In Vitro Three-Step Technique Assessment of a Microencapsulated Phytosynbiotic from Yanang (Tiliacora triandra) Leaf Extract Fermented with P. acidilactici V202 on Nutrient Digestibility, Cecal Fermentation, and Microbial Communities of Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Phytosynbiotic Prototype
2.3. Experimental Design
Treatment 1 | = Control diet without supplementation (basal diet) |
Treatment 2 | = Control diet + 0.50% YEP |
Treatment 3 | = Control diet + 1.00% YEP |
Treatment 4 | = Control diet + 1.50% YEP |
Treatment 5 | = Control diet + 2.00% YEP |
Treatment 6 | = Control diet + 2.50% YEP |
2.4. In Vitro Ileal Nutrient Digestibility and Post-Digestion Microbial Community Responses
2.5. In Vitro Cecal Fermentation, Metabolite Profiles, and Microbial Community Analysis
2.6. Statistical Analysis
3. Results
3.1. Nutritional Analysis of Experimental Diets
3.2. Assessment of YEP Supplementation on In Vitro Ileal Digestibility
3.3. Supplementation of YEP Affected Microbial Community Responses After In Vitro Digestion
3.4. Effect of Dietary YEP on In Vitro Cecal Fermentation
3.5. Dietary YEP Affects Degradation Kinetics During In Vitro Cecal Fermentation by Broiler Microbiota
3.6. Supplementation of YEP Stimulates Lactic Acid and VFA Production During In Vitro Cecal Fermentation
3.7. Alterations of Microbial Community Dynamics During In Vitro Cecal Fermentation by Broiler Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, O.E.; Akosile, O.A.; Uyanga, V.A.; Oke, F.O.; Oni, A.I.; Tona, K.; Onagbesan, O.M. Climate Change and Broiler Production. Vet. Med. Sci. 2024, 10, e1416. [Google Scholar] [CrossRef]
- Alli, Y.A.; Bamisaye, A.; Bamidele, M.O.; Etafo, N.O.; Chkirida, S.; Lawal, A.; Hammed, V.O.; Akinfenwa, A.S.; Hanson, E.; Nwakile, C.; et al. Transforming Waste to Wealth: Harnessing Carbon Dioxide for Sustainable Solutions. Results Surf. Interfaces 2024, 17, 100321. [Google Scholar] [CrossRef]
- Pesti, G.M.; Choct, M. The Future of Feed Formulation for Poultry: Toward More Sustainable Production of Meat and Eggs. Anim. Nutr. 2023, 15, 71–87. [Google Scholar] [CrossRef]
- Zaefarian, F.; Cowieson, A.J.; Pontoppidan, K.; Abdollahi, M.R.; Ravindran, V. Trends in Feed Evaluation for Poultry with Emphasis on In Vitro Techniques. Anim. Nutr. 2021, 7, 268–281. [Google Scholar] [CrossRef]
- Lo, S.-H.; Chen, C.-Y.; Wang, H.-T. Three-Step In Vitro Digestion Model for Evaluating and Predicting Fecal Odor Emission from Growing Pigs with Different Dietary Protein Intakes. Anim. Biosci. 2022, 35, 1592–1605. [Google Scholar] [CrossRef]
- Santos-Sánchez, G.; Miralles, B.; Brodkorb, A.; Dupont, D.; Egger, L.; Recio, I. Current Advances for In Vitro Protein Digestibility. Front. Nutr. 2024, 11, 1404538. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; McDonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Dhanoa, M.S.; López, S.; Powell, C.D.; Sanderson, R.; Ellis, J.L.; Murray, J.-A.M.D.; Garber, A.; Williams, B.A.; France, J. An Illustrative Analysis of Atypical Gas Production Profiles Obtained from In Vitro Digestibility Studies Using Fecal Inoculum. Animals 2021, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, P.; Prearo, M.; Barceló, D. Ethical Principles and Scientific Advancements: In Vitro, in Silico, and Non-Vertebrate Animal Approaches for a Green Ecotoxicology. Green Anal. Chem. 2024, 8, 100096. [Google Scholar] [CrossRef]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic Feed Additives as Natural Antibiotic Alternatives in Animal Health and Production: A Review of the Literature of the Last Decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef]
- Phunchago, N.; Wattanathorn, J.; Chaisiwamongkol, K. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats. Oxidative Med. Cell. Longev. 2015, 2015, 918426. [Google Scholar] [CrossRef]
- Singthong, J.; Oonsivilai, R.; Oonmetta-aree, J.; Ningsanond, S. Bioactive Compounds and Encapsulation of Yanang (Tiliacora triandra) Leaves. Afr. J. Trad. Compl. Alt. Med. 2014, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Chen, Y.; Deng, F.; Yan, X.; Zhong, R.; Meng, Q.; Liu, L.; Zhao, Y.; Zhang, S.; Chen, L.; et al. Xylooligosaccharide-Mediated Gut Microbiota Enhances Gut Barrier and Modulates Gut Immunity Associated with Alterations of Biological Processes in a Pig Model. Carbohydr. Polym. 2022, 294, 119776. [Google Scholar] [CrossRef]
- Xiang, Q.; Wang, C.; Zhang, H.; Lai, W.; Wei, H.; Peng, J. Effects of Different Probiotics on Laying Performance, Egg Quality, Oxidative Status, and Gut Health in Laying Hens. Animals 2019, 9, 1110. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Ravindran, V. Role of Feed Additives in Poultry Nutrition: Historical, Current and Future Perspectives. Anim. Feed. Sci. Technol. 2025, 326, 116371. [Google Scholar] [CrossRef]
- Naissinger Da Silva, M.; Tagliapietra, B.L.; Flores, V.D.A.; Pereira Dos Santos Richards, N.S. In Vitro Test to Evaluate Survival in the Gastrointestinal Tract of Commercial Probiotics. Curr. Res. Food Sci. 2021, 4, 320–325. [Google Scholar] [CrossRef]
- Gunenc, A.; Alswiti, C.; Hosseinian, F. Wheat Bran Dietary Fiber: Promising Source of Prebiotics with Antioxidant Potential. J. Food Res. 2017, 6, 1. [Google Scholar] [CrossRef]
- Singthong, J.; Oonsivilai, R. Structural and Rheological Properties of Yanang Gum (Tiliacora Triandra). Foods 2022, 11, 2003. [Google Scholar] [CrossRef]
- Ge, S.; Han, J.; Sun, Q.; Zhou, Q.; Ye, Z.; Li, P.; Gu, Q. Research Progress on Improving the Freeze-Drying Resistance of Probiotics: A Review. Trends Food Sci. Technol. 2024, 147, 104425. [Google Scholar] [CrossRef]
- Coşkun, N.; Sarıtaş, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Smolinska, S.; Popescu, F.-D.; Zemelka-Wiacek, M. A Review of the Influence of Prebiotics, Probiotics, Synbiotics, and Postbiotics on the Human Gut Microbiome and Intestinal Integrity. J. Clin. Med. 2025, 14, 3673. [Google Scholar] [CrossRef] [PubMed]
- Eadmusik, S.; Janhadsadee, P.; Bureewong, W.; Wongwat, S. Effect of Extraction Conditions on Physical and Antioxidant Properties of Yanang (Tiliacora triandra) Leaf Extract. Asia-Pac. J. Sci. Technol. 2022, 27, 1–10. [Google Scholar]
- Yu, W.; Hao, X.; Zhiyue, W.; Haiming, Y.; Lei, X. Evaluation of the Effect of Bacillus Subtilis and Pediococcus Acidilactici Mix on Serum Biochemistry, Growth Promotation of Body and Visceral Organs in Lohmann Brown Chicks. Braz. J. Poult. Sci. 2020, 22, eRBCA-2020. [Google Scholar] [CrossRef]
- Tabashiri, R.; Mahmoodian, S.; Pakdel, M.H.; Shariati, V.; Meimandipour, A.; Zamani, J. Comprehensive In Vitro and Whole-Genome Characterization of Probiotic Properties in Pediococcus Acidilactici P10 Isolated from Iranian Broiler Chicken. Sci. Rep. 2025, 15, 28953. [Google Scholar] [CrossRef]
- Hamid, I.S.; Mahendra, I.; Kurniawan, A.; Febrian, M.B.; Saptiama, I.; Marlina, M.; Solfaine, R.; Fikri, F. Recent Updates on Encapsulated Probioticsin Poultry: A Review. Pol. J. Vet. Sci. 2025, 28, 345–353. [Google Scholar] [CrossRef]
- Asare, P.T.; Greppi, A.; Pennacchia, A.; Brenig, K.; Geirnaert, A.; Schwab, C.; Stephan, R.; Lacroix, C. In Vitro Modeling of Chicken Cecal Microbiota Ecology and Metabolism Using the PolyFermS Platform. Front. Microbiol. 2021, 12, 780092. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Dale, N. National Research Council Nutrient Requirements of Poultry—Ninth Revised Edition. J. Appl. Poult. Res. 1994, 3, 101. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1990; p. 1298.
- Incharoen, T.; Nopparatmaitree, M.; Kongkeaw, A.; Soisuwan, K.; Likittrakulwong, W.; Thongnum, A.; Norbu, N.; Tenzin, J.; Supatsaraphokin, N.; Loor, J.J. Dietary Micronized Hemp Fiber Enhances In Vitro Nutrient Digestibility and Cecal Fermentation, Antioxidant Enzyme, Lysosomal Activity, and Productivity in Finisher Broilers Reared under Thermal Stress. Front. Anim. Sci. 2025, 6, 1553829. [Google Scholar] [CrossRef]
- Jezierny, D.; Mosenthin, R.; Sauer, N.; Eklund, M. In Vitro Prediction of Standardised Ileal Crude Protein and Amino Acid Digestibilities in Grain Legumes for Growing Pigs. Animal 2010, 4, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Li, Y.; Hu, L.; Nie, P.; Ramaswamy, H.S.; Yu, Y. Demonstration of Escherichia Coli Inactivation in Sterile Physiological Saline under High Pressure (HP) Phase Transition Conditions and Analysis of Probable Contribution of HP Metastable Positions Using Model Solutions and Apple Juice. Foods 2022, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Sanders, E.R. Aseptic Laboratory Techniques: Plating Methods. J. Vis. Exp. (JoVE) 2012, 63, e3064. [Google Scholar] [CrossRef]
- Mitsuwan, W.; Romyasamit, C.; Kimseng, R.; Mahawan, T.; Vimon, S. Eco-Friendly Microencapsulation of Lacticaseibacillus Paracasei Using Ficus pumila Seed Extract: A Novel Plant-Based Delivery System Enhancing Probiotic Stability and Gastrointestinal Tolerance. Vet. World 2025, 18, 2039. [Google Scholar] [CrossRef]
- Jacob, M.E.; Keelara, S.; Aidara-Kane, A.; Alvarez, J.R.M.; Fedorka-Cray, P.J. Optimizing a Screening Protocol for Potential Extended- Spectrum -Lactamase Escherichia coli on MacConkey Agar for Use in a Global Surveillance Program. J. Clin. Microbiol. 2020, 58, e01039-19. [Google Scholar] [CrossRef]
- Nunpan, S.; Suwannachart, C.; Wayakanon, K. Effect of Prebiotics-Enhanced Probiotics on the Growth of Streptococcus mutans. Int. J. Microbiol. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Prayoonthien, P.; Nitisinprasert, S.; Keawsompong, S. In Vitro Fermentation of Copra Meal Hydrolysate by Chicken Microbiota. 3 Biotech 2018, 8, 41. [Google Scholar] [CrossRef]
- Spanghero, M.; Nikulina, A.; Mason, F. Use of an In Vitro Gas Production Procedure to Evaluate Rumen Slow-Release Urea Products. Anim. Feed. Sci. Technol. 2018, 237, 19–26. [Google Scholar] [CrossRef]
- Araiza Ponce, K.A.; Gurrola Reyes, J.N.; Martínez Estrada, S.C.; Salas Pacheco, J.M.; Palacios Torres, J.; Murillo Ortiz, M. Fermentation Patterns, Methane Production and Microbial Population under In Vitro Conditions from Two Unconventional Feed Resources Incorporated in Ruminant Diets. Animals 2023, 13, 2940. [Google Scholar] [CrossRef]
- Ribeiro, W.; Vinolo, M.; Calixto, L.; Ferreira, C. Use of Gas Chromatography to Quantify Short Chain Fatty Acids in the Serum, Colonic Luminal Content and Feces of Mice. Bio-Protocol 2018, 8, e3089. [Google Scholar] [CrossRef] [PubMed]
- Rohde, J.K.; Fuh, M.M.; Evangelakos, I.; Pauly, M.J.; Schaltenberg, N.; Siracusa, F.; Gagliani, N.; Tödter, K.; Heeren, J.; Worthmann, A. A Gas Chromatography Mass Spectrometry-Based Method for the Quantification of Short Chain Fatty Acids. Metabolites 2022, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Sun, Q.; Yin, S.; He, Y.; Cao, Y.; Jiang, C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials 2023, 13, 2185. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Tarapoulouzi, M.; Varzakas, T.; Jafari, S.M. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023, 11, 2896. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gupta, R.; Chawla, S.; Gauba, P.; Singh, M.; Tiwari, R.K.; Upadhyay, S.; Sharma, S.; Chanda, S.; Gaur, S. Natural Sources and Encapsulating Materials for Probiotics Delivery Systems: Recent Applications and Challenges in Functional Food Development. Front. Nutr. 2022, 9, 971784. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Bosnea, L.; Kanellaki, M.; Ganatsios, V.; Koutinas, A.A. Wheat Bran as Prebiotic Cell Immobilisation Carrier for Industrial Functional Feta-Type Cheese Making: Chemical, Microbial and Sensory Evaluation. Biocatal. Agric. Biotechnol. 2018, 13, 75–83. [Google Scholar] [CrossRef]
- Vivek, K.; Mishra, S.; Pradhan, R.C.; Nagarajan, M.; Kumar, P.K.; Singh, S.S.; Manvi, D.; Gowda, N.N. A Comprehensive Review on Microencapsulation of Probiotics: Technology, Carriers and Current Trends. Appl. Food Res. 2023, 3, 100248. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Zheng, X.; Xu, X.; Zheng, J.; Hu, Y.; Mei, Y.; Liu, Y.; Liang, Y. Solid-State Fermentation of Wheat Bran with Clostridium Butyricum: Impact on Microstructure, Nutrient Release, Antioxidant Capacity, and Alleviation of Ulcerative Colitis in Mice. Antioxidants 2024, 13, 1259. [Google Scholar] [CrossRef]
- Oberoi, K.; Tolun, A.; Altintas, Z.; Sharma, S. Effect of Alginate-Microencapsulated Hydrogels on the Survival of Lactobacillus Rhamnosus under Simulated Gastrointestinal Conditions. Foods 2021, 10, 1999. [Google Scholar] [CrossRef]
- Terpou, A.; Gialleli, A.-I.; Bekatorou, A.; Dimitrellou, D.; Ganatsios, V.; Barouni, E.; Koutinas, A.A.; Kanellaki, M. Sour Milk Production by Wheat Bran Supported Probiotic Biocatalyst as Starter Culture. Food Bioprod. Process. 2017, 101, 184–192. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A.; Nigam, P. Enhanced Probiotic Viability and Aromatic Profile of Yogurts Produced Using Wheat Bran (Triticum aestivum) as Cell Immobilization Carrier. Process Biochem. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- Nutmakul, T. Phytochemical and Pharmacological Activity of Tiliacora Triandra (Colebr.) Diels. Songklanakarin J. Sci. Technol. 2021, 43, 1264–1274. [Google Scholar]
- Hering, A.; Stefanowicz-Hajduk, J.; Hałasa, R.; Olech, M.; Nowak, R.; Kosiński, P.; Ochocka, J.R. Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules 2022, 27, 6181. [Google Scholar] [CrossRef]
- Amenyogbe, E.; Droepenu, E.K.; Ayisi, C.L.; Boamah, G.A.; Duker, R.Q.; Abarike, E.D.; Huang, J. Impact of Probiotics, Prebiotics, and Synbiotics on Digestive Enzymes, Oxidative Stress, and Antioxidant Defense in Fish Farming: Current Insights and Future Perspectives. Front. Mar. Sci. 2024, 11, 1368436. [Google Scholar] [CrossRef]
- Das, G.; Gouda, S.; Kerry, R.G.; Cortes, H.; Prado-Audelo, M.L.D.; Leyva-Gómez, G.; Tsouh Fokou, P.V.; Gutiérrez-Grijalva, E.P.; Heredia, J.B.; Shin, H.-S.; et al. Study of Traditional Uses, Extraction Procedures, Phytochemical Constituents, and Pharmacological Properties of Tiliacora triandra. J. Chem. 2022, 2022, 8754528. [Google Scholar] [CrossRef]
- Wann, C.; Wanapat, M.; Mapato, C.; Ampapon, T.; Huang, B. Effect of Bamboo Grass (Tiliacora triandra, Diels) Pellet Supplementation on Rumen Fermentation Characteristics and Methane Production in Thai Native Beef Cattle. Asian-Australas. J. Anim. Sci. 2019, 32, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, M.; Álvarez Ordóñez, A.; Cenian, A.; Djukić-Vuković, A.; Lund, P.A.; Ozogul, F.; Trček, J.; Ziv, C.; De Biase, D. Exploitation of Microbial Activities at Low pH to Enhance Planetary Health. FEMS Microbiol. Rev. 2024, 48, fuad062. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, P.; Sisto, A.; Lavermicocca, P. Probiotic Bacteria and Plant-Based Matrices: An Association with Improved Health-Promoting Features. J. Funct. Foods 2021, 87, 104821. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, X.; Liu, M.; Yin, L.; Jia, X. Effect of Glycoside Hydrolase-Mediated Wheat Arabinoxylan Hydrolysate on Gut Microbiota and Metabolite Profiles. Carbohydr. Polym. 2025, 351, 123064. [Google Scholar] [CrossRef]
- Suriyapha, C.; Ampapon, T.; Viennasay, B.; Matra, M.; Wann, C.; Wanapat, M. Manipulating Rumen Fermentation, Microbial Protein Synthesis, and Mitigating Methane Production Using Bamboo Grass Pellet in Swamp Buffaloes. Trop. Anim. Health Prod. 2020, 52, 1609–1615. [Google Scholar] [CrossRef]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of Lactic Acid Bacteria Silage Inoculation on Methane Emission and Productivity of Holstein Friesian Dairy Cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Li, Y.; Liu, K.; Bao, K.; Li, G. Impact of Pediococcus acidilactici GLP06 Supplementation on Gut Microbes and Metabolites in Adult Beagles: A Comparative Analysis. Front. Microbiol. 2024, 15, 1369402. [Google Scholar] [CrossRef]
- Evdokimova, S.A.; Nokhaeva, V.S.; Karetkin, B.A.; Guseva, E.V.; Khabibulina, N.V.; Kornienko, M.A.; Grosheva, V.D.; Menshutina, N.V.; Shakir, I.V.; Panfilov, V.I. A Study on the Synbiotic Composition of Bifidobacterium Bifidum and Fructans from Arctium lappa Roots and Helianthus tuberosus Tubers against Staphylococcus aureus. Microorganisms 2021, 9, 930. [Google Scholar] [CrossRef]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.-H. Butyrate Producers, “The Sentinel of Gut”: Their Intestinal Significance with and beyond Butyrate, and Prospective Use as Microbial Therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef]
- Shortt, C.; Hasselwander, O.; Meynier, A.; Nauta, A.; Fernández, E.N.; Putz, P.; Rowland, I.; Swann, J.; Türk, J.; Vermeiren, J.; et al. Systematic Review of the Effects of the Intestinal Microbiota on Selected Nutrients and Non-Nutrients. Eur. J. Nutr. 2018, 57, 25–49. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zhao, C.; Li, H.; Shen, X.; Zhou, M.; Daigger, G.T.; Zhang, P.; Song, G. Effects of Nitrogen and Carbon Source Addition on Biomass and Protein Production by Rhodopseudomonas via the RSM-CCD Approach. Desalination Water Treat. 2024, 319, 100438. [Google Scholar] [CrossRef]
- Zheng, Q.; Chia, S.L.; Saad, N.; Song, A.A.-L.; Loh, T.C.; Foo, H.L. Different Combinations of Nitrogen and Carbon Sources Influence the Growth and Postbiotic Metabolite Characteristics of Lactiplantibacillus plantarum Strains Isolated from Malaysian Foods. Foods 2024, 13, 3123. [Google Scholar] [CrossRef]
Dietary YEP Supplementation, % | Nutrient Composition 1 | ||||
---|---|---|---|---|---|
DM, % | CP, % | EE, % | CF, % | GE, kcal/kg | |
0 (Control) | 91.35 | 21.56 | 5.39 | 4.26 | 4079 |
0.50 | 91.31 | 21.91 | 5.23 | 4.19 | 4033 |
1.00 | 92.02 | 21.71 | 5.60 | 4.51 | 4012 |
1.50 | 91.67 | 21.57 | 5.00 | 4.49 | 4073 |
2.00 | 92.13 | 21.40 | 5.51 | 3.54 | 4089 |
2.50 | 91.76 | 21.36 | 5.30 | 3.79 | 4069 |
Dietary YEP Supplementation, % | In Vitro Ileal Nutrient Digestibility 1, % | ||||
---|---|---|---|---|---|
DM | CP | EE | CF | GE | |
0 (Control) | 77.61 b | 80.93 | 81.83 | 42.10 | 82.32 b |
0.50 | 79.42 a | 82.10 | 82.77 | 43.93 | 83.29 a |
1.00 | 79.88 a | 81.97 | 83.43 | 42.58 | 83.23 a |
1.50 | 79.18 a | 81.77 | 83.10 | 42.53 | 83.30 a |
2.00 | 79.57 a | 82.10 | 82.53 | 42.75 | 83.75 a |
2.50 | 79.34 a | 81.83 | 82.87 | 43.63 | 83.35 a |
SEM | 0.08 | 0.15 | 0.17 | 0.25 | 0.14 |
p-value | 0.001 | 0.184 | 0.088 | 0.473 | 0.033 |
Orthogonal contrasts | |||||
Control vs. L-YEP | 0.001 | 0.017 | 0.011 | 0.157 | 0.010 |
Control vs. H-YEP | 0.002 | 0.019 | 0.008 | 0.229 | 0.006 |
L-YEP vs. H-YEP | 0.125 | 0.460 | 0.104 | 0.261 | 0.175 |
Orthogonal polynomial | |||||
Linear | 0.006 | 0.139 | 0.207 | 0.867 | 0.008 |
Quadratic | 0.002 | 0.099 | 0.036 | 0.556 | 0.058 |
Cubic | 0.087 | 0.246 | 0.112 | 0.20 | 0.051 |
Microbial Responses (log CFU/mL) | ||||||
---|---|---|---|---|---|---|
TVC | Lactobacillaceae | |||||
Dietary YEP Supplementation, % | Initial | Final | Growth Rate (h−1) | Initial | Final | Growth Rate (h−1) |
0 (Control) | 7.67 | 8.47 c | 0.28 BC | 7.38 | 8.41 b | 0.42 C |
0.50 | 7.72 | 8.62 bc | 0.36 A | 7.34 | 8.67 a | 0.49 B |
1.00 | 7.81 | 8.69 ab | 0.22 CD | 7.31 | 8.39 b | 0.52 AB |
1.50 | 7.83 | 8.83 a | 0.31 AB | 7.36 | 8.65 a | 0.56 A |
2.00 | 7.76 | 8.75 ab | 0.28 BC | 7.48 | 8.60 a | 0.48 B |
2.50 | 7.81 | 8.85 a | 0.18 D | 7.33 | 8.30 b | 0.58 A |
SEM | 0.022 | 0.037 | 0.007 | 0.019 | 0.037 | 0.009 |
p-value | 0.229 | 0.003 | <0.001 | 0.090 | <0.001 | 0.002 |
Orthogonal contrasts | ||||||
Control vs. L-YEP | 0.152 | 0.016 | 0.285 | 0.255 | 0.032 | 0.001 |
Control vs. H-YEP | 0.067 | 0.002 | 0.349 | 0.281 | 0.005 | 0.001 |
L-YEP vs. H-YEP | 0.055 | 0.004 | 0.115 | 0.556 | 0.348 | 0.039 |
Orthogonal polynomial | ||||||
Linear | 0.064 | <0.001 | 0.002 | 0.629 | 0.128 | 0.006 |
Quadratic | 0.187 | 0.124 | 0.027 | 0.776 | <0.001 | 0.105 |
Cubic | 0.635 | 0.540 | 0.001 | 0.021 | 0.062 | 0.09 |
Dietary YEP Supplementation, % | Gas Production in Different Incubation Times (mL) | |||||
---|---|---|---|---|---|---|
4 h | 8 h | 12 h | 16 h | 20 h | 24 h | |
0 (Control) | 8.13 c | 16.04 b | 22.99 b | 29.10 b | 34.48 b | 39.22 d |
0.50 | 11.41 a | 21.81 a | 30.24 a | 37.06 a | 42.58 a | 47.05 c |
1.00 | 10.87 ab | 21.54 a | 30.18 a | 37.18 a | 42.85 a | 47.44 bc |
1.50 | 11.05 ab | 21.90 a | 30.92 a | 38.41 a | 44.63 a | 49.80 ab |
2.00 | 10.53 b | 21.49 a | 30.66 a | 38.33 a | 44.74 a | 50.11 a |
2.50 | 10.22 b | 20.74 a | 29.50 a | 36.77 a | 42.82 a | 47.85 abc |
SEM | 0.245 | 0.463 | 0.614 | 0.714 | 0.775 | 0.811 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Orthogonal contrasts | ||||||
Control vs. L-YEP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Control vs. H-YEP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
L-YEP vs. H-YEP | 0.059 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Orthogonal polynomial | ||||||
Linear | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Quadratic | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Cubic | <0.001 | <0.001 | 0.001 | 0.007 | 0.049 | 0.244 |
Dietary YEP Supplementation, % | Degradation Kinetic 1 | ||||
---|---|---|---|---|---|
P (mL) | a (mL) | b (mL) | c (%hour) | d (mL) | |
0 (Control) | 37.70 c | −0.85 a | 75.06 ab | 0.03 c | 75.91 abc |
0.50 | 41.63 b | −1.44 a | 67.62 c | 0.05 a | 69.05 c |
1.00 | 41.87 b | −2.32 cd | 69.37 bc | 0.05 a | 71.69 bc |
1.50 | 44.84 a | −2.02 c | 77.17 a | 0.05 ab | 79.19 a |
2.00 | 45.38 a | −2.57 d | 80.33 a | 0.04 b | 82.91 a |
2.50 | 43.10 ab | −2.45 cd | 75.27 ab | 0.05 ab | 77.72 ab |
SEM | 0.583 | 0.141 | 1.177 | 0.002 | 1.239 |
p-value | <0.001 | <0.001 | 0.004 | <0.001 | 0.004 |
Orthogonal contrasts | |||||
Control vs. L-YEP | <0.001 | <0.001 | 0.017 | <0.001 | 0.048 |
Control vs. H-YEP | <0.001 | <0.001 | 0.148 | <0.001 | 0.320 |
L-YEP vs. H-YEP | <0.001 | <0.001 | 0.014 | 0.317 | 0.006 |
Orthogonal polynomial | |||||
Linear | <0.001 | <0.001 | 0.014 | 0.004 | 0.005 |
Quadratic | <0.001 | 0.006 | 0.396 | <0.001 | 0.557 |
Cubic | 0.272 | 0.603 | <0.001 | <0.001 | 0.001 |
Dietary YEP Supplementation, % | Lactic Acid (mM/L) | VFAs Content (mM/L) | ||||
---|---|---|---|---|---|---|
Total VFA | Acetic Acid | Propionic Acid | Butyric Acid | Valeric Acid | ||
0 (Control) | 12.77 e | 22.14 e | 16.83 c | 4.11 d | 0.73 c | 0.47 cd |
0.50 | 12.95 e | 22.70 e | 17.14 c | 4.31 c | 0.76 bc | 0.49 bc |
1.00 | 13.93 d | 25.80 d | 18.54 b | 4.63 b | 0.79 abc | 0.53 a |
1.50 | 14.15 c | 26.51 c | 18.87 b | 4.98 a | 0.83 a | 0.50 ab |
2.00 | 14.53 b | 27.70 b | 21.71 a | 4.69 b | 0.80 ab | 0.51 ab |
2.50 | 14.73 a | 28.33 a | 21.56 a | 4.32 c | 0.77 bc | 0.45 d |
SEM | 0.167 | 0.525 | 0.455 | 0.082 | 0.009 | 0.011 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.018 | 0.003 |
Orthogonal contrasts | ||||||
Control vs. L-YEP | <0.001 | <0.001 | 0.003 | 0.003 | 0.084 | 0.005 |
Control vs. H-YEP | <0.001 | <0.001 | <0.001 | <0.001 | 0.011 | 0.006 |
L-YEP vs. H-YEP | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 | 0.015 |
Orthogonal polynomial | ||||||
Linear | <0.001 | <0.001 | <0.001 | <0.001 | 0.020 | 0.484 |
Quadratic | 0.001 | 0.001 | 0.116 | <0.001 | 0.006 | <0.001 |
Cubic | 0.021 | 0.021 | 0.007 | 0.003 | 0.179 | 0.771 |
Dietary YEP Supplementation, % | Microbial Community Dynamics (log CFU/mL) | |||
---|---|---|---|---|
Total Bacteria | Lactobacillaceae (L) | Enterobacteriaceae (E) | L:E Ratio | |
0 (Control) | 9.03 b | 8.09 c | 6.90 | 1.17 c |
0.50 | 9.21 a | 8.64 a | 6.84 | 1.26 a |
1.00 | 9.22 a | 8.60 ab | 6.94 | 1.24 ab |
1.50 | 9.15 a | 8.59 ab | 7.04 | 1.22 b |
2.00 | 9.15 a | 8.48 b | 6.84 | 1.24 ab |
2.50 | 9.15 a | 8.58 ab | 6.82 | 1.26 a |
SEM | 0.017 | 0.047 | 0.027 | 0.008 |
p-value | 0.001 | <0.001 | 0.106 | <0.001 |
Orthogonal contrast | ||||
Control vs. L-YEP | <0.001 | <0.001 | 0.856 | <0.001 |
Control vs. H-YEP | <0.001 | <0.001 | 0.554 | <0.001 |
L-YEP vs. H-YEP | 0.383 | 0.020 | 0.152 | 0.952 |
Orthogonal polynomial | ||||
Linear | 0.101 | <0.001 | 0.514 | 0.001 |
Quadratic | 0.001 | <0.001 | 0.070 | 0.050 |
Cubic | 0.001 | <0.001 | 0.280 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nopparatmaitree, M.; Hwanhlem, N.; Thongnum, A.; Loor, J.J.; Incharoen, T. In Vitro Three-Step Technique Assessment of a Microencapsulated Phytosynbiotic from Yanang (Tiliacora triandra) Leaf Extract Fermented with P. acidilactici V202 on Nutrient Digestibility, Cecal Fermentation, and Microbial Communities of Broilers. Vet. Sci. 2025, 12, 956. https://doi.org/10.3390/vetsci12100956
Nopparatmaitree M, Hwanhlem N, Thongnum A, Loor JJ, Incharoen T. In Vitro Three-Step Technique Assessment of a Microencapsulated Phytosynbiotic from Yanang (Tiliacora triandra) Leaf Extract Fermented with P. acidilactici V202 on Nutrient Digestibility, Cecal Fermentation, and Microbial Communities of Broilers. Veterinary Sciences. 2025; 12(10):956. https://doi.org/10.3390/vetsci12100956
Chicago/Turabian StyleNopparatmaitree, Manatsanun, Noraphat Hwanhlem, Atichat Thongnum, Juan J. Loor, and Tossaporn Incharoen. 2025. "In Vitro Three-Step Technique Assessment of a Microencapsulated Phytosynbiotic from Yanang (Tiliacora triandra) Leaf Extract Fermented with P. acidilactici V202 on Nutrient Digestibility, Cecal Fermentation, and Microbial Communities of Broilers" Veterinary Sciences 12, no. 10: 956. https://doi.org/10.3390/vetsci12100956
APA StyleNopparatmaitree, M., Hwanhlem, N., Thongnum, A., Loor, J. J., & Incharoen, T. (2025). In Vitro Three-Step Technique Assessment of a Microencapsulated Phytosynbiotic from Yanang (Tiliacora triandra) Leaf Extract Fermented with P. acidilactici V202 on Nutrient Digestibility, Cecal Fermentation, and Microbial Communities of Broilers. Veterinary Sciences, 12(10), 956. https://doi.org/10.3390/vetsci12100956