Effects of Exogenous Regulation of PPARγ on Ovine Oocyte Maturation and Embryonic Development In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oocyte Collection and In Vitro Culture
2.2. Parthenogenesis Activation and Embryo Culture
2.3. Immunofluorescence
2.4. Fat Drop Dyeing
2.5. ROS and GSH Detection
2.6. Real-Time Quantitative RT-PCR
2.7. Statistical Analysis
3. Results
3.1. Effects of Increasing PPARγ Activity on Ovine Oocyte Maturation
3.2. Effects of Increasing PPARγ Activity on Sheep Paracrine Factors
3.3. Effects of Increasing PPARγ Activity on Oxidative Stress Level of Sheep Oocytes
3.4. Effects of Increasing PPARγ Activity on Lipid Content of Sheep Oocytes
3.5. Effects of Increasing PPARγ Activity on Lipid Metabolism-Related Genes in Sheep Oocytes
3.6. Effects of Increasing PPARγ Activity on Parthenogenetic Activated Embryo Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saito, T.; Hiroi, M.; Kato, T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol. Reprod. 1994, 50, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.M.; Leese, H.J. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 2006, 73, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Sturmey, R.G.; Reis, A.; Leese, H.J.; McEvoy, T.G. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 2009, 44 (Suppl. S3), 50–58. [Google Scholar] [CrossRef]
- Dunning, K.R.; Cashman, K.; Russell, D.L.; Thompson, J.G.; Norman, R.J.; Robker, R.L. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 2010, 83, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, J.; Yu, Y.; Wei, Q.; Deng, W.; Yu, L. L-carnitine attenuates oxidant injury in HK-2 cells via ROS-mitochondria pathway. Regul. Pept. 2010, 161, 58–66. [Google Scholar] [CrossRef]
- Sturmey, R.G.; O’Toole, P.J.; Leese, H.J. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 2006, 132, 829–837. [Google Scholar] [CrossRef]
- Stoffel, W.; Schmidt-Soltau, I.; Binczek, E.; Thomas, A.; Thevis, M.; Wegner, I. Dietary ω3-and ω6-Polyunsaturated fatty acids reconstitute fertility of Juvenile and adult Fads2-Deficient mice. Mol. Metab. 2020, 36, 100974. [Google Scholar] [CrossRef]
- Willson, T.M.; Brown, P.J.; Sternbach, D.D.; Henke, B.R. The PPARs: From orphan receptors to drug discovery. J. Med. Chem. 2000, 43, 527–550. [Google Scholar] [CrossRef]
- Tontonoz, P.; Spiegelman, B.M. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem. 2008, 77, 289–312. [Google Scholar] [CrossRef]
- Song, C.; Yao, J.; Cao, C.; Liang, X.; Huang, J.; Han, Z.; Zhang, Y.; Qin, G.; Tao, C.; Li, C.; et al. PPARγ is regulated by miR-27b-3p negatively and plays an important role in porcine oocyte maturation. Biochem. Biophys. Res. Commun. 2016, 479, 224–230. [Google Scholar] [CrossRef]
- Kim, J.; Sato, M.; Li, Q.; Lydon, J.P.; Demayo, F.J.; Bagchi, I.C.; Bagchi, M.K. Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol. Cell Biol. 2008, 28, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Aardema, H.; Vos, P.L.; Lolicato, F.; Roelen, B.A.; Knijn, H.M.; Vaandrager, A.B.; Helms, J.B.; Gadella, B.M. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 2011, 85, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-X.; Sun, J.-T.; Jiang, C.-Q.; Cui, H.-D.; Bian, Y.; Lee, S.; Zhang, L.; Lee, B.C.; Liu, Z.-H. Melatonin Regulates Lipid Metabolism in Porcine Cumulus–Oocyte Complexes via the Melatonin Receptor 2. Antioxidants 2022, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Bennabi, I.; Quéguiner, I.; Kolano, A.; Boudier, T.; Mailly, P.; Verlhac, M.H.; Terret, M.E. Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment. EMBO Rep. 2018, 19, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, C.; Sun, Y.; Tan, H.; Wu, Y.; Cui, B.; Wu, Z. PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul. Pharmacol. 2009, 51, 169–174. [Google Scholar] [CrossRef]
- Fuenzalida, K.; Quintanilla, R.; Ramos, P.; Piderit, D.; Fuentealba, R.A.; Martinez, G.; Inestrosa, N.C.; Bronfman, M. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J. Biol. Chem. 2007, 282, 37006–37015. [Google Scholar] [CrossRef]
- Dong, J.; Albertini, D.F.; Nishimori, K.; Kumar, T.R.; Lu, N.; Matzuk, M.M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996, 383, 531–535. [Google Scholar] [CrossRef]
- Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef]
- Varnosfaderani Sh, R.; Ostadhosseini, S.; Hajian, M.; Hosseini, S.M.; Khashouei, E.A.; Abbasi, H.; Hosseinnia, P.; Nasr-Esfahani, M.H. Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep. Theriogenology 2013, 80, 470–478. [Google Scholar] [CrossRef]
- Yan, C.; Wang, P.; DeMayo, J.; DeMayo, F.J.; Elvin, J.A.; Carino, C.; Prasad, S.V.; Skinner, S.S.; Dunbar, B.S.; Dube, J.L.; et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 2001, 15, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Galloway, S.M.; Gregan, S.M.; Wilson, T.; McNatty, K.P.; Juengel, J.L.; Ritvos, O.; Davis, G.H. Bmp15 mutations and ovarian function. Mol. Cell Endocrinol. 2002, 191, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Abazarikia, A.; Ariu, F.; Rasekhi, M.; Zhandi, M.; Ledda, S. Distribution and size of lipid droplets in oocytes recovered from young lamb and adult ovine ovaries. Reprod. Fertil. Dev. 2020, 32, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Zechner, R.; Madeo, F.; Kratky, D. Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nat. Rev. Mol. Cell Biol. 2017, 18, 671–684. [Google Scholar] [CrossRef]
- Herms, A.; Bosch, M.; Reddy, B.J.; Schieber, N.L.; Fajardo, A.; Rupérez, C.; Fernández-Vidal, A.; Ferguson, C.; Rentero, C.; Tebar, F.; et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat. Commun. 2015, 6, 7176. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Cao, Y.; Xiao, C.; Liu, Y.; Jin, H.; Cao, Y. Effect of the ACAA1 Gene on Preadipocyte Differentiation in Sheep. Front. Genet. 2021, 12, 649140. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Rinaldo, P.; Rhead, W.J.; Tian, L.; Millington, D.S.; Vockley, J.; Hamm, D.A.; Brix, A.E.; Lindsey, J.R.; Pinkert, C.A.; et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc. Natl. Acad. Sci. USA 1998, 95, 15592–15597. [Google Scholar] [CrossRef]
- An, L.; Pan, Y.; Yuan, M.; Wen, Z.; Qiao, L.; Wang, W.; Liu, J.; Li, B.; Li, W. Full-Length Transcriptome and Gene Expression Analysis of Different Ovis aries Adipose Tissues Reveals Transcript Variants Involved in Lipid Biosynthesis. Animals 2023, 14, 7. [Google Scholar] [CrossRef]
- Brasaemle, D.L.; Barber, T.; Wolins, N.E.; Serrero, G.; Blanchette-Mackie, E.J.; Londos, C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J. Lipid Res. 1997, 38, 2249–2263. [Google Scholar] [CrossRef]
- Sastre, D.; da Costa, N.N.; de Sá, A.L.; Conceição, S.D.; Chiaratti, M.R.; Adona, P.R.; Guemra, S.; Meirelles, F.V.; Santos Sdo, S.; Sena, L.; et al. Expression of PLIN2 and PLIN3 during oocyte maturation and early embryo development in cattle. Theriogenology 2014, 81, 326–331. [Google Scholar] [CrossRef]
- Chickarmane, V.; Troein, C.; Nuber, U.A.; Sauro, H.M.; Peterson, C. Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol. 2006, 2, e123. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Wong, W.K.; Feng, B. Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Biomedicines 2013, 1, 49–78. [Google Scholar] [CrossRef]
- Moon, J.H.; Yun, W.; Kim, J.; Hyeon, S.; Kang, P.J.; Park, G.; Kim, A.; Oh, S.; Whang, K.Y.; Kim, D.W.; et al. Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Biochem. Biophys. Res. Commun. 2013, 431, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Wang, S.; Guo, J.; Wei, X.; Jia, M.; Chen, Z.; Gong, W.; Qin, Y.; Wang, X.; Zhi, X.; et al. BACH1 recruits NANOG and histone H3 lysine 4 methyltransferase MLL/SET1 complexes to regulate enhancer-promoter activity and maintains pluripotency. Nucleic Acids Res. 2021, 49, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- Rodda, D.J.; Chew, J.L.; Lim, L.H.; Loh, Y.H.; Wang, B.; Ng, H.H.; Robson, P. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 2005, 280, 24731–24737. [Google Scholar] [CrossRef]
- Simmet, K.; Zakhartchenko, V.; Philippou-Massier, J.; Blum, H.; Klymiuk, N.; Wolf, E. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2770–2775. [Google Scholar] [CrossRef]
- Kurosaka, S.; Eckardt, S.; McLaughlin, K.J. Pluripotent lineage definition in bovine embryos by Oct4 transcript localization. Biol. Reprod. 2004, 71, 1578–1582. [Google Scholar] [CrossRef]
- Le Bin, G.C.; Muñoz-Descalzo, S.; Kurowski, A.; Leitch, H.; Lou, X.; Mansfield, W.; Etienne-Dumeau, C.; Grabole, N.; Mulas, C.; Niwa, H.; et al. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development 2014, 141, 1001–1010. [Google Scholar] [CrossRef]
Gene | Secquence | Amplicon Size | GenBank Accession Number |
---|---|---|---|
β-actin | F: TCTCTTCCAGCCTTCCTTCCTG R: AGCACCGTGTTGGCGTAGA | 184 bp | NM_001009784.3 |
GDF9 BMP15 | F: GACGCCACCTCTACAACACT R: TCCACAACAGTAACACGATCCA F: GCCCAACCAATCACTTTCCTTC R: GCCACCAGAACTCAAGAACCT | 133 bp 192 bp | NC_056058.1 NM_001114767.2 |
OCT4 | F: CGTGGTCAGAGTGTGGTTCT R: TGGCTTCAGAGGAAAGGATACG | 133 bp | NC_003074.8 |
SOX2 | F: ACATGAACGGCTGGAGCAA R: GCGAGCTGGTCATAGAGTTGTA | 156 bp | NC_056054.1 |
NANOG | F: ACTGTCTCTCCTCTTCCTTCCT R: CTCTTCCTTCTCTGTGCTCTCC | 120 bp | NC_056056.1 |
CPT2 | F: GCCACCTATGAGTCCTGTAGC R: CATCGCTGCTTCTCTGGTCA | 195 bp | NC_056054.1 |
ACSL1 | F: TCTGGATAAGGACGGCTGGTT R: AGGTTCACTTCGCTGGTAGATG | 160 bp | NC_056079.1 |
ACSL3 ACAA1 | F: ACCATCGCCATCTTCTGTGAA R: GGACCGCCTAGAGTAGCATAC F: AGGAGGTCCAAGGCAGAAGAG R: TCCACATCGTCCACCGTCAG | 107 bp 155 bp | NC_056055.1 NC_056072.1 |
ACADM ACADL | F: GTGGAGGTCTTGGACTTGGAA R: ACACAATGGCTCCTCAGTCAT F: TGTGACACTGTGATCGTCGTAG R: CTGCTGGCAACCGTACATCT | 182 bp 184 bp | NC_056054.1 NC_056055.1 |
CPT1A | F: TCACATCCAGGCGGCAAGA R: GAGCAGAGCGGAATCGTAGAC | 120 bp | NC_056074.1 |
CPT1B | F: TGCGTTCTTCGTGGCTCTG R: GCGTGCTCTGTGTTGAGTC | 177 bp | NC_056056.1 |
CPT1C | F: AATCCACCATGACTCGCTTGT R: CCACTCATCGCTGCCTTCA | 181 bp | NC_056067.1 |
Group | Number of Oocytes | PB Rate(%) |
---|---|---|
0 | 121 | 43.52 ± 5.03 b |
5 μM | 123 | 54.29 ± 5.13 a |
10 μM | 106 | 43.86 ± 4.51 b |
20 μM | 99 | 40.33 ± 5.57 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, Y.; Zhang, Y.; Chen, S.; Li, Z.; Pi, W.; Zeng, W.; Hu, G. Effects of Exogenous Regulation of PPARγ on Ovine Oocyte Maturation and Embryonic Development In Vitro. Vet. Sci. 2024, 11, 397. https://doi.org/10.3390/vetsci11090397
Yu H, Zhang Y, Zhang Y, Chen S, Li Z, Pi W, Zeng W, Hu G. Effects of Exogenous Regulation of PPARγ on Ovine Oocyte Maturation and Embryonic Development In Vitro. Veterinary Sciences. 2024; 11(9):397. https://doi.org/10.3390/vetsci11090397
Chicago/Turabian StyleYu, Hengbin, Yue Zhang, Yidan Zhang, Shuaitong Chen, Zhenghang Li, Wenhui Pi, Weibin Zeng, and Guangdong Hu. 2024. "Effects of Exogenous Regulation of PPARγ on Ovine Oocyte Maturation and Embryonic Development In Vitro" Veterinary Sciences 11, no. 9: 397. https://doi.org/10.3390/vetsci11090397
APA StyleYu, H., Zhang, Y., Zhang, Y., Chen, S., Li, Z., Pi, W., Zeng, W., & Hu, G. (2024). Effects of Exogenous Regulation of PPARγ on Ovine Oocyte Maturation and Embryonic Development In Vitro. Veterinary Sciences, 11(9), 397. https://doi.org/10.3390/vetsci11090397