Using Bronson Equation to Accurately Predict the Dog Brain Weight Based on Body Weight Parameter
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lindstedt, S.L.; Schaeffer, P.J. Use of allometry in predicting anatomical and physiological parameters of mammals. Lab. Anim. 2002, 36, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jerison, H.J. Evolution of the Brain and Intelligence; Academic: New York, NY, USA; London, UK, 1973; pp. 406–435. [Google Scholar]
- Bronson, R.T. Brain weight-body weight scaling in breeds of dogs and cats. Brain Behav. Evol. 1979, 16, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Schoenemann, P.T. Brain size scaling and body composition in mammals. Brain Behav. Evol. 2004, 63, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Kruska, D. Effects of domestication on brain structure and behavior in mammals. Hum. Evol. 1988, 3, 473–485. [Google Scholar] [CrossRef]
- Radinsky, L. Evolution of brain size in carnivores and ungulates. Am. Nat. 1978, 112, 815–831. [Google Scholar] [CrossRef]
- Röhrs, M. Cephalisation bei Caniden. Z. Zool. Syst. Evolutionsforsch. 1986, 24, 300–307. [Google Scholar] [CrossRef]
- Carrera, I.; Dennis, R.; Mellor, D.J.; Penderis, J.; Sullivan, M. Use of magnetic resonance imaging for morphometric analysis of the caudal cranial fossa in Cavalier King Charles Spaniels. Am. J. Vet. Res. 2009, 70, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Carreira, L.M. Anatomotopography Cranioencephalic Relationships for Intracranial Neurosurgery Procedures in Dog. The Ultrasound as Neuronavigation Technique for Brain Surgery in Real Time. Ph.D. Thesis, Technical University of Lisbon (FMV/UTL), Lisbon, Portugal, 2011. [Google Scholar]
- Carreira, L.M.; Ferreira, A. Reference values for dog sagittal and transverse cephalic indices in different skull types and their importance. J. Anim. Vet. Adv. 2015, 14, 91–94. [Google Scholar]
- Hart, B.L.; Hart, L.A.; McCoy, M.; Sarath, C.R. Cognitive behaviour in Asian elephants: Use and modification of branches for fly switching. Anim. Behav. 2011, 62, 839–847. [Google Scholar] [CrossRef]
- Seid, M.A.; Castillo, A.; Wcislo, W.T. The allometry of brain miniaturization in ants. Brain Behav. Evol. 2011, 77, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E. Relative brain size and metabolism in mammals. Science 1983, 4603, 1302–1304. [Google Scholar] [CrossRef]
- Martin, R.D.; Harvey, P. Brain size allometry: Ontogeny and phylogeny. In Size and Scaling in Primate Biology; Jungers, W., Ed.; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Pagel, M.D.; Harvey, P.H. Taxonomic differences in the scaling of brain on body weight among mammals. Science 1989, 30, 1589–1593. [Google Scholar] [CrossRef]
- Wikswo, J.P.; Curtis, E.L.; Eagleton, Z.E.; Evans, B.C.; Kole, A.; Hofmeister, L.H.; Matloff, W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 2013, 13, 3496–3511. [Google Scholar] [CrossRef] [PubMed]
- Conn, P.M. Handbook of Models for Human Aging; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Gould, S.J. Ontogeny and Phylogeny; Harvard University Press: Estados Unidos, MA, USA, 1977. [Google Scholar]
- Gould, S.J. An allometric interpretation of species-area curves: The meaning of the coefficient. Am. Nat. 1979, 114, 335–343. [Google Scholar] [CrossRef]
- Jerison, H.J. Allometry, brain size, cortical surface, and convolutedness. In Primate Brain Evolution; Armstrong, E., Falk, D., Eds.; Plenum Press: New York, NY, USA, 1982. [Google Scholar]
- Jerison, H.J. The evolutionary biology of intelligence: Afterthoughts. In Intelligence and Evolutionary Biology; Jerison, H., Jerison, I., Eds.; Springer: Berlin, Germany, 1988. [Google Scholar]
- Jerison, H.J. The theory of Encephalization. Ann. N. Y. Acad. Sci. 1977, 299, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Gayon, J. History of the concept of allometry. Integr. Comp. Biol. (ICB) 2000, 40, 748–758. [Google Scholar] [CrossRef]
- Williams, M.F. Primate Encephalization and intelligence. Med. Hypotheses 2002, 58, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Tan, U.; Caliskan, S. Allometry and asymmetry in the dog brain: The right hemisphere is heavier regardless of paw preference. Int. J. Neurosci. 1987, 35, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.P.; Ankney, C.A. Whole brain size and general mental ability: A review. Int. J. Neurosci. 2009, 119, 692–732. [Google Scholar] [CrossRef] [PubMed]
- Bayat, P.D.; Ghanbari, A.; Sohouli, P.; Amiri, S.; Sari-aslani, P. Correlation of skull size and brain volume, with age, weight, height and body mass index of Arak Medical Sciences students. Int. J. Morphol. 2012, 30, 157–161. [Google Scholar] [CrossRef]
- Marino, L.; Sol, D.; Toren, K.; Lefebvre, L. Does diving limit brain size in cetaceans? Mar. Mammal Sci. 2006, 22, 413–425. [Google Scholar] [CrossRef]
- Su, M.Y.; Head, E.; Brooks, W.M.; Wang, Z.; Muggenburg, B.A.; Adam, G.E. Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol. Aging 1988, 19, 479–485. [Google Scholar] [CrossRef]
- Anderton, B.H. Ageing of the brain. Mech. Ageing Dev. 2002, 123, 811–817. [Google Scholar] [CrossRef]
- Enzinger, C.; Fazekas, F.; Matthews, P.M.; Ropele, S.; Schmidt, H.; Smith, S.; Schmidt, R. Risk factors for progression of brain atrophy in aging: Six-year follow-up of normal subjects. Neurology 2005, 64, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Tapp, P.D.; Siwak, C.T.; Gao, F.Q.; Chiou, J.Y.; Black, S.E.; Head, E.; Muggenburg, B.A.; Cotman, C.W.; Milgram, N.W.; Su, M.Y. Frontal lobe volume, function, and beta-amyloid pathology in a canine model of aging. J. Neurosci. 2004, 24, 8205–8213. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.R.; Streit, W.J. Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 2006, 65, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Raz, N.; Rodrigue, K.M.; Head, D.; Kennedy, K.M.; Acker, J.D. Differential aging of the medial temporal lobe: A study of a five-year change. Neurology 2004, 62, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.J.; Amort, K.H.; Failing, K.; Klingler, M.; Kramer, M.; Ondreka, N. Comparison of the endocranial- and brain volumes in brachycephalic dogs, mesaticephalic dogs and Cavalier King Charles spaniels in relation to their body weight. Acta Vet. Scand. 2014, 56, 30. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, H. Domestication: The Decline of Environmental Appreciation, 2nd edition; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Healy, S.D.; Harvey, P.H. Comparative studies of the brain and its components. Neth. J. Zool. 1990, 40, 203–214. [Google Scholar] [CrossRef]
- Rakic, P. Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science 2002, 183, 425–427. [Google Scholar] [CrossRef]
- Bush, E.C.; Allman, J.M. The scaling of frontal cortex in primates and carnivores. Proc. Natl. Acad. Sci. USA 2004, 101, 3962–3966. [Google Scholar] [CrossRef] [PubMed]
- Hutsler, J.J.; Lee, D.G.; Porter, K.K. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res. 2005, 1052, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Carreira, L.M.; Ferreira, A.; Burilo, F.L. The dorsal sagittal venous sinus anatomical variations in brachycephalic, dolichocephalic, and mesocephalic dogs and their significance for brain surgery. Anat. Rec. Adv. Integr. Anat. Evol. Biol. (Hoboken) 2011, 294, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Carreira, L.M.; Ferreira, A. The importance of the longitudinal cerebral fissure anatomy variations in brachy-, dolicho- and mesaticephalic dogs and their importance to brain surgery. Anat. Rec. Adv. Integr. Anat. Evol. Biol. (Hoboken) 2015, 298, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Workman, A.D.; Charvet, C.J.; Clancy, B.; Darlington, R.B.; Finlay, B.L. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 2013, 33, 7368–7383. [Google Scholar] [CrossRef] [PubMed]
Group | Parameter | n | ± SD | 95%CI | σ for p > 0.05 | t | ||
---|---|---|---|---|---|---|---|---|
Min (mm) | Max (mm) | |||||||
B | age | 23 | 8.00 ± 1.65 ¥ | 4.00 | 10.00 | σ > 0.10 | 20.13 | |
bw | 23 | 15.79 ± 6.46 § | 4.70 | 26.10 | σ > 0.10 | 11.71 | ||
BW | 23 | 84.91 ± 31.29 * | 26.62 | 147.27 | σ = 0.08 | 13.02 | ||
Breed | 23 | 8 | French Bulldog | |||||
7 | Boxer | |||||||
4 | Pekingese | |||||||
2 | Pug Carlin | |||||||
2 | Shitzu | |||||||
D | age | 23 | 8.70 ± 2.40 ¥ | 5.00 | 14.00 | σ > 0.10 | 17.46 | |
bw | 23 | 23.63 ± 2.59 § | 18.70 | 29.39 | σ > 0.10 | 37.79 | ||
BW | 23 | 92.50 ± 8.60 * | 71.60 | 102.10 | σ = 0.00 | 50.60 | ||
Breed | 23 | 11 | Doberman Pinsher | |||||
5 | Rough Collie | |||||||
4 | Whippet | |||||||
3 | Miniature Bull Terrier | |||||||
M | age | 23 | 9.50 ± 2.50 ¥ | 5.00 | 15.00 | σ = 0.02 | 17.70 | |
bw | 23 | 13.80 ± 7.20 § | 7.30 | 31.50 | σ < 0.01 | 8.74 | ||
BW | 23 | 69.90 ± 28.70 * | 35.70 | 143.0 | σ = 0.04 | 11.68 | ||
Breed | 23 | 7 | Beagle | |||||
6 | Golden Retriever | |||||||
5 | Yorkshire Terrier | |||||||
3 | Border Collie | |||||||
2 | Dalmatian |
Sample Characteristics | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Type of Test | Differences Between Groups | n | DM (I–J) | EP | SS | MS | F | Sig. | CI 95% | |||
Min | Max | ||||||||||||
Age | ANOVA | - | 69 | - | - | 28.17 | 14.08 | 2.77 | 0.06 | - | - | ||
Bonferroni | B | D | 46 | –0.78 | 1.17 | - | - | - | 1.00 | –2.41 | 0.85 | ||
B | M | 46 | –1.56 | 2.35 | - | - | - | 0.09 | –3.19 | 0.06 | |||
D | M | 46 | –0.78 | 1.17 | - | - | - | 0.39 | –2.41 | 0.85 | |||
bw | ANOVA | - | 69 | - | - | 3303 | 447.7 | 12.27 | 0.00 | - | - | ||
Bonferroni | B | D | 46 | –6.62 * | 3.72 | - | - | - | 0.00 | –11.00 | 2.25 | ||
B | M | 46 | 1.73 | 0.97 | - | - | - | 1.00 | –2.64 | 6.10 | |||
D | M | 46 | 8.36 * | 4.69 | - | - | - | 0.00 | –3.98 | 12.73 | |||
BW | ANOVA | - | 69 | - | - | 4739 | 3026 | 4.83 | 0.01 | - | - | ||
Bonferroni | B | D | 46 | –7.62 | 1.03 | - | - | - | 1.00 | –25.75 | 10.50 | ||
B | M | 46 | 14.92 | 2.02 | - | - | - | >0.05 | –3.20 | 33.06 | |||
D | M | 46 | 22.55 * | 3.05 | - | - | - | 0.00 | 4.41 | 40.68 | |||
Brain Weight | |||||||||||||
Group | n | Observed BW (g) | Expected BW (g) | p | r | χ2 for χ2c > 5.99 | |||||||
min | max | min | max | ||||||||||
B | 23 | 84.91 | 53.60 | 116.20 | 82.20 | 71.30 | 90.10 | 0.68 | 0.99 | 2.47 | |||
D | 23 | 92.50 | 83.90 | 101.10 | 91.30 | 88.50 | 94.00 | 0.35 | 0.81 | 1.28 | |||
M | 23 | 69.90 | 41.20 | 98.60 | 79.20 | 64.60 | 88.80 | 0.17 | 0.96 | 5.85 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreira, L.M. Using Bronson Equation to Accurately Predict the Dog Brain Weight Based on Body Weight Parameter. Vet. Sci. 2016, 3, 36. https://doi.org/10.3390/vetsci3040036
Carreira LM. Using Bronson Equation to Accurately Predict the Dog Brain Weight Based on Body Weight Parameter. Veterinary Sciences. 2016; 3(4):36. https://doi.org/10.3390/vetsci3040036
Chicago/Turabian StyleCarreira, L. Miguel. 2016. "Using Bronson Equation to Accurately Predict the Dog Brain Weight Based on Body Weight Parameter" Veterinary Sciences 3, no. 4: 36. https://doi.org/10.3390/vetsci3040036
APA StyleCarreira, L. M. (2016). Using Bronson Equation to Accurately Predict the Dog Brain Weight Based on Body Weight Parameter. Veterinary Sciences, 3(4), 36. https://doi.org/10.3390/vetsci3040036