakaguchi, M.; Tsujimoto, H. Cultivation and characterization of canine skin-derived mast cells. J. Vet. Med. Sci. 2010, 72, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Kube, P.; Audige, L.; Kuther, K.; Welle, M. Distribution, density and heterogeneity of canine mast cells and influence of fixation techniques. Histochem. Cell Biol. 1998, 110, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Noli, C.; Welle, M.; Scarampella, F.; Abramo, F. Quantitative analysis of tryptase- and chymase-containing mast cells in eosinophilic conditions of cats. Vet. Pathol. 2003, 40, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Roosje, P.J.; Koeman, J.P.; Thepen, T.; Willemse, T. Mast cells and eosinophils in feline allergic dermatitis: A qualitative and quantitative analysis. J. Comp. Pathol. 2004, 131, 61–69. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, D.J.; Hillier, A. The ACVD task force on canine atopic dermatitis (XVI): Laboratory evaluation of dogs with atopic dermatitis with serum-based “allergy” tests. Vet. Immunol. Immunopathol. 2001, 81, 277–287. [Google Scholar] [CrossRef]
- Ebo, D.G.; Leysen, J.; Mayorga, C.; Rozieres, A.; Knol, E.F.; Terreehorst, I. The in vitro diagnosis of drug allergy: Status and perspectives. Allergy 2011, 66, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Wassom, D.L.; Grieve, R.B. In vitro measurement of canine and feline IgE: A review of FcεR1α-based assays for detection of allergen-reactive IgE. Vet. Dermatol. 1998, 9, 173–178. [Google Scholar] [CrossRef]
- Fernandez, T.D.; Torres, M.J.; Blanca-Lopez, N.; Rodriguez-Bada, J.L.; Gomez, E.; Canto, G.; Mayorga, C.; Blanca, M. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins. Allergy 2009, 64, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Mertes, P.M.; Alla, F.; Trechot, P.; Auroy, Y.; Jougla, E.; Groupe d’Etudes des Reactions Anaphylactoides. Anaphylaxis during anesthesia in France: An 8-year national survey. J. Allergy Clin. Immunol. 2011, 128, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.G. To the Editor: Allergen-specific IgE serologic assays define sensitization, not disease. Cleve Clin. J. Med. 2016, 83, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, C.; Mayorga, C.; Bousquet, P.J.; Arnoux, B.; Torres, M.J.; Blanca, M.; Demoly, P. Relevance of the determination of serum-specific IgE antibodies in the diagnosis of immediate beta-lactam allergy. Allergy 2007, 62, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Baldo, B.A.; Fisher, M.M.; Pham, N.H. On the origin and specificity of antibodies to neuromuscular blocking (muscle relaxant) drugs: An immunochemical perspective. Clin. Exp. Allergy 2009, 39, 325–344. [Google Scholar] [CrossRef] [PubMed]
- Baldo, B.A.; Pagani, M. Adverse events to nontargeted and targeted chemotherapeutic agents: Emphasis on hypersensitivity responses. Immunol. Allergy Clin. N. Am. 2014, 34, 565–596. [Google Scholar] [CrossRef] [PubMed]
- Baldo, B.A.; Pham, N.H.; Zhao, Z. Chemistry of drug allergenicity. Curr. Opin. Allergy Clin. Immunol. 2001, 1, 327–335. [Google Scholar] [CrossRef] [PubMed]
- DEbo, G.; Dombrecht, E.J.; Bridts, C.H.; Aerts, N.E.; de Clerck, L.S.; Stevens, W.J. Combined analysis of intracellular signalling and immunophenotype of human peripheral blood basophils by flow cytometry: A proof of concept. Clin. Exp. Allergy 2007, 37, 1668–1675. [Google Scholar]
- Petersen, A.B.; Gudmann, P.; Milvang-Gronager, P.; Morkeberg, R.; Bogestrand, S.; Linneberg, A.; Johansen, N. Performance evaluation of a specific IgE assay developed for the ADVIA centaur immunoassay system. Clin. Biochem. 2004, 37, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Vultaggio, A.; Matucci, A.; Virgili, G.; Rossi, O.; Fili, L.; Parronchi, P.; Romagnani, S.; Maggi, E. Influence of total serum IgE levels on the in vitro detection of beta-lactams-specific IgE antibodies. Clin. Exp. Allergy 2009, 39, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Vultaggio, A.; Virgili, G.; Gaeta, F.; Romano, A.; Maggi, E.; Matucci, A. High serum beta-lactams specific/total IgE ratio is associated with immediate reactions to beta-lactams antibiotics. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.G.; MacGlashan, D.W., Jr.; Saini, S.S. IgE antibody-specific activity in human allergic disease. Immunol. Res. 2010, 47, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.G.; Williams, P.B. Human IgE antibody serology: A primer for the practicing North American allergist/immunologist. J. Allergy Clin. Immunol. 2010, 126, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Hammerberg, B. Canine immunoglobulin E. Vet. Immunol. Immunopathol. 2009, 132, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Reinero, C.R. Feline immunoglobulin E: Historical perspective, diagnostics and clinical relevance. Vet. Immunol. Immunopathol. 2009, 132, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Bethlehem, S.; Bexley, J.; Mueller, R.S. Patch testing and allergen-specific serum IgE and IgG antibodies in the diagnosis of canine adverse food reactions. Vet. Immunol. Immunopathol. 2012, 145, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, Y.; Beugnet, F. Epidemiological survey of anti-flea IgE in dogs in Japan by using an antigen-specific IgE quantitative measurement method. Parasite 2012, 19, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Stuke, K.; von Samson-Himmelstjerna, G.; Dreesman, J.; Mencke, N.; Schnieder, T.; Leibold, W. Monitoring of basophil sensitization to antigens of the cat flea (Ctenocephalides felis felis): A new tool for the diagnosis of feline flea bite hypersensitivity? Parasitol. Res. 2008, 103, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Lee-Fowler, T.M.; Cohn, L.A.; DeClue, A.E.; Spinka, C.M.; Ellebracht, R.D.; Reinero, C.R. Comparison of intradermal skin testing (IDST) and serum allergen-specific IgE determination in an experimental model of feline asthma. Vet. Immunol. Immunopathol. 2009, 132, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Kurata, K.; Sakaguchi, M.; Yamashita, K.; Hasegawa, A.; Ohno, K.; Tsujimoto, H. Seasonal rhinitis in a cat sensitized to Japanese cedar (Cryptomeria japonica) pollen. J. Vet. Med. Sci. 2001, 63, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Yamaya, Y.; Watari, T. Increased proportions of CCR4(+) cells among peripheral blood CD4(+) cells and serum levels of allergen-specific IgE antibody in canine chronic rhinitis and bronchitis. J. Vet. Med. Sci. 2015, 77, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Bexley, J.; Hogg, J.E.; Hammerberg, B.; Halliwell, R.E. Levels of house dust mite-specific serum immunoglobulin E (IgE) in different cat populations using a monoclonal based anti-IgE enzyme-linked immunosorbent assay. Vet. Dermatol. 2009, 20, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, A.A.; Dolva, F.L.; Nodtvedt, A.; Saevik, B.K. Prevalence of and risk factors for increased serum levels of allergen-specific IgE in a population of Norwegian dogs. Acta Vet. Scand. 2014, 56, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Hensel, P.; Santoro, D.; Favrot, C.; Hill, P.; Griffin, C. Canine atopic dermatitis: Detailed guidelines for diagnosis and allergen identification. BMC Vet. Res. 2015, 11, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Olivry, T.; DeBoer, D.J.; Favrot, C.; Jackson, H.A.; Mueller, R.S.; Nuttall, T.; Prelaud, P. Treatment of canine atopic dermatitis: 2015 updated guidelines from the International Committee on Allergic Diseases of Animals (ICADA). BMC Vet. Res. 2015, 11, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.J.; Wang, Y.Y.; Zhang, H.Y.; Jin, Q.Q.; Gao, C.R. Mast cell tryptase and carboxypeptidase A expression in body fluid and gastrointestinal tract associated with drug-related fatal anaphylaxis. World J. Gastroenterol. 2015, 21, 13288–13293. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Stone, S.F.; Fatovich, D.M.; Burrows, S.A.; Holdgate, A.; Celenza, A.; Coulson, A.; Hartnett, L.; Nagree, Y.; Cotterell, C.; et al. Anaphylaxis: Clinical patterns, mediator release, and severity. J. Allergy Clin. Immunol. 2013, 132, 1141.e5–1149.e5. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.F.; Cotterell, C.; Isbister, G.K.; Holdgate, A.; Brown, S.G. Elevated serum cytokines during human anaphylaxis: Identification of potential mediators of acute allergic reactions. J. Allergy Clin. Immunol. 2009, 124, 786.e4–792.e4. [Google Scholar] [CrossRef] [PubMed]
- Nassiri, M.; Eckermann, O.; Babina, M.; Edenharter, G.; Worm, M. Serum levels of 9alpha, 11beta-PGF2 and cysteinyl leukotrienes are useful biomarkers of anaphylaxis. J. Allergy Clin. Immunol. 2016, 137, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Ono, E.; Taniguchi, M.; Mita, H.; Fukutomi, Y.; Higashi, N.; Miyazaki, E.; Kumamoto, T.; Akiyama, K. Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin. Exp. Allergy 2009, 39, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Pravettoni, V.; Piantanida, M.; Primavesi, L.; Forti, S.; Pastorello, E.A. Basal platelet-activating factor acetylhydrolase: Prognostic marker of severe Hymenoptera venom anaphylaxis. J. Allergy Clin. Immunol. 2014, 133, 1218–1220. [Google Scholar] [CrossRef] [PubMed]
- Quantz, J.E.; Miles, M.S.; Reed, A.L.; White, G.A. Elevation of alanine transaminase and gallbladder wall abnormalities as biomarkers of anaphylaxis in canine hypersensitivity patients. J. Vet. Emerg. Crit. Care 2009, 19, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.J.; Kranzelbinder, B.; Sturm, E.M.; Heinemann, A.; Groselj-Strele, A.; Aberer, W. The basophil activation test in the diagnosis of allergy: Technical issues and critical factors. Allergy 2009, 64, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Mobs, C.; Pfutzner, W. Cellular in vitro diagnosis of adverse drug reactions. Allergo J. Int. 2014, 23, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.L.; Gamboa, P.M.; Mayorga, C. Basophil activation tests in the evaluation of immediate drug hypersensitivity. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 298–304. [Google Scholar] [CrossRef] [PubMed]
- De Weck, A.L.; Sanz, M.L.; Gamboa, P.M.; Aberer, W.; Bienvenu, J.; Blanca, M.; Demoly, P.; Ebo, D.G.; Mayorga, L.; Monneret, G.; et al. Diagnostic tests based on human basophils: More potentials and perspectives than pitfalls. Int. Arch. Allergy Immunol. 2008, 146, 177–189. [Google Scholar] [CrossRef] [PubMed]
- McGowan, E.C.; Saini, S. Update on the performance and application of basophil activation tests. Curr. Allergy Asthma Rep. 2013, 13, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Demoly, P.; Lebel, B.; Messaad, D.; Sahla, H.; Rongier, M.; Daures, J.P.; Godard, P.; Bousquet, J. Predictive capacity of histamine release for the diagnosis of drug allergy. Allergy 1999, 54, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Cop, N.; Uyttebroek, A.P.; Sabato, V.; Bridts, C.H.; de Clerck, L.S.; Ebo, D.G. Flow cytometric analysis of drug-Induced basophil histamine release. Cytom. B Clin. Cytom. 2016, 90, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Mangodt, E.A.; van Gasse, A.L.; Bastiaensen, A.; Decuyper, I.I.; Uyttebroek, A.; Faber, M.; Sabato, V.; Bridts, C.H.; Hagendorens, M.M.; de Clerck, L.S.; et al. Flow-assisted basophil activation tests in immediate drug hypersensitivity: Two decades of Antwerp experience. Acta Clin. Belg. 2016, 71, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Mangodt, E.A.; van Gasse, A.L.; Decuyper, I.; Uyttebroek, A.; Faber, M.A.; Sabato, V.; Bridts, C.H.; Hagendorens, M.M.; Ebo, D.G. In vitro Diagnosis of Immediate Drug Hypersensitivity: Should we go with the flow. Int. Arch. Allergy Immunol. 2015, 168, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.L.; Maselli, J.P.; Gamboa, P.M.; Oehling, A.; Dieguez, I.; de Weck, A.L. Flow cytometric basophil activation test: A review. J. Investig. Allergol Clin. Immunol. 2002, 12, 143–154. [Google Scholar] [PubMed]
- Buhring, H.J.; Streble, A.; Valent, P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int. Arch. Allergy Immunol. 2004, 133, 317–329. [Google Scholar] [CrossRef] [PubMed]
- MacGlashan, D., Jr. Expression of CD203c and CD63 in human basophils: Relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin. Exp. Allergy 2010, 40, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.L.; Gamboa, P.M.; de Weck, A.L. Cellular tests in the diagnosis of drug hypersensitivity. Curr. Pharm. Des. 2008, 14, 2803–2808. [Google Scholar] [CrossRef] [PubMed]
- Chirumbolo, S. Major pitfalls in BAT performance may be caused by gating protocols and CD63% cut off evaluation. Cytometry A 2014, 85, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Aerts, N.E.; Dombrecht, E.J.; Bridts, C.H.; Hagendorens, M.M.; de Clerck, L.S.; Stevens, W.J.; Ebo, D.G. Simultaneous flow cytometric detection of basophil activation marker CD63 and intracellular phosphorylated p38 mitogen-activated protein kinase in birch pollen allergy. Cytom. B Clin. Cytom. 2009, 76, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Verweij, M.M.; Sabato, V.; Nullens, S.; Bridts, C.H.; de Clerck, L.S.; Stevens, W.J.; Ebo, D.G. STAT5 in human basophils: IL-3 is required for its FcepsilonRI-mediated phosphorylation. Cytom. B Clin. Cytom. 2012, 82, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Prost, C. Feline atopic dermatitis: Clinical signs and diagnosis. Eur. J. Clin. Anim. Pract. 2009, 19, 223–229. [Google Scholar]
- Sainte-Laudy, J.; Vallon, C.; Guerin, J.C. Diagnosis of latex allergy: Comparison of histamine release and flow cytometric analysis of basophil activation. Inflamm. Res. 1996, 45, S35–S36. [Google Scholar] [CrossRef] [PubMed]
- Prost, C. Allergy diagnosis in companion animals: Clinical experience with the basophil activation model. Vet. Dermatol. 1998, 9, 213–215. [Google Scholar] [CrossRef]
- Stuke, K.; von Samson-Himmelstjerna, G.; Mencke, N.; Hansen, O.; Schnieder, T.; Leibold, W. Flea allergy dermatitis in the cat: Establishment of a functional in vitro test. Parasitol. Res. 2003, 90, S129–S131. [Google Scholar] [CrossRef] [PubMed]
- Dirscherl, P.; Grabner, A.; Buschmann, H. Responsiveness of basophil granulocytes of horses suffering from chronic obstructive pulmonary disease to various allergens. Vet. Immunol. Immunopathol. 1993, 38, 217–227. [Google Scholar] [CrossRef]
- Langner, K.F.; Darpel, K.E.; Drolet, B.S.; Fischer, A.; Hampel, S.; Heselhaus, J.E.; Mellor, P.S.; Mertens, P.P.; Leibold, W. Comparison of cellular and humoral immunoassays for the assessment of summer eczema in horses. Vet. Immunol. Immunopathol. 2008, 122, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Van der Meide, N.M.; Meulenbroeks, C.; van Altena, C.; Schurink, A.; Ducro, B.J.; Wagner, B.; Leibold, W.; Rohwer, J.; Jacobs, F.; van Oldruitenborgh-Oosterbaan, M.M.; et al. Culicoides obsoletus extract relevant for diagnostics of insect bite hypersensitivity in horses. Vet. Immunol. Immunopathol. 2012, 149, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Childs, B.A.; Erb, H.N. A histamine release assay to identify sensitization to Culicoides allergens in horses with skin hypersensitivity. Vet. Immunol. Immunopathol. 2008, 126, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Nagao-Dias, A.T.; Teixeira, F.M.; Coelho, H.L. Diagnosing immune-mediated reactions to drugs. Allergol. Immunopathol. 2009, 37, 98–104. [Google Scholar] [CrossRef]
- Pichler, W.J.; Tilch, J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004, 59, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Demoly, P. Recent advances in the diagnosis of drug allergy. Curr. Opin. Allergy Clin. Immunol. 2007, 7, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Bircher, A.J. Lymphocyte transformation test in the diagnosis of immediate type hypersensitivity reactions to penicillins. Curr. Probl. Dermatol. 1995, 22, 31–37. [Google Scholar] [PubMed]
- Luque, I.; Leyva, L.; Torres, M.J.; Rosal, M.; Mayorga, C.; Segura, J.M.; Blanca, M.; Juarez, C. In vitro T-cell responses to beta-lactam drugs in immediate and non-immediate allergic reactions. Allergy 2001, 56, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Barta, O.; Oyekan, P.P. Lymphocyte transformation test in veterinary clinical immunology. Comp. Immunol. Microbiol. Infect. Dis. 1981, 4, 209–221. [Google Scholar] [CrossRef]
- Martinez-Moreno, A.; Martinez-Cruz, M.S.; Blanco, A.; Hernandez-Rodriguez, S. Immunological and histological study of T- and B-lymphocyte activity in canine visceral leishmaniosis. Vet. Parasitol. 1993, 51, 49–59. [Google Scholar] [CrossRef]
- Lasri, S.; Sahibi, H.; Sadak, A.; Jaffe, C.L.; Rhalem, A. Immune responses in vaccinated dogs with autoclaved Leishmania major promastigotes. Vet. Res. 1999, 30, 441–449. [Google Scholar] [PubMed]
- Sicherer, S.H.; Leung, D.Y. Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2014. J. Allergy Clin. Immunol. 2015, 135, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, M.; Ostrov, D.A.; Park, B.K. New genetic findings lead the way to a better understanding of fundamental mechanisms of drug hypersensitivity. J. Allergy Clin. Immunol. 2015, 136, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Gueant, J.L.; Gueant-Rodriguez, R.M.; Gastin, I.A.; Cornejo-Garcia, J.A.; Viola, M.; Barbaud, A.; Mertes, P.M.; Blanca, M.; Romano, A. Pharmacogenetic determinants of immediate and delayed reactions of drug hypersensitivity. Curr. Pharm. Des. 2008, 14, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Mosher, C.M.; Court, M.H. Comparative and veterinary pharmacogenomics. Handb. Exp. Pharmacol. 2010, 199, 49–77. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavergne, S.N. In Vitro Research Tools in the Field of Human Immediate Drug Hypersensitivity and Their Present Use in Small Animal Veterinary Medicine. Vet. Sci. 2017, 4, 1. https://doi.org/10.3390/vetsci4010001
Lavergne SN. In Vitro Research Tools in the Field of Human Immediate Drug Hypersensitivity and Their Present Use in Small Animal Veterinary Medicine. Veterinary Sciences. 2017; 4(1):1. https://doi.org/10.3390/vetsci4010001
Chicago/Turabian StyleLavergne, Sidonie N. 2017. "In Vitro Research Tools in the Field of Human Immediate Drug Hypersensitivity and Their Present Use in Small Animal Veterinary Medicine" Veterinary Sciences 4, no. 1: 1. https://doi.org/10.3390/vetsci4010001
APA StyleLavergne, S. N. (2017). In Vitro Research Tools in the Field of Human Immediate Drug Hypersensitivity and Their Present Use in Small Animal Veterinary Medicine. Veterinary Sciences, 4(1), 1. https://doi.org/10.3390/vetsci4010001