Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Collection of Reproductive Tract Mucus, Semen Preparation, and Collection of Oocytes
2.4. Experimental Procedure
2.5. Detection of the pH Value of Reproductive Tract Mucus
2.6. Spermatozoa Penetration Experiment
2.7. Determination of the Proportion of X/Y Spermatozoa by Dual TaqMan qPCR
2.8. Assessment of the X/Y Proportion of Spermatozoa by Flow Cytometry
2.9. In Vitro Fertilization and Embryo Sex Identification
2.10. Spermatozoa Motility Assessment
2.11. Statistical Analysis
3. Results
3.1. Detection Results of pH Value of Reproductive Tract Mucus
3.2. Dual TaqMan qPCR and Determination of the Proportion of X/Y Spermatozoa
3.3. Flow Cytometry and the Proportion of X/Y Spermatozoa
3.4. The Sex Proportion of Embryos Fertilized In Vitro
3.5. The Motility of Mucus-Penetrating Spermatozoa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Umehara, T.; Tsujita, N.; Shimada, M. Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm. PLoS Biol. 2019, 17, e3000398. [Google Scholar] [CrossRef] [PubMed]
- Kruger, A.N.; Brogley, M.A.; Huizinga, J.L.; Kidd, J.M.; de Rooij, D.G.; Hu, Y.; Mueller, J.L. A Neofunctionalized X-Linked Ampliconic Gene Family Is Essential for Male Fertility and Equal Sex Ratio in Mice. Curr. Biol. 2019, 29, 3699–3706. [Google Scholar] [CrossRef]
- Hansen, J.; Rassmann, S.; Jikeli, J.; Wachten, D. SpermQ—A Simple Analysis Software to Comprehensively Study Flagellar Beating and Sperm Steering. Cells 2019, 8, 10. [Google Scholar] [CrossRef]
- Asghar, W.; Velasco, V.; Kingsley, J.L.; Shoukat, M.S.; Shafiee, H.; Anchan, R.M.; Mutter, G.L.; Tüzel, E.; Demirci, U. Selection of Functional Human Sperm with Higher DNA Integrity and Fewer Reactive Oxygen Species. Adv. Healthc. Mater. 2014, 3, 1671–1679. [Google Scholar] [CrossRef]
- Fitzpatrick, J.L.; Willis, C.; Devigili, A.; Young, A.; Carroll, M.; Hunter, H.R.; Brison, D.R. Chemical signals from eggs facilitate cryptic female choice in humans. Proc. Biol. Sci. 2020, 287, 20200805. [Google Scholar] [CrossRef]
- Miller, D.J. Sperm in the Mammalian Female Reproductive Tract: Surfing Through the Tract to Try to Beat the Odds. Annu. Rev. Anim. Biosci. 2024, 12, 301–319. [Google Scholar] [CrossRef]
- Dalton, E.L. How the female reproductive tract guides sperm before fertilization. Chem. Eng. News 2022, 100, 25–27. [Google Scholar] [CrossRef]
- Abril-Parreño, L.; Wilkinson, H.; Krogenæs, A.; Morgan, J.; Gallagher, M.E.; Reid, C.; Druart, X.; Fair, S.; Saldova, R. Identification and characterization of O-linked glycans in cervical mucus as biomarkers of sperm transport: A novel sheep model. Glycobiology 2022, 32, 23–35. [Google Scholar] [CrossRef]
- Zaferani, M.; Palermo, G.D.; Abbaspourrad, A. Strictures of a microchannel impose fierce competition to select for highly motile sperm. Sci. Adv. 2019, 5, v2111. [Google Scholar] [CrossRef]
- Freis, A.; Freundl-Schütt, T.; Wallwiener, L.; Baur, S.; Strowitzki, T.; Freundl, G.; Frank-Herrmann, P. Plausibility of Menstrual Cycle Apps Claiming to Support Conception. Front. Public Health 2018, 6, 98. [Google Scholar] [CrossRef]
- Shrestha, B.; Schaefer, A.; Zhu, Y.; Saada, J.; Jacobs, T.M.; Chavez, E.C.; Olmsted, S.S.; Cruz-Teran, C.A.; Vaca, G.B.; Vincent, K.; et al. Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception. Sci. Transl. Med. 2021, 13, eabd5219. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wu, S.; Huang, M.; Wang, Y.; Zhang, K.; Kang, J.; Zhang, Y.; Quan, F. Effects of Diluent pH on Enrichment and Performance of Dairy Goat X/Y Sperm. Front. Cell Dev. Biol. 2021, 9, 747722. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Cao, X.Y.; He, Q.F.; Yang, H.W.; Chen, Y.Z.; Zhao, J.L.; Ma, H.W.; Kang, J.; Liu, J.; Quang, F.S. Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm. J. Dairy. Sci. 2022, 105, 10020–10032. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wu, S.; Gao, F.; Xu, X.; Wang, S.; Xu, Z.; Huang, M.; Zhang, K.; Zhang, Y.; Quan, F. Diluent pH affects sperm motility via GSK3 α/β-hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats. Theriogenology 2023, 201, 1–11. [Google Scholar] [CrossRef]
- Dong, M.; Dong, Y.; Bai, J.; Li, H.; Ma, X.; Li, B.; Wang, C.; Li, H.; Qi, W.; Wang, Y.; et al. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front. Cell Infect. Microbiol. 2023, 13, 1124591. [Google Scholar] [CrossRef]
- Bae, J.; Kim, S.; Schisterman, E.F.; Boyd Barr, D.; Buck Louis, G.M. Maternal and paternal serum concentrations of perfluoroalkyl and polyfluoroalkyl substances and the secondary sex ratio. Chemosphere 2015, 133, 31–40. [Google Scholar] [CrossRef]
- Kremer, J.; Jager, S. The significance of antisperm antibodies for sperm-cervical mucus interaction. Hum. Reprod. 1992, 7, 781–784. [Google Scholar] [CrossRef]
- Shen, D.; Zhou, C.; Cao, M.; Cai, W.; Yin, H.; Jiang, L.; Zhang, S. Differential Membrane Protein Profile in Bovine X- and Y-Sperm. J. Proteome Res. 2021, 20, 3031–3042. [Google Scholar] [CrossRef]
- Regan, C.E.; Medill, S.A.; Poissant, J.; McLoughlin, P.D. Causes and consequences of an unusually male-biased adult sex ratio in an unmanaged feral horse population. J. Anim. Ecol. 2020, 89, 2909–2921. [Google Scholar] [CrossRef]
- Firman, R.C.; Tedeschi, J.; Garcia-González, F. Sperm sex ratio adjustment in a mammal: Perceived male competition leads to elevated proportions of female-producing sperm. Biol. Lett. 2020, 16, 20190929. [Google Scholar] [CrossRef]
- Holt, W.V.; Fazeli, A. Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: Hypotheses, mechanisms, and new opportunities. Theriogenology 2016, 85, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Firman, R.C. Exposure to high male density causes maternal stress and female-biased sex ratios in a mammal. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192909. [Google Scholar] [CrossRef] [PubMed]
- Almiñana, C.; Caballero, I.; Heath, P.R.; Maleki-Dizaji, S.; Parrilla, I.; Cuello, C.; Gil, M.A.; Vazquez, J.L.; Vazquez, J.M.; Roca, J.; et al. The battle of the sexes starts in the oviduct: Modulation of oviductal transcriptome by X and Y-bearing spermatozoa. Bmc Genom. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Mahe, C.; Lavigne, R.; Com, E.; Pineau, C.; Zlotkowska, A.M.; Tsikis, G.; Mermillod, P.; Schoen, J.; Saint-Dizier, M. The sperm-interacting proteome in the bovine isthmus and ampulla during the periovulatory period. J. Anim. Sci. Biotechnol. 2023, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Pirez, M.C.; Steele, H.; Reese, S.; Kölle, S. Bovine sperm-oviduct interactions are characterized by specific sperm behaviour, ultrastructure and tubal reactions which are impacted by sex sorting. Sci. Rep. 2020, 10, 16522. [Google Scholar] [CrossRef]
- Georgiou, A.S.; Snijders, A.P.L.; Sostaric, E.; Aflatoonian, R.; Vazquez, J.L.; Vazquez, J.M.; Roca, J.; Martinez, E.A.; Wright, P.C.; Fazeli, A. Modulation of The Oviductal Environment by Gametes. J. Proteome Res. 2007, 6, 4656–4666. [Google Scholar] [CrossRef]
- Cooke, R.F.; Lamb, G.C.; Vasconcelos, J.L.M.; Pohler, K.G. Effects of body condition score at initiation of the breeding season on reproductive performance and overall productivity of Bos taurus and B. indicus beef cows. Anim. Reprod. Sci. 2021, 3, 232–241. [Google Scholar] [CrossRef]
- Poczynek, M.; Nogueira, L.S.; Carrari, I.F.; Carneiro, J.H.; Almeida, R. Associations of Body Condition Score at Calving, Parity, and Calving Season on the Performance of Dairy Cows and Their Offspring. Animals 2023, 13, 596. [Google Scholar] [CrossRef]
- Rathje, C.C.; Johnson, E.; Drage, D.; Patinioti, C.; Silvestri, G.; Affara, N.A.; Ialy-Radio, C.; Cocquet, J.; Skinner, B.M.; Ellis, P. Differential Sperm Motility Mediates the Sex Ratio Drive Shaping Mouse Sex Chromosome Evolution. Curr. Biol. 2019, 29, 3692–3698. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Wu, C.; Han, W.; Hao, H.; Zhao, X.; Du, W.; Qin, T.; Liu, Y.; Wang, D. Identification of differentially expressed proteins between bull X and Y spermatozoa. J. Proteom. 2012, 77, 59–67. [Google Scholar] [CrossRef]
- Raju, D.N.; Hansen, J.N.; Rassmann, S.; Stüven, B.; Jikeli, J.F.; Strünker, T.; Körschen, H.G.; Möglich, A.; Wachten, D. Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains. Cells 2019, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Tourmente, M.; Sansegundo, E.; Rial, E.; Roldan, E.R.S. Capacitation promotes a shift in energy metabolism in murine sperm. Front. Cell Dev. Biol. 2022, 10, 950979. [Google Scholar] [CrossRef]
- Herberg, S.; Gert, K.R.; Schleiffer, A.; Pauli, A. The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 2018, 361, 1029–1033. [Google Scholar] [CrossRef]
- You, Y.; Kwon, W.; Saidur Rahman, M.; Park, Y.; Kim, Y.; Pang, M. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation. Hum. Reprod. 2017, 32, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Raval, N.P.; Shah, T.M.; George, L.; Joshi, C.G. Effect of the pH in the enrichment of X or Y sex chromosome-bearing sperm in bovine. Vet. World 2019, 12, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dong, H.; Ma, D.; Li, Y.; Han, D.; Luo, M.; Chang, Z.; Tan, J. Effects of pH during liquid storage of goat semen on sperm viability and fertilizing potential. Anim. Reprod. Sci. 2016, 164, 47–56. [Google Scholar] [CrossRef]
- Cotticelli, A.; Navas, L.; Calabria, A.; Bifulco, G.; Campanile, G.; Peric, T.; Prandi, A.; D'Occhio, M.J.; Russo, M. Incorporation of Testicular Ultrasonography and Hair Steroid Concentrations in Bull Breeding Soundness Evaluation. Vet. Sci. 2023, 10, 373. [Google Scholar] [CrossRef]
- Emadi, S.R.; Rezaei, A.; Bolourchi, M.; Hovareshti, P.; Akbarinejad, V. Administration of estradiol benzoate before insemination could skew secondary sex ratio toward males in Holstein dairy cows. Domest. Anim. Endocrinol. 2014, 48, 110–118. [Google Scholar] [CrossRef]
- DeVilbiss, E.A.; Purdue-Smithe, A.C.; Sjaarda, L.A.; Taylor, B.D.; Freeman, J.R.; Perkins, N.J.; Silver, R.M.; Schisterman, E.F.; Mumford, S.L. The Role of Maternal Preconception Adiposity in Human Offspring Sex and Sex Ratio. Am. J. Epidemiol. 2023, 192, 587–599. [Google Scholar] [CrossRef]
- Rosenfeld, C.S. Periconceptional influences on offspring sex ratio and placental responses. Reprod. Fertil. Dev. 2012, 24, 45. [Google Scholar] [CrossRef]
- Petrunkina, A.M.; Simon, K.; Gunzel-Apel, A.R.; Topfer-Petersen, E. Kinetics of protein tyrosine phosphorylation in sperm selected by binding to homologous and heterologous oviductal explants: How specific is the regulation by the oviduct? Theriogenology 2004, 61, 1617–1634. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Mannowetz, N.; Zhang, Y.; Everley, R.A.; Gygi, S.P.; Bewersdorf, J.; Lishko, P.V.; Chung, J.J. Dual Sensing of Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility. Cell 2019, 177, 1480–1494. [Google Scholar] [CrossRef] [PubMed]
- Umehara, T.; Tsujita, N.; Zhu, Z.; Ikedo, M.; Shimada, M. A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos. Nat. Protoc. 2020, 15, 2645–2667. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Xi, H.; Ren, Y.; Li, Y.; Wen, F.; Xian, M.; Zhao, M.; Zhu, D.; Wang, L.; Lei, A.; et al. TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos. J. Anim. Sci. Biotechnol. 2021, 12, 89. [Google Scholar] [CrossRef]
- Wen, F.; Liu, W.; Li, Y.; Zou, Q.; Xian, M.; Han, S.; Zhang, H.; Liu, S.; Feng, X.; Hu, J. TLR7/8 agonist (R848) inhibit bovine X sperm motility via PI3K/GSK3α/β and PI3K/NFκB pathways. Int. J. Biol. Macromol. 2023, 232, 123485. [Google Scholar] [CrossRef]
- Hou, Y.; Peng, J.; Hong, L.; Wu, Z.; Zheng, E.; Li, Z. Gender Control of Mouse Embryos by Activation of TLR7/8 on X Sperm via Ligands dsRNA-40 and dsRNA-DR. Molecules 2024, 29, 262. [Google Scholar] [CrossRef]
Primer | Sequence Form 5′ to 3′ | Annealing Temperature °C | Fragment Length | Reference Sequence |
---|---|---|---|---|
HPRT1 | Probe: HEX-CCCACTGCATCAAGCCTGGTGTTAAA-TAMRA | 60 | 115 bp | XM_059883273.1 |
F: AGCAAGCAGCTGGGATATG | ||||
R: TGTCTCGGTGTATGGCTAGTA | ||||
SRY | Probe: HEX-TAGAAATGTCAGTTGCTGCATTCCCGA-TAMRA | 60 | 97 bp | NM_001014385.1 |
F: GTGGCCAGCTGCTTAATAGA | ||||
R: AGGCTCGTAGTGCAAATGAA | ||||
AMELY-1 | F: CATGGTGCCAGCTCAGCAG | 62 | X: 349 bp Y: 289 bp | NM_174240.2 |
R: CCGCTTGGTCTTGTCTGTTGC | ||||
AMELY-2 | F: CAGCAACCAATGATGCCAGTTC | 62 | X: 311 bp Y: 251 bp | |
R: GTCTTGTCTGTTGCTGGCCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Niu, P.; Wang, J.; Suo, J.; Zhang, L.; Wang, J.; Fang, D.; Gao, Q. Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring. Vet. Sci. 2024, 11, 572. https://doi.org/10.3390/vetsci11110572
Huang F, Niu P, Wang J, Suo J, Zhang L, Wang J, Fang D, Gao Q. Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring. Veterinary Sciences. 2024; 11(11):572. https://doi.org/10.3390/vetsci11110572
Chicago/Turabian StyleHuang, Fei, Peng Niu, Jieru Wang, Jiajia Suo, Lulu Zhang, Jie Wang, Di Fang, and Qinghua Gao. 2024. "Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring" Veterinary Sciences 11, no. 11: 572. https://doi.org/10.3390/vetsci11110572
APA StyleHuang, F., Niu, P., Wang, J., Suo, J., Zhang, L., Wang, J., Fang, D., & Gao, Q. (2024). Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring. Veterinary Sciences, 11(11), 572. https://doi.org/10.3390/vetsci11110572