Diagnostic and Prognostic Value of Serum Neurofilament Light Chain in Canine Spinal Cord Diseases
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Serum Collection
2.3. Measurement of NfL Concentration
2.4. Clinical Severity of IVDH
2.5. Treatment Response
2.6. MRI Data Analyses
2.7. Statistical Analyses
3. Results
3.1. Study Cohorts
3.2. Comparison of Serum NfL Levels in Healthy Dogs and Dogs with Spinal Cord Diseases
3.3. Comparison of Serum NfL Levels in Dogs with IVDH Based on Clinical Severity
3.4. Serum NfL Levels in Dogs with IVDH Based on Treatment Response
3.5. ROC of NfL Concentration in Healthy Dogs and Dogs with Spinal Cord Diseases
3.6. Correlation Between the Serum NfL Level and the Lesion Size in Dogs with SM
3.7. Correlation of Serum NfL Levels with the Lesion Size in Dogs with IVDH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Decker, S.; Fenn, J. Acute herniation of nondegenerate nucleus pulposus: Acute noncompressive nucleus pulposus extrusion and compressive hydrated nucleus pulposus extrusion. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 95–109. [Google Scholar] [CrossRef]
- Olby, N.J.; Moore, S.A.; Brisson, B.; Fenn, J.; Flegel, T.; Kortz, G.; Lewis, M.; Tipold, A. ACVIM consensus statement on diagnosis and management of acute canine thoracolumbar intervertebral disc extrusion. J. Vet. Intern. Med. 2022, 36, 1570–1596. [Google Scholar] [CrossRef]
- Davies, A.L.; Hayes, K.C.; Dekaban, G.A. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 2007, 88, 1384–1393. [Google Scholar] [CrossRef]
- Pouw, M.H.; Kwon, B.K.; Verbeek, M.M.; Vos, P.E.; van Kampen, A.; Fisher, C.G.; Street, J.; Paquette, S.J.; Dvorak, M.F.; Boyd, M.C.; et al. Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: A descriptive analysis of 16 subjects. Spinal Cord 2014, 52, 428–433. [Google Scholar] [CrossRef]
- Biglari, B.; Swing, T.; Child, C.; Büchler, A.; Westhauser, F.; Bruckner, T.; Ferbert, T.; Jürgen Gerner, H.; Moghaddam, A. A pilot study on temporal changes in IL-1β and TNF-α serum levels after spinal cord injury: The serum level of TNF-α in acute SCI patients as a possible marker for neurological remission. Spinal Cord 2015, 53, 510–514. [Google Scholar] [CrossRef]
- Kranenburg, H.J.C.; Grinwis, G.C.M.; Bergknut, N.; Gahrmann, N.; Voorhout, G.; Hazewinkel, H.A.W.; Meij, B.P. Intervertebral disc disease in dogs-part 2: Comparison of clinical, magnetic resonance imaging, and histological findings in 74 surgically treated dogs. Vet. J. 2013, 195, 164–171. [Google Scholar] [CrossRef]
- Bach, F.S.; Mai, W.; Weber, L.F.S.; Villanova Junior, J.A.; Bianchi de Oliveira, L.; Montiani-Ferreira, F. Association between spinal cord compression ratio in magnetic resonance imaging, initial neurological status, and recovery after ventral slot in 57 dogs with cervical disc extrusion. Front. Vet. Sci. 2022, 9, 1029127. [Google Scholar] [CrossRef]
- Kuhle, J.; Gaiottino, J.; Leppert, D.; Petzold, A.; Bestwick, J.P.; Malaspina, A.; Lu, C.H.; Dobson, R.; Disanto, G.; Norgren, N.; et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry 2015, 86, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Swiss Multiple Sclerosis Cohort Study Group. Serum neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A. Neurofilament phosphoforms: Surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 2005, 233, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Koo, Y.; Chae, Y.; Lee, D.; Kim, H.; Kim, S.; Chang, D.; Na, K.J.; Yang, M.P.; Kang, B.T. Neurofilament light chain as a biomarker of meningoencephalitis of unknown etiology in dogs. J. Vet. Intern. Med. 2021, 35, 1865–1872. [Google Scholar] [CrossRef]
- Sung, J.; Chae, Y.; Yun, T.; Koo, Y.; Lee, D.; Kim, H.; Yang, M.P.; Kang, B.T. Use of neurofilament light chain to identify structural brain diseases in dogs. J. Vet. Intern. Med. 2024, 38, 2196–2203. [Google Scholar] [CrossRef]
- Winnerkvist, A.; Anderson, R.E.; Hansson, L.O.; Rosengren, L.; Estrera, A.E.; Huynh, T.T.T.; Porat, E.E.; Safi, H.J. Multilevel somatosensory evoked potentials and cerebrospinal proteins: Indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur. J. Cardiothorac. Surg. 2007, 31, 637–642. [Google Scholar] [CrossRef]
- Quadri, S.A.; Farooqui, M.; Ikram, A.; Zafar, A.; Khan, M.A.; Suriya, S.S.; Claus, C.F.; Fiani, B.; Rahman, M.; Ramachandran, A.; et al. Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 2020, 43, 425–441. [Google Scholar] [CrossRef]
- Berliner, J.; Hemley, S.; Najafi, E.; Bilston, L.; Stoodley, M.; Lam, M. Abnormalities in spinal cord ultrastructure in a rat model of post-traumatic syringomyelia. Fluids Barriers CNS 2020, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Besalti, O.; Pekcan, Z.; Sirin, Y.S.; Erbas, G. Magnetic resonance imaging findings in dogs with thoracolumbar intervertebral disk disease: 69 cases (1997–2005). J. Am. Vet. Med. Assoc. 2006, 228, 902–908. [Google Scholar] [CrossRef]
- Henke, D.; Gorgas, D.; Flegel, T.; Vandevelde, M.; Lang, J.; Doherr, M.G.; Forterre, F. Magnetic resonance imaging findings in dogs with traumatic intervertebral disk extrusion with or without spinal cord compression: 31 cases (2006–2010). J. Am. Vet. Med. Assoc. 2013, 242, 217–222. [Google Scholar] [CrossRef]
- Gomes, S.A.; Volk, H.A.; Packer, R.M.; Kenny, P.J.; Beltran, E.; De Decker, S. Clinical and magnetic resonance imaging characteristics of thoracolumbar intervertebral disk extrusions and protrusions in large breed dogs. Vet. Radiol. Ultrasound 2016, 57, 417–426. [Google Scholar] [CrossRef]
- De Risio, L.; Adams, V.; Dennis, R.; McConnell, F.J. Association of clinical and magnetic resonance imaging findings with outcome in dogs with presumptive acute noncompressive nucleus pulposus extrusion: 42 cases (2000–2007). J. Am. Vet. Med. Assoc. 2009, 234, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Gandini, G.; Cizinauskas, S.; Lang, J.; Fatzer, R.; Jaggy, A. Fibrocartilaginous embolism in 75 dogs: Clinical findings and factors influencing the recovery rate. J. Small. Anim. Pract. 2003, 44, 76–80. [Google Scholar] [CrossRef] [PubMed]
- De Risio, L.; Adams, V.; Dennis, R.; McConnell, F.; Platt, S. Magnetic resonance imaging findings and clinical associations in 52 dogs with suspected ischemic myelopathy. J. Vet. Intern. Med. 2007, 21, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Rusbridge, C.; Stringer, F.; Knowler, S.P. Clinical application of diagnostic imaging of Chiari-like malformation and syringomyelia. Front. Vet. Sci. 2018, 5, 280. [Google Scholar] [CrossRef]
- Tirrito, F.; Cozzi, F.; Bonaldi, M.; Corazzo, S.; Contiero, B.; Lombardo, R. Ventriculomegaly in Cavalier King Charles Spaniels with Chiari-like malformation: Relationship with clinical and imaging findings. J. Vet. Med. Sci. 2022, 84, 1185–1193. [Google Scholar] [CrossRef]
- Ru, Y.; Corado, C.; Soon Jr, R.K.; Melton, A.C.; Harris, A.; Yu, G.K.; Pryer, N.; Sinclair, J.R.; Katz, M.L.; Ajayi, T.; et al. Neurofilament light is a treatment-responsive biomarker in CLN2 disease. Ann. Clin. Transl. Neurol. 2019, 6, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Panek, W.K.; Gruen, M.E.; Murdoch, D.M.; Marek, R.D.; Stachel, A.F.; Mowat, F.M.; Saker, K.E.; Olby, N.J. Plasma neurofilament light chain as a translational biomarker of aging and neurodegeneration in dogs. Mol. Neurobiol. 2020, 57, 3143–3149. [Google Scholar] [CrossRef]
- Perino, J.; Patterson, M.; Momen, M.; Borisova, M.; Heslegrave, A.; Zetterberg, H.; Gruel, J.; Binversie, E.; Baker, L.; Svaren, J.; et al. Neurofilament light plasma concentration positively associates with age and negatively associates with weight and height in the dog. Neurosci. Lett. 2021, 744, 135593. [Google Scholar] [CrossRef]
- Yun, T.; Koo, Y.; Chae, Y.; Lee, D.; Kim, H.; Yang, M.P.; Kang, B.T. Association between neurofilament light chain concentration and lesion size in dogs with meningoencephalitis of unknown origin. Vet. Med. Sci. 2023, 9, 1541–1546. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Ferreira, A.J.; Correia, J.H.; Jaggy, A. Thoracolumbar disc disease in 71 paraplegic dogs: Influence of rate of onset and duration of clinical signs on treatment results. J. Small Anim. Pract. 2002, 43, 158–163. [Google Scholar] [CrossRef]
- Olby, N.; Levine, J.; Harris, T.; Muñana, K.; Skeen, T.; Sharp, N. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal cord: 87 cases (1996–2001). J. Am. Vet. Med. Assoc. 2003, 222, 762–769. [Google Scholar] [CrossRef]
- Joaquim, J.G.F.; Luna, S.P.L.; Brondani, J.T.; Torelli, S.R.; Rahal, S.C.; de Paula Freitas, F. Comparison of decompressive surgery, electroacupuncture, and decompressive surgery followed by electroacupuncture for the treatment of dogs with intervertebral disk disease with long-standing severe neurologic deficits. J. Am. Vet. Med. Assoc. 2010, 236, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, N.D.; Barker, A.K.; Hu, H.Z.; Alcott, C.J.; Kraus, K.H.; Scanlin, E.M.; Granger, N.; Levine, J.M. Factors associated with recovery from paraplegia in dogs with loss of pain perception in the pelvic limbs following intervertebral disk herniation. J. Am. Vet. Med. Assoc. 2016, 248, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.J.; Levine, J.M.; Budke, C.M.; Kerwin, S.C.; Au, J.; Vinayak, A.; Hettlich, B.F.; Slater, M.R. Description and repeatability of a newly developed spinal cord injury scale for dogs. Prev. Vet. Med. 2009, 89, 121–127. [Google Scholar] [CrossRef]
- Levine, J.M.; Fosgate, G.T.; Chen, A.V.; Rushing, R.; Nghiem, P.P.; Platt, S.R.; Bagley, R.S.; Kent, M.; Hicks, D.G.; Young, B.D.; et al. Magnetic resonance imaging in dogs with neurologic impairment due to acute thoracic and lumbar intervertebral disk herniation. J. Vet. Intern. Med. 2009, 23, 1220–1226. [Google Scholar] [CrossRef]
- Rossmeisl Jr, J.H.; White, C.; Pancotto, T.E.; Bays, A.; Henao-Guerrero, P.N. Acute adverse events associated with ventral slot decompression in 546 dogs with cervical intervertebral disc disease. Vet. Surg. 2013, 42, 795–806. [Google Scholar] [CrossRef]
- Santifort, K.M.; Carrera, I.; Bossens, K.; Mandigers, P.J.J. Phenotypic characterization of Pomeranians with or without Chiari-like malformation and syringomyelia. Front. Vet. Sci. 2023, 10, 1320942. [Google Scholar] [CrossRef]
- Santifort, K.M.; Carrera, I.; Mandigers, P.J.J. Longitudinal assessment of syringomyelia in Pomeranians. Front. Vet. Sci. 2024, 11, 1364464. [Google Scholar] [CrossRef]
- da Costa, R.C.; Parent, J.M.; Partlow, G.; Dobson, H.; Holmberg, D.L.; Lamarre, J. Morphologic and morphometric magnetic resonance imaging features of Doberman Pinschers with and without clinical signs of cervical spondylomyelopathy. Am. J. Vet. Res. 2006, 67, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Provencher, M.; Habing, A.; Moore, S.A.; Cook, L.; Phillips, G.; da Costa, R.C. Kinematic magnetic resonance imaging for evaluation of disc-associated cervical spondylomyelopathy in doberman pinschers. J. Vet. Intern. Med. 2016, 30, 1121–1128. [Google Scholar] [CrossRef]
- Boekhoff, T.M.; Flieshardt, C.; Ensinger, E.M.; Fork, M.; Kramer, S.; Tipold, A. Quantitative magnetic resonance imaging characteristics: Evaluation of prognostic value in the dog as a translational model for spinal cord injury. J. Spinal. Disord. Tech. 2012, 25, E81–E87. [Google Scholar] [CrossRef]
- Jones, G.M.C.; Cherubini, G.B.; Llabres-Diaz, F.; Caine, A.; De Stefani, A. A case series of 37 surgically managed, paraplegic, deep pain negative French bulldogs, with thoracolumbar intervertebral disc extrusion, from two English referral centres. Vet. Rec. Open 2023, 10, e61. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Dewey, C.W.; da Costa, R.C. Practical Guide to Canine and Feline Neurology, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 10–11, 331. [Google Scholar]
- Lampe, R.; Foss, K.D.; Hague, D.W.; Barger, A.M. Comparison of creatine kinase in cerebrospinal fluid collected from the cerebellomedullary and lumbar cisterna in 10 dogs with neurologic disease. Vet. Clin. Pathol. 2020, 49, 436–439. [Google Scholar] [CrossRef]
- Trub, S.A.; Bush, W.W.; Paek, M.; Cuff, D.E. Use of C-reactive protein concentration in evaluation of diskospondylitis in dogs. J. Vet. Intern. Med. 2021, 35, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, M.; Arai, T.; Kawasumi, K. Effect of acupuncture on the energy metabolism of dogs with intervertebral disk disease and cervical disk herniation: A pilot study. Vet. Res. Commun. 2023, 47, 879–884. [Google Scholar] [CrossRef]
- Aronson, J.K.; Ferner, R.E. Biomarkers-A general review. Curr. Protoc. Pharmacol. 2017, 76, 9.23.1–9.23.17. [Google Scholar] [CrossRef] [PubMed]
- Stukas, S.; Cooper, J.; Gill, J.; Fallah, N.; Skinnider, M.A.; Belanger, L.; Ritchie, L.; Tsang, A.; Dong, K.; Streijger, F.; et al. Association of CSF and Serum Neurofilament Light and Glial Fibrillary Acidic Protein, Injury Severity, and Outcome in Spinal Cord Injury. Neurology 2023, 100, e1221–e1233. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, I.R. Spinal cord infarction due to emboli arising from the intervertebral discs in the dog. J. Comp. Pathol. 1973, 83, 225–232. [Google Scholar] [CrossRef]
- Simpson, S.T. Intervertebral disc disease. Vet. Clin. N. Am. Small Anim. Pract. 1992, 22, 889–897. [Google Scholar] [CrossRef]
- Bray, J.P.; Burbidge, H.M. The canine intervertebral disk. part Two: Degenerative changes–nonchondrodystrophoid versus chondrodystrophoid disks. J. Am. Anim. Hosp. Assoc. 1998, 34, 135–144. [Google Scholar] [CrossRef]
- Brisson, B.A. Intervertebral disc disease in dogs. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 829–858. [Google Scholar] [CrossRef]
- Spitzbarth, I.; Moore, S.A.; Stein, V.M.; Levine, J.M.; Kühl, B.; Gerhauser, I.; Baumgärtner, W.; Canine Spinal Cord Injury Consortium (CANSORT-SCI). Current insights into the pathology of canine intervertebral disc extrusion-induced spinal cord injury. Front. Vet. Sci. 2020, 7, 595796. [Google Scholar] [CrossRef]
- Yeo, J.; Cheng, S.; Hemley, S.; Lee, B.B.; Stoodley, M.; Bilston, L. Characteristics of CSF velocity-time profile in posttraumatic syringomyelia. AJNR Am. J. Neuroradiol. 2017, 38, 1839–1844. [Google Scholar] [CrossRef]
- Murthy, V.D.; Li, C.F.; Hicks, J.; Kroll, J.; Giuffrida, M.; Dickinson, P.; Toedebusch, C.M. Serum phosphorylated neurofilament heavy chain as a diagnostic biomarker for progressive myelomalacia in dogs with thoracolumbar intervertebral disc herniation. J. Vet. Intern. Med. 2021, 35, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- De Risio, L. A review of fibrocartilaginous embolic myelopathy and different types of peracute non-compressive intervertebral disk extrusions in dogs and cats. Front. Vet. Sci. 2015, 2, 24. [Google Scholar] [CrossRef]
- Olby, N.J.; da Costa, R.C.; Levine, J.M.; Stein, V.M.; Canine Spinal Cord Injury Consortium (CANSORT SCI). Prognostic factors in canine acute intervertebral disc disease. Front. Vet. Sci. 2020, 7, 596059. [Google Scholar] [CrossRef] [PubMed]
- Aktas, O.; Hartung, H.P.; Smith, M.A.; Rees, W.A.; Fujihara, K.; Paul, F.; Marignier, R.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; et al. Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: Analysis of four potential biomarkers in neuromyelitis optica spectrum disorder. J. Neurol. Neurosurg. Psychiatry 2023, 94, 757–768. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.J.; Park, J.S.; Kang, M.; Seok, H.Y. Neurofilament light chain as a biomarker in neuromyelitis optica spectrum disorder: A comprehensive review and integrated analysis with glial fibrillary acidic protein. Neurol. Sci. 2024, 45, 1255–1261. [Google Scholar] [CrossRef]
- Hsu, J.L.; Cheng, M.Y.; Liao, M.F.; Hsu, H.C.; Weng, Y.C.; Chang, K.H.; Chang, H.S.; Kuo, H.C.; Huang, C.C.; Lyu, R.K.; et al. A comparison between spinal cord infarction and neuromyelitis optica spectrum disorders: Clinical and MRI studies. Sci. Rep. 2019, 9, 7435. [Google Scholar] [CrossRef] [PubMed]
- Sechi, E.; Mariotto, S.; McKeon, A.; Krecke, K.N.; Pittock, S.J.; Ferrari, S.; Monaco, S.; Flanagan, E.P.; Zanzoni, S.; Rabinstein, A.A.; et al. Serum neurofilament to magnetic resonance imaging lesion area ratio differentiates spinal cord infarction from acute myelitis. Stroke 2021, 52, 645–654. [Google Scholar] [CrossRef]
- Ravaglia, S.; Bogdanov, E.I.; Pichiecchio, A.; Bergamaschi, R.; Moglia, A.; Mikhaylov, I.M. Pathogenetic role of myelitis for syringomyelia. Clin. Neurol. Neurosurg. 2007, 109, 541–546. [Google Scholar] [CrossRef]
- Schouman-Claeys, E.; Frija, G.; Cuenod, C.A.; Begon, D.; Paraire, F.; Martin, V. MR imaging of acute spinal cord injury: Results of an experimental study in dogs. AJNR Am. J. Neuroradiol. 1990, 11, 959–965. [Google Scholar]
- Falconer, J.C.; Narayana, P.A.; Bhattacharjee, M.B.; Liu, S.J. Quantitative MRI of spinal cord injury in a rat model. Magn. Reson. Med. 1994, 32, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Flanders, A.E.; Spettell, C.M.; Friedman, D.P.; Marino, R.J.; Herbison, G.J. The relationship between the functional abilities of patients with cervical spinal cord injury and the severity of damage revealed by MR imaging. AJNR Am. J. Neuroradiol. 1999, 20, 926–934. [Google Scholar] [PubMed]
- Otamendi, A.; Boudreau, B.; Gilmour, L.; Griffin, J.; Levine, J.; Jeffery, N. Imaging Findings at 3T and Clinical Outcome in Deep-Pain Negative Dogs with Intervertebral Disc Herniation. In Proceedings of the 2017 American College of Veterinary Internal Medicine Forum, National Harbor, MD, USA, 8–10 June 2017; p. 1262. [Google Scholar] [CrossRef]
- Wang-Leandro, A.; Siedenburg, J.S.; Hobert, M.K.; Dziallas, P.; Rohn, K.; Stein, V.M.; Tipold, A. Comparison of preoperative quantitative magnetic resonance imaging and clinical assessment of deep pain perception as prognostic tools for early recovery of motor function in paraplegic dogs with intervertebral disk herniations. J. Vet. Intern. Med. 2017, 31, 842–848. [Google Scholar] [CrossRef] [PubMed]
Healthy | IVDH | SM | FCE | ANNPE | |
---|---|---|---|---|---|
(n = 46) | (n = 51) | (n = 17) | (n = 5) | (n = 3) | |
Age (years) | 2 (1–3) | 9 a (6–12) | 5 (3–7) | 8 (4–8) | 3 (2–5) |
Body weight (kg) | 6.38 b (4.48–8.72) | 5.2 (3.6–6.85) | 3.56 (3.04–4.62) | 5.83 (5.6–6.5) | 6.7 (6.1–7.03) |
Sex (number) | |||||
Male | 19 (41%) | 30 (59%) | 10 (59%) | 2 (40%) | 2 (66%) |
Female | 27 (59%) | 21 (41%) | 7 (41%) | 3 (60%) | 1 (33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Yun, T.; Chae, Y.; Kim, H.; Kang, B.-T. Diagnostic and Prognostic Value of Serum Neurofilament Light Chain in Canine Spinal Cord Diseases. Vet. Sci. 2025, 12, 966. https://doi.org/10.3390/vetsci12100966
Kim C, Yun T, Chae Y, Kim H, Kang B-T. Diagnostic and Prognostic Value of Serum Neurofilament Light Chain in Canine Spinal Cord Diseases. Veterinary Sciences. 2025; 12(10):966. https://doi.org/10.3390/vetsci12100966
Chicago/Turabian StyleKim, Chaerin, Taesik Yun, Yeon Chae, Hakhyun Kim, and Byeong-Teck Kang. 2025. "Diagnostic and Prognostic Value of Serum Neurofilament Light Chain in Canine Spinal Cord Diseases" Veterinary Sciences 12, no. 10: 966. https://doi.org/10.3390/vetsci12100966
APA StyleKim, C., Yun, T., Chae, Y., Kim, H., & Kang, B.-T. (2025). Diagnostic and Prognostic Value of Serum Neurofilament Light Chain in Canine Spinal Cord Diseases. Veterinary Sciences, 12(10), 966. https://doi.org/10.3390/vetsci12100966