Evaluation of Beeswax Supplementation on Productive Performance of Growing Assaf Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Beeswax, and Experimental Diets
2.2. Zootechnical Performance Evaluation
2.3. Feed Digestibility
2.4. Rumen Liquor Collection and Evaluation
2.5. Blood Metabolites Profile
2.6. Statistical Analysis
3. Results
3.1. Growth Performance, Feed Intake, Feed Conversion, and Economic Efficiency
3.2. Nutrients Digestibility
3.3. Rumen Liquor Parameters
3.4. Blood Serum Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinello, M.; Mutinelli, F.; Zooprofilattico, I.; Delle Venezie, S. Antioxidants Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef] [PubMed]
- Yusop, S.A.T.W.; Sukairi, A.H.; Sabri, W.M.A.W.; Asaruddin, M.R. Antioxidant, Antimicrobial and Cytotoxicity Activities of Propolis from Beladin, Sarawak Stingless Bees Trigona Itama Extract. Mater. Today Proc. 2019, 19, 1752–1760. [Google Scholar] [CrossRef]
- Al-Rajhi, M.A.; EL-Sheikha, A.M.A. Deveolpment and evaluation of a tangential honey–extractor. Misr J. Agric. Eng. 2014, 31, 1501–1522. [Google Scholar] [CrossRef]
- Svečnjak, L.; Chesson, L.A.; Gallina, A.; Maia, M.; Martinello, M.; Mutinelli, F.; Muz, M.N.; Nunes, F.M.; Saucy, F.; Tipple, B.J.; et al. Standard Methods for Apis mellifera Beeswax Research. J. Apic. Res. 2019, 58, 1–108. [Google Scholar] [CrossRef]
- FAO; WHO Food and Agriculture Organization; World Health of the United Nations Organization. Evaluation of certain food additives: Sixty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives. In Proceedings of the Joint FAO/WHO Expert Committee on Food Additives Sixty-Fifth Meeting, Geneva, Switzerland, 7–16 June 2005. [Google Scholar]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A Minireview of Its Antimicrobial Activity and Its Application in Medicine. Asian Pac. J. Trop Med. 2016, 9, 839–843. [Google Scholar] [CrossRef]
- Puente-Rodríguez, D.; van Laar, H.; Veraart, M. A Circularity Evaluation of New Feed Categories in The Netherlands—Squaring the Circle: A Review. Sustainability 2022, 14, 2352. [Google Scholar] [CrossRef]
- Khajuria, A.; Atienza, V.A.; Chavanich, S.; Henning, W.; Islam, I.; Kral, U.; Liu, M.; Liu, X.; Murthy, I.K.; Oyedotun, T.D.T.; et al. Accelerating Circular Economy Solutions to Achieve the 2030 Agenda for Sustainable Development Goals. Circ. Econ. 2022, 1, 100001. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Hejna, M.; Onelli, E.; Moscatelli, A.; Bellotto, M.; Cristiani, C.; Stroppa, N.; Rossi, L. Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass. Int. J. Environ. Res. Public Health 2021, 18, 2239. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Review: Nutritional Ecology of Heavy Metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef]
- Badolato, M.; Carullo, G.; Cione, E.; Aiello, F.; Caroleo, M.C. From the Hive: Honey, a Novel Weapon against Cancer. Eur. J. Med. Chem. 2017, 142, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and Bee Bread as New Health-Oriented Products: A Review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Scaglia, E.; Reggi, S.; Grossi, S.; Sgoifo Rossi, C.A.; Frazzini, S.; Caprarulo, V.; Rossi, L. Evaluation of Tributyrin Supplementation in Milk Replacer on Diarrhoea Occurrence in Preweaning Holstein Calves. Animal 2023, 17, 100791. [Google Scholar] [CrossRef] [PubMed]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef]
- Münstedt, K.; Bogdanov, S. Bee Products and Their Potential Use in Modern Medicine. J. ApiProd. ApiMed. Sci. 2009, 1, 57–63. [Google Scholar] [CrossRef]
- Sosin-Bzducha, E.; Strzetelski, J. Możliwości wykorzystania produktów pszczelarskich jako dodatków paszowych w żywieniu bydła. Postêpy Nauk. Rol. 2011, 2, 111–120. [Google Scholar]
- Wolfmeier, U.; Schmidt, H.; Heinrichs, F.-L.; Michalczyk, G.; Payer, W.; Dietsche, W.; Hohner, G.; Wildgruber, J. Waxes. In Ullmann’s Encyclopedia of Industrial Chemistry; VCH Verlagsgesellchaft: Hoboken, NJ, USA, 2000; Volume A28, p. 118. [Google Scholar]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. In Nutrient Requirements of Small Ruminants; China Legal Publishing House: Beijing, China, 2007. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2019. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Schneider, B.H.; Flat, W.P. The Evaluation of Feeds through Digestibility Experiments; University of Georgia Press: Athens, Greece, 1975; p. 423. [Google Scholar]
- McDonald, P.; Edwads, R.A.; Greenhalh, F.D.; Morgan, C.A. Animal Nutrition, 5th ed.; Prentices Hall: London, UK, 1995. [Google Scholar]
- Warner, A.C.I. Production of Volatile Fatty Acids in the Rumen: Methods of Measurement. Nutr. Abstr. Rev. 1964, 34, 339–352. [Google Scholar]
- Filípek, J.; Dvořák, R. Determination of the Volatile Fatty Acid Content in the Rumen Liquid: Comparison of Gas Chromatography and Capillary Isotachophoresis. Acta Vet. Brno 2009, 78, 627–633. [Google Scholar] [CrossRef]
- IBM SPSS Statistics. Statistical Package for the Social Sciences, 27th ed.; SPSS Inc.: Chicago, IL, USA, 2020. [Google Scholar]
- Kaćaniová, M.; Vuković, N.; Chlebo, R.; Haščík, P.; Rovná, K.; Cubon, J.; Dzugan, M.; Pasternakiewicz, A. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch. Biol. Sci. Bel. 2012, 64, 927–934. [Google Scholar] [CrossRef]
- Ghanem, N.B. The antimicrobial activity of some honey bee products and some Saudi folkloric plant extracts. JKAU Sci. 2011, 23, 47–62. [Google Scholar] [CrossRef]
- Giampieri, F.; Quiles, J.L.; Orantes-Bermejo, F.J.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Sánchez-González, C.; Llopis, J.; Rivas-García, L.; Afrin, S.; Varela-López, A.; et al. Are By-Products from Beeswax Recycling Process a New Promising Source of Bioactive Compounds with Biomedical Properties? Food Chem. Toxicol. 2018, 112, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, V.F.; Yanar, M.; Koçyiğit, R. General Properties of Propolis and Its Usage in Ruminants. J. Hell. Vet. Med. Soc. 2022, 73, 3905–3912. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Patra, A.K. Bee propolis as a natural feed additive: Bioactive compounds and effects on ruminal fermentation pattern as well as productivity of ruminants. Indian J. Anim. Health 2020, 59, 50–61. [Google Scholar] [CrossRef]
- Redoy, M.R.A.; Shuvo, A.A.S.; Cheng, L.; Al-Mamun, M. Effect of Herbal Supplementation on Growth, Immunity, Rumen Histology, Serum Antioxidants and Meat Quality of Sheep. Animal 2020, 14, 2433–2441. [Google Scholar] [CrossRef]
- Feng, B.; Zhao, X.; Dong, Q.M.; Xu, S.; Zhao, L.; Cao, J. The Effect of Feed Supplementing and Processing on the Live-Weight Gain of Tibetan Sheep during the Cold Season on the Qinghai-Tibetan Plateau. J. Anim. Vet. Adv. 2013, 12, 208–211. [Google Scholar]
- Sawicki, T.; Starowicz, M.; Kłębukowska, L.; Hanus, P. The profile of polyphenolic compounds, contents of total phenolics and flavonoids, and antioxidant and antimicrobial properties of bee products. Molecules 2022, 27, 1301. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Bradford, B.J. Plant flavonoids to improve productivity of ruminants—A review. Anim. Feed Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Farag, M.E.; Helmy, A.A.; El-Nimer, A.M.M. Effect of using bee bread extract as feed additives on digestibility and productive performance of maternal goats during suckling period. Egypt. J. Appl. Sci. 2021, 36, 1–20. [Google Scholar] [CrossRef]
- Adewale, B.M.; Josphine, E.; Jun, P. Nutritional Evaluation of Bee Wax Residue Meal in the Diet of Lactating Goat. Pak. J. Nutr. 2010, 9, 284–286. [Google Scholar] [CrossRef]
- Tassone, S.; Mabrouki, S.; Barbera, S.; Glorio Patrucco, S. Laboratory Analyses Used to Define the Nutritional Parameters and Quality Indexes of Some Unusual Forages. Animals 2022, 12, 2320. [Google Scholar] [CrossRef] [PubMed]
- Morsy, A.S.; Soltan, Y.A.; El-Zaiat, H.M.; Alencar, S.M.; Abdalla, A.L. Bee Propolis Extract as a Phytogenic Feed Additive to Enhance Diet Digestibility, Rumen Microbial Biosynthesis, Mitigating Methane Formation and Health Status of Late Pregnant Ewes. Anim. Feed Sci. Technol. 2021, 273, 114834. [Google Scholar] [CrossRef]
- Pinloche, E.; McEwan, N.; Marden, J.P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle. PLoS ONE 2013, 8, e67824. [Google Scholar] [CrossRef]
- Retta, K.S. Role of probiotics in rumen fermentation and animal performance: A review. Int. J. Livest. Prod. 2016, 7, 24–32. [Google Scholar]
- Sosin-Bzducha, E.; Strzetelski, J. Propolis źródłem flawonoidów korzystnych dla zdrowia i produkcyjności bydła. Wiadomości Zootech. 2012, 50, 23–28. [Google Scholar]
- Ozturk, H.; Pekcan, M.; Sireli, M.; Fidanci, U.R. Effects of propolis on in vitro rumen microbial fermentation. Üniv. Vet. Fak. Derg. 2010, 57, 217–221. [Google Scholar]
- Reynolds, C.K. Glucose Balance in Cattle. In Proceedings of the Florida Ruminant Nutrition Symposium, Alpharetta, GA, USA, 1–2 February 2005; Volume 16, pp. 143–154. [Google Scholar]
- Bankova, V. Chemical Diversity of Propolis and the Problem of Standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- El-Kholi, E.; Zaki, A.; El-Korany, A. Nutrition and Food Sciences Study the Effect of Propolis and Beeswax on Liver Disorder in Carbon Tetrachloride-Induced Hepatic Rats. J. Home Econ. 2023, 33, 1–14. [Google Scholar]
- Shokrollahi, B.; Hesami, S.M.; Baneh, H. The Effect of Garlic Extract on Growth, Haematology and Cell-Mediated Immune Response of Newborn Goat Kids. J. Agric. Rural Dev. Trop. Subtrop. 2016, 117, 225–232. [Google Scholar]
- Morsy, A.S.; Abdalla, A.L.; Soltan, Y.A.; Sallam, S.M.A.; El-Azrak, K.E.D.M.; Louvandini, H.; Alencar, S.M. Effect of Brazilian Red Propolis Administration on Hematological, Biochemical Variables and Parasitic Response of Santa Inês Ewes during and after Flushing Period. Trop. Anim. Health Prod. 2013, 45, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; El-Hady, A.A.; Hassan, O. Effect of Vitamin E or Propolis Supplementation on Semen Quality, Oxidative Status and Hemato-Biochemical Changes of Rabbit Bucks during Hot Season. Livest. Sci. 2013, 157, 520–526. [Google Scholar] [CrossRef]
Item | DM% | Composition on DM% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OM | CP | CF | EE | NFE | Ash | NDF | ADF | ADL | ||
Concentrate feed mixture | 90.15 | 92.65 | 15.10 | 11.10 | 2.95 | 66.45 | 7.36 | 37.50 | 28.60 | 3.80 |
Corn silage | 29.35 | 93.17 | 8.05 | 25.05 | 2.31 | 57.76 | 6.83 | 46.40 | 26.90 | 3.10 |
Alfalfa hay | 89.86 | 87.90 | 15.32 | 29.28 | 2.70 | 40.60 | 12.10 | 44.30 | 32.70 | 10.20 |
Item | Tested Groups | SEM | p-Value | ||
---|---|---|---|---|---|
G1 | G2 | G3 | |||
Growth performance | |||||
Initial body weight (kg) | 23.10 | 23.45 | 23.85 | 0.27 | 0.568 |
Final body weight (kg) | 37.73 c | 40.53 b | 43.71 a | 0.83 | 0.006 |
Total weight gain (kg) | 14.63 c | 17.08 b | 19.86 a | 0.67 | 0.005 |
Average daily gain (g) | 162.50 c | 189.72 b | 220.69 a | 7.48 | 0.005 |
ADG improvement (%) | 100.00 c | 116.75 b | 135.81 a | 4.66 | 0.005 |
Feed conversion ratio | |||||
DM (kg/kg gain) | 6.55 a | 5.90 b | 5.36 c | 0.15 | 0.001 |
TDN (kg/kg gain) | 4.06 a | 3.80 b | 3.58 c | 0.07 | 0.002 |
CP (g/kg gain) | 853.80 a | 769.13 b | 698.54 c | 20.12 | 0.001 |
DCP (g/kg gain) | 547.07 a | 515.74 b | 484.15 c | 8.90 | 0.003 |
Economic evaluation | |||||
Daily feed cost (LE/day) | 4.43 c | 4.79 b | 5.19 a | 0.10 | 0.002 |
Cost of gain (LE/kg) | 27.29 a | 25.27 b | 23.51 c | 0.51 | 0.001 |
Price of weight gain (LE/day) | 8.94 c | 10.43 b | 12.14 a | 0.41 | 0.001 |
Net revenue (LE/day) | 4.51 c | 5.64 b | 6.95 a | 0.32 | 0.001 |
Economic efficiency 1 | 2.02 c | 2.18 b | 2.34 a | 0.04 | 0.001 |
Economic efficiency 2 | 101.81 c | 117.75 b | 133.91 a | 4.34 | 0.001 |
Item | Tested Groups | SEM | p-Value | ||
---|---|---|---|---|---|
G1 | G2 | G3 | |||
As fed basis (g/head/day) | |||||
Concentrate feed mixture | 590.37 b | 620.94 ab | 655.76 a | 10.07 | 0.010 |
Corn silage | 1088.01 b | 1144.36 ab | 1208.53 a | 18.56 | 0.009 |
Alfalfa hay | 236.91 b | 249.18 ab | 263.15 a | 4.04 | 0.011 |
Total | 1915.29 b | 2014.48 ab | 2127.45 a | 32.68 | 0.008 |
On DM basis (g/head/day) | |||||
DM | 1064.44 b | 1119.56 ab | 1182.34 a | 18.16 | 0.010 |
TDN | 659.87 c | 720.83 b | 788.95 a | 17.55 | 0.001 |
CP | 138.70 b | 145.88 ab | 154.06 a | 2.37 | 0.010 |
DCP | 88.87 c | 97.83 b | 106.73 a | 2.38 | 0.001 |
Item | Tested Groups | SEM | p-Value | ||
---|---|---|---|---|---|
G1 | G2 | G3 | |||
Digestion coefficients (%) | |||||
DM | 62.83 c | 66.14 b | 67.35 a | 0.57 | 0.002 |
OM | 64.55 c | 67.11 b | 69.57 a | 0.63 | 0.002 |
CP | 64.08 c | 67.05 b | 69.29 a | 0.67 | 0.001 |
CF | 62.73 c | 66.00 b | 68.02 a | 0.66 | 0.003 |
EE | 79.49 c | 81.19 b | 83.37 a | 0.50 | 0.004 |
NFE | 64.56 c | 66.83 b | 69.49 a | 0.66 | 0.002 |
Feeding values (%) | |||||
TDN | 61.98 c | 64.39 b | 66.72 a | 0.59 | 0.003 |
DCP | 8.35 c | 8.74 b | 9.03 a | 0.09 | 0.004 |
Item | Tested Groups | SEM | p-Value | ||
---|---|---|---|---|---|
G1 | G2 | G3 | |||
Total protein (g/dL) | 6.63 b | 6,80 ab | 6.93 a | 0.05 | 0.034 |
Albumin (g/dL) | 3.37 a | 3.20 ab | 3.07 b | 0.06 | 0.038 |
Globulin (g/dL) | 3.27 b | 3.60 ab | 3.87 a | 0.11 | 0.032 |
Albumin: globulin ratio | 1.03 a | 0.89 ab | 0.80 b | 0.04 | 0.044 |
Glucose (mg/dL) | 63.00 b | 67.00 ab | 71.33 a | 1.56 | 0.043 |
Cholesterol (mg/dL) | 148.33 a | 90.33 b | 50.00 c | 14.57 | 0.009 |
Total lipids (mg/dL) | 447.33 a | 409.33 b | 372.00 c | 11.62 | 0.012 |
Urea (mg/dL) | 68.67 a | 51.33 b | 35.67 c | 5.08 | 0.008 |
Creatinine (mg/dL) | 1.13 a | 1.00 ab | 0.90 b | 0.05 | 0.036 |
GOT (U/L) | 170.67 a | 148.33 b | 126.33 c | 6.61 | 0.005 |
GPT (U/L) | 27.33 a | 24.00 ab | 20.67 b | 1.11 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaafar, H.M.; Dell’Anno, M.; Rossi, L.; Mohsen, M.K.; Abdel-Raouf, E.-S.M.; El-Nahrawy, M.M.; Amer, A.W. Evaluation of Beeswax Supplementation on Productive Performance of Growing Assaf Lambs. Vet. Sci. 2023, 10, 574. https://doi.org/10.3390/vetsci10090574
Gaafar HM, Dell’Anno M, Rossi L, Mohsen MK, Abdel-Raouf E-SM, El-Nahrawy MM, Amer AW. Evaluation of Beeswax Supplementation on Productive Performance of Growing Assaf Lambs. Veterinary Sciences. 2023; 10(9):574. https://doi.org/10.3390/vetsci10090574
Chicago/Turabian StyleGaafar, Hamed Mohamed, Matteo Dell’Anno, Luciana Rossi, Mohamed Kamel Mohsen, El-Sayed Mohamed Abdel-Raouf, Mostafa Mohamed El-Nahrawy, and Abdeen Wajeeh Amer. 2023. "Evaluation of Beeswax Supplementation on Productive Performance of Growing Assaf Lambs" Veterinary Sciences 10, no. 9: 574. https://doi.org/10.3390/vetsci10090574
APA StyleGaafar, H. M., Dell’Anno, M., Rossi, L., Mohsen, M. K., Abdel-Raouf, E. -S. M., El-Nahrawy, M. M., & Amer, A. W. (2023). Evaluation of Beeswax Supplementation on Productive Performance of Growing Assaf Lambs. Veterinary Sciences, 10(9), 574. https://doi.org/10.3390/vetsci10090574