The Role of Algae Extract (Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp (Carrassius auratus gibeilo)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet Preparation
2.2. Experimental Procedure
2.3. Sample Collection
2.4. Trial Analysis
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Body Composition
3.3. Plasma Biochemistry
3.4. Intestinal Antioxidant Indexes
3.5. Relative Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sayed, A.-F.M. Alternative dietary protein sources for farmed tilapia, Oreochromis sp. Aquaculture 1999, 179, 149–168. [Google Scholar] [CrossRef]
- Ali, A.; Al-Asgah, N.; Al-Ogaily, S.; Ali, S. Effect of Feeding Different Levels of Alfalfa Meal on the Growth Performance and Body Composition of Nile Tilapia (Oreochromis niloticus) Fingerlings. Asian Fish. Sci. 2003, 16, 59–67. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Wang, Q.; Zhao, M.; Xiong, B.; Qian, X.; Zhao, Y.; Luo, Z. Replacement of fish meal by rendered animal protein ingredients with lysine and methionine supplementation to practical diets for gibel carp, Carassius auratus gibelio. Aquaculture 2008, 275, 260–265. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.; Cui, Y.; Zhu, X.; Lei, W.; Yang, Y. Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquac. Res. 2006, 37, 40–48. [Google Scholar] [CrossRef]
- Parés-Sierra, G.; Durazo, E.; Ponce, M.A.; Badillo, D.; Correa-Reyes, G.; Viana, M.T. Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquac. Res. 2012, 45, 1459–1469. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Zhang, N.-N.; Fan, W.-J.; Cui, Y.-Y.; Limbu, S.M.; Qiao, F.; Zhao, Y.-L.; Chen, L.-Q.; Du, Z.-Y.; Li, D.-L. Soybean and cottonseed meals are good candidates for fishmeal replacement in the diet of juvenile Macrobrachium nipponense. Aquac. Int. 2018, 26, 309–324. [Google Scholar] [CrossRef]
- Pratoomyot, J.; Bendiksen, E.; Bell, J.; Tocher, D. Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 2010, 305, 124–132. [Google Scholar] [CrossRef]
- Amisah, S.; Oteng, M.; Ofori, J. Growth performance of the African catfish, Clarias gariepinus, fed varying inclusion levels of Leucaena leucocephala leaf meal. J. Appl. Sci. Environ. Manag. 2009, 13, 21–26. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Fish and Shrimp; Natlional Academic Press: Cambridge, MA, USA, 2011. [CrossRef]
- Sookying, D.; Davis, D.; da Silva, F.S.D. A review of the development and application of soybean-based diets for Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr. 2013, 19, 441–448. [Google Scholar] [CrossRef]
- Xie, S.; Zhou, Q.; Zhang, X.; Zhu, T.; Guo, C.; Yang, Z.; Luo, J.; Yuan, Y.; Hu, X.; Jiao, L.; et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus). Aquaculture 2022, 549, 737820. [Google Scholar] [CrossRef]
- Tripathi, M.; Mishra, A. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Wang, Y.; Ren, M.; Chen, X. Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass (Micropterus salmoides). Metabolites 2022, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wang, B.; Liu, M.; Jiang, K.; Wang, L.; Wang, M. Replacement of fishmeal by fermented soybean meal could enhance the growth performance but not significantly influence the intestinal microbiota of white shrimp Litopenaeus vannamei. Aquaculture 2019, 504, 354–360. [Google Scholar] [CrossRef]
- Fuchs, V.; Schmidt, J.; Slater, M.; Zentek, J.; Buck, B.; Steinhagen, D. The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture 2015, 437, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Gu, Z.; Chen, X.; Gao, W.; Wen, H.; Wu, F.; Tian, J. Effects of phytase supplementation of high-plant-protein diets on growth, phosphorus utilization, antioxidant, and digestion in red swamp crayfish (Procambarus clarkii). Fish Shellfish. Immunol. 2022, 127, 797–803. [Google Scholar] [CrossRef]
- Chojnacka, K. Biologically Active Compounds in Seaweed Extracts—The Prospects for the Application. Open Conf. Proc. J. 2012, 3 (Suppl. 1-M4), 20–28. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.G.; Noseda, M.D.; Gonçalves, A.G.; Ducatti, D.R.; Fujii, M.T.; Duarte, M.E. Chemical structure of the complex pyruvylated and sulfated agaran from the red seaweed Palisada flagellifera (Ceramiales, Rhodophyta). Carbohydr. Res. 2012, 347, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Daniel, N.; Sivaramakrishnan, T.; Saravanan, K.; Shalini, B.; Arunjyoti, B.; Sankar, R.; Dann Roy, S. A review on microalgae as potential fish feed ingredient. J. Andeman. Sci. Assoc. 2016, 1, 140–144. [Google Scholar]
- Akbary, P.; Aminikhoei, Z. Effect of water-soluble polysaccharide extract from the green alga Ulva rigida on growth performance, antioxidant enzyme activity, and immune stimulation of grey mullet Mugil cephalus. J. Appl. Phycol. 2017, 30, 1345–1353. [Google Scholar] [CrossRef]
- Tuller, J.; De Santis, C.; Jerry, D.R. Dietary influence of fucoidan supplementation on growth of Lates calcarifer (Bloch). Aquac. Res. 2014, 45, 749–754. [Google Scholar] [CrossRef]
- Swanson, A.K.; Druehl, L.D. Induction, exudation and the UV protective role of kelp phlorotannins. Aquat. Bot. 2002, 73, 241–253. [Google Scholar] [CrossRef]
- Lange, B.; Currie, K.-L.; Howarth, G.S.; Stone, D.A. Grape seed extract and dried macroalgae, Ulva lactuca Linnaeus, improve survival of greenlip abalone, Haliotis laevigata Donovan, at high water temperature. Aquaculture 2014, 433, 348–360. [Google Scholar] [CrossRef]
- Perez-Velazquez, M.; Gatlin, D.; González-Félix, M.L.; García-Ortega, A. Partial replacement of fishmeal and fish oil by algal meals in diets of red drum Sciaenops ocellatus. Aquaculture 2018, 487, 41–50. [Google Scholar] [CrossRef]
- Tharaka, K.; Gunathilaka, B.E.; Veille, A.; Kim, M.-G.; Shin, J.; Lim, H.; Jeong, J.-B.; Meallet, V.; Lee, K.-J. Algae-clay powder (sea lettuce, Ulva lactuca and red algae, Solieria chordalis in exfoliated micronized montmorillonite) supplementation in a fish meal-reduced diet for olive flounder (Paralichthys olivaceus). Aquac. Rep. 2020, 18, 100498. [Google Scholar] [CrossRef]
- Younis, E.-S.M.; Al-Quffail, A.S.; Al-Asgah, N.A.; Abdel-Warith, A.-W.A.; Al-Hafedh, Y.S. Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus. Saudi J. Biol. Sci. 2018, 25, 198–203. [Google Scholar] [CrossRef]
- Shpigel, M.; Guttman, L.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Harpaz, S. Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet. Aquaculture 2017, 481, 112–118. [Google Scholar] [CrossRef]
- Zhu, D.; Wen, X.; Xuan, X.; Li, S.; Li, Y. The green alga Ulva lactuca as a potential ingredient in diets for juvenile white spotted snapper Lutjanus stellatus Akazaki. J. Appl. Phycol. 2016, 28, 703–711. [Google Scholar] [CrossRef]
- Xue, M.; Cui, Y. Effect of several feeding stimulants on diet preference by juvenile gibel carp (Carassius auratus gibelio), fed diets with or without partial replacement of fish meal by meat and bone meal. Aquaculture 2001, 198, 281–292. [Google Scholar] [CrossRef]
- Liang, H.; Xu, G.; Xu, P.; Zhu, J.; Li, S.; Ren, M. Dietary Histidine Supplementation Maintained Amino Acid Homeostasis and Reduced Hepatic Lipid Accumulation of Juvenile Largemouth Bass, Micropterus Salmoides. Aquac. Nutr. 2022, 2022, 4034922. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Huang, D.; Ren, M.; Zhang, L. Histidine Deficiency Inhibits Intestinal Antioxidant Capacity and Induces Intestinal Endoplasmic-Reticulum Stress, Inflammatory Response, Apoptosis, and Necroptosis in Largemouth Bass (Micropterus salmoides). Antioxidants 2022, 11, 2399. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Liao, Y.; Xie, J.; Liu, B.; Zhou, Q.; Ge, X.; Cui, H.; Pan, L.; Chen, R. Dietary arginine requirement of juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 2013, 414–415, 229–234. [Google Scholar] [CrossRef]
- Burr, G.S.; Wolters, W.R.; Barrows, F.T.; Hardy, R.W. Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss), and early or late stage juvenile Atlantic salmon (Salmo salar). Aquaculture 2012, 334–337, 110–116. [Google Scholar] [CrossRef]
- Choi, Y.H.; Lee, B.J.; Nam, T.J. Effect of dietary inclusion of Pyropia yezoensis extract on biochemical and immune responses of olive flounder Paralichthys olivaceus. Aquaculture 2015, 435, 347–353. [Google Scholar] [CrossRef]
- Ragaza, J.A.; Koshio, S.; Mamauag, R.E.; Ishikawa, M.; Yokoyama, S.; Villamor, S.S. Dietary supplemental effects of red seaweed Eucheuma denticulatum on growth performance, carcass composition and blood chemistry of juvenile Japanese flounder, Paralichthys olivaceus. Aquac. Res. 2013, 46, 647–657. [Google Scholar] [CrossRef]
- Lee, W.; Ahn, G.; Oh, J.Y.; Kim, S.M.; Kang, N.; Kim, E.A.; Kim, K.-N.; Jeong, J.B.; Jeon, Y.-J. A prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. Fish Shellfish. Immunol. 2016, 51, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Rama, N.P.; Elezabeth, M.A.; Uthayasiva, M.; Arularasan, S. Seaweed Ulva reticulata a Potential Feed Supplement for Growth, Colouration and Disease Resistance in Fresh Water Ornamental Gold Fish, Carassius auratus. J. Aquac. Res. Dev. 2014, 05, 1000254. [Google Scholar] [CrossRef] [Green Version]
- Azaza, M.S.; Mensi, F.; Ksouri, J.; Dhraief, M.N.; Brini, B.; Abdelmouleh, A.; Kraïem, M.M. Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. J. Appl. Ichthyol. 2008, 24, 202–207. [Google Scholar] [CrossRef]
- Ergün, S.; Soyutürk, M.; Güroy, B.; Güroy, D.; Merrifield, D. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquac. Int. 2009, 17, 355–361. [Google Scholar] [CrossRef]
- Yildirim, O.; Ergun, S.; Yamam, S.; Tuker, A. Effect of two seaweeds (Ulva lactuca and Enteromorpha Linza) as a feed additive in diets on growth performance, feed utilization and body composition of Rainbow trout (Oncorhynchus mykiss). Kafkas Univ. Vet. Fak. Derg. 2009, 15, 455–460. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Ge, X.; Zhu, J.; Wang, Y.; Ren, M.; Chen, X. Dietary chlorella (Chlorella vulgaris) supplementation effectively improves body color, alleviates muscle inflammation and inhibits apoptosis in largemouth bass (Micropterus salmoides). Fish Shellfish. Immunol. 2022, 127, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Feng, L.; Chen, G.-F.; Jiang, W.-D.; Liu, Y.; Kuang, S.-Y.; Jiang, J.; Tang, L.; Wu, P.; Tang, W.-N.; et al. Jian carp (Cyprinus carpio var. Jian) intestinal immune responses, antioxidant status and tight junction protein mRNA expression are modulated via Nrf2 and PKC in response to dietary arginine deficiency. Fish Shellfish. Immunol. 2016, 51, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-D.; Wen, H.-L.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. Food Chem. 2016, 199, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Mokrani, A.; Ji, K.; Ge, X.; Ren, M.; Pan, L.; Sun, A. Effects of dietary arginine on intestinal antioxidant status and immunity involved in Nrf2 and NF-κB signaling pathway in juvenile blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol. 2018, 82, 243–249. [Google Scholar] [CrossRef]
- Zheng, Q.; Wen, X.; Han, C.; Li, H.; Xie, X. Effect of replacing soybean meal with cottonseed meal on growth, hematology, antioxidant enzymes activity and expression for juvenile grass carp, Ctenopharyngodon idellus. Fish Physiol. Biochem. 2012, 38, 1059–1069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhang, Y.; Liu, B.; Jiang, Y.; Zhou, Q.; Wang, J.; Wang, H.; Xie, J.; Kuang, Q. Effect of Replacing Fish Meal with Fermented Mushroom Bran Hydrolysate on the Growth, Digestive Enzyme Activity, and Antioxidant Capacity of Allogynogenetic Crucian Carp (Carassius auratus gibelio). Turk. J. Fish. Quat. Sci. 2017, 17, 1039–1048. [Google Scholar] [CrossRef]
- Song, Z.; Li, H.; Wang, J.; Li, P.; Sun, Y.; Zhang, L. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture 2014, 426–427, 96–104. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Parajó, J. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, s3, 1. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ariza, A.; Peinado, J.; Pueyo, C.; López-Barea, J. Biochemical Indicators of Oxidative Stress in Fish from Polluted Littoral Areas. Can. J. Fish. Aquat. Sci. 1993, 50, 2568–2573. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Feng, L.; Jiang, W.D.; Liu, Y.; Jiang, J.; Li, S.H.; Kuang, S.Y.; Tang, L.; Zhou, X.Q. Effects of Dietary Copper on Growth, Digestive, and Brush Border Enzyme Activities and Antioxidant Defense of Hepatopancreas and Intestine for Young Grass Carp (Ctenopharyngodon idella). Biol. Trace Element Res. 2013, 155, 370–380. [Google Scholar] [CrossRef]
- Kim, S.S.; Rahimnejad, S.; Kim, K.W.; Lee, K.J. Partial Replacement of Fish Meal with Spirulina pacifica in Diets for Parrot Fish (Oplegnathus fasciatus). Turk. J. Fish. Quat. Sci. 2013, 13, 197–204. [Google Scholar] [CrossRef]
- Peixoto, M.J.; Salas-Leitón, E.; Pereira, L.F.; Queiroz, A.; Magalhães, F.; Pereira, R.; Abreu, H.; Reis, P.A.; Gonçalves, J.F.M.; Ozório, R.O.d.A. Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep. 2016, 3, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.M.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.; Nitecki, S.; Strain, C.R.; McSorley, E.M. Seaweed and human health. Nutr. Rev. 2014, 72, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Liang, H.; Ji, K.; Ge, X.; Zhu, J.; Ren, M.; Mi, H. Methionine played a positive role in improving the intestinal digestion capacity, anti-inflammatory reaction and oxidation resistance of grass carp, Ctenopharyngodon idella, fry. Fish Shellfish Immunol. 2022, 128, 389–397. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Liu, Q.; Ye, H.; Zou, C.; Ye, C.; Wang, A.; Lin, H. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. Fish Shellfish Immunol. 2018, 72, 399–409. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Ye, H.; Zou, C.; Ye, C.; Wang, A. Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. Fish Shellfish Immunol. 2018, 73, 234–244. [Google Scholar] [CrossRef]
- Kutluyer, F.; Sirkecioğlu, A.N.; Aksakal, E.; Aksakal, F.I.; Tunç, A.; Günaydin, E. Effect of Dietary Fish Oil Replacement with Plant Oils on Growth Performance and Gene Expression in Juvenile Rainbow Trout (Oncorhynchus mykiss). Ann. Anim. Sci. 2017, 17, 1135–1153. [Google Scholar] [CrossRef]
- Liang, H.; Wu, L.; Chama, M.K.H.; Ge, X.; Ren, M.; Chen, X.; Pan, L.; Xia, D. Culture salinity modulates Nrf2 antioxidant signaling pathway and immune response of juvenile Genetically Improved Farmed Tilapia (GIFT) (Oreochromis niloticus) under different dietary protein levels. Fish Shellfish Immunol. 2021, 117, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Ge, X.; Xia, D.; Ren, M.; Mi, H.; Pan, L. The role of dietary chromium supplementation in relieving heat stress of juvenile blunt snout bream Megalobrama amblycephala. Fish Shellfish Immunol. 2022, 120, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhu, J.; Feng, J.; He, J.; Lou, Y.; Zhou, Q. Effects of dietary soy protein concentrate meal on growth, immunity, enzyme activity and protein metabolism in relation to gene expression in large yellow croaker Larimichthys crocea. Aquaculture 2017, 477, 15–22. [Google Scholar] [CrossRef]
- Gu, M.; Bai, N.; Zhang, Y.; Krogdahl. Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels. Aquaculture 2016, 464, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Hedrera, M.I.; Galdames, J.A.; Jimenez-Reyes, M.F.; Reyes, A.E.; Avendaño-Herrera, R.; Romero, J.; Feijóo, C.G. Soybean Meal Induces Intestinal Inflammation in Zebrafish Larvae. PLoS ONE 2013, 8, e69983. [Google Scholar] [CrossRef] [Green Version]
Kinds | Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 | Diet 6 |
---|---|---|---|---|---|---|
Fish meal 1 | 10 | 10 | 5 | 5 | 0 | 0 |
Poultry meal 1 | 4 | 4 | 4 | 4 | 4 | 4 |
Soybean meal 1 | 16 | 16 | 20 | 20 | 23 | 23 |
Rapeseed meal 1 | 21 | 21 | 21 | 21 | 21 | 21 |
Cottonseed meal 1 | 10.5 | 10.5 | 14 | 14 | 17.5 | 17.5 |
Wheat bran 1 | 8 | 8 | 8 | 8 | 8 | 8 |
Wheat meal | 14 | 14 | 12.7 | 12.7 | 11 | 11 |
Rice bran 1 | 8.13 | 7.93 | 5.53 | 5.33 | 4.69 | 4.49 |
Fish oil | 2.39 | 2.39 | 3.3 | 3.3 | 3.86 | 3.86 |
Monocalcium phosphate | 0.57 | 0.57 | 0.95 | 0.95 | 1.3 | 1.3 |
Mineral premix 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Vitamin premix 2 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
35% ascorbyl-phosphate | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
60% Choline chloride | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Mould inhibitor | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Bentonite | 2 | 2 | 2 | 2 | 2 | 2 |
L-Lysine 3 | 0.3 | 0.3 | 0.37 | 0.37 | 0.45 | 0.45 |
DL-Methionine 3 | 0.11 | 0.11 | 0.15 | 0.15 | 0.2 | 0.2 |
Algae extract 4 | 0 | 0.2 | 0 | 0.2 | 0 | 0.2 |
Analysed nutritional composition | ||||||
Crude protein (%) | 33.05 | 33.07 | 33.09 | 33.13 | 33.03 | 33.05 |
Crude lipid (%) | 6.37 | 6.31 | 6.36 | 6.32 | 6.33 | 6.35 |
Energy (MJ/kg) | 17.48 | 17.5 | 17.52 | 17.51 | 17.53 | 17.52 |
Lys (%) | 2.13 | 2.11 | 2.15 | 2.12 | 2.11 | 2.13 |
Met (%) | 0.75 | 0.73 | 0.71 | 0.74 | 0.73 | 0.72 |
Item | Methods and Testing Equipment |
---|---|
Moisture | Drying method, oven, 105 °C |
Protein | Kjeldahl method, Hanon K1100 auto Kjeldahl apparatus. |
Lipid | Soxhlet method, Hanon SOX606 auto fat analyser |
Ash | Combustion method, 550 °C for 5 h, XL-2A intelligent muffle furnace |
Gross energy | Combustion method, IKA C6000 Oxygen bomb calorimeter |
Alanine transaminase (ALT) | Mindray Bio Medical Co., Ltd.’s Assay kits, Mindray’s BS-400 automatic biochemical analyzer. |
Total cholesterol (TC) | |
Glucose (GLU) | |
Alkaline phosphatase (ALP) | |
Albumin (ALB) | |
Triglyceride (TG) | |
Aspartic transaminase (AST) | |
Total protein (TP) | |
Total antioxidant capacity (TAOC) | Jian Cheng Bioengineering Institute’s assay kits, Thermo Fisher Scientific microplate reader. |
Superoxide dismutase (SOD) | |
Catalase (CAT) | |
Copper/zinc superoxide dismutase (Cu/Zn-SOD) | |
Manganese superoxide dimutase (Mn-SOD) | |
Malondialdehyde (MDA) |
Primer | Forward 5′ | Reverse 3′ |
---|---|---|
Manganese superoxide dimutase (Mn-SOD) | AGCTGCACCACAGCAAGCAC | TCCTCCACCATTCGGTGACA |
Glutathione peroxidase (GPx) | GAACGCCCACCCTCTGTTTG | CGATGTCATTCCGGTTCACG |
Catalase (CAT) | CAGTGCTCCTGATACCCAGC | TTCTGACACAGACGCTCTCG |
Interleukin-10 (IL-10) | GAGTCATCCTTTCTGCTCTGGTT | TTCATCGAGTAATGGTGCCAAGT |
Interferon-γ (IFN-γ) | TCGCATGGAGAATGATAGTCTGG | GTCATCTTCCTTGATCGCCCATA |
Tumor necrosis factor α (TNF-α) | TCATTCCTTACGACGGCATTT | CAGTCACGTCAGCCTTGCAG |
β-actin | TCGTCCACCGCAAATGCTTCTA | CCGTCACCTTCACCGTTCCAGT |
Indexes | Without AE | With AE | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
10FM | 5FM | 0FM | 10FM | 5FM | 0FM | FM | AE | FM * AE | |
IW(g) | 38.11 ± 0.09 | 37.99 ± 0.03 | 38.08 ± 0.07 | 38.10 ± 0.14 | 38.20 ± 0.13 | 37.99 ± 0.06 | - | - | - |
SR (%) | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | - | - | - |
FW(g) | 88.30 ± 1.27 c | 82.39 ± 1.08 b | 73.98 ± 0.71 a | 92.75 ± 0.63 C | 88.21 ± 0.62 B | 77.10 ± 1.08 A | p < 0.001 | p < 0.001 | p = 0.373 |
FCR | 2.11 ± 0.05 a | 2.28 ± 0.05 a | 2.82 ± 0.06 b | 2.01 ± 0.03 A | 2.11 ± 0.03 A | 2.59 ± 0.07 B | p < 0.001 | p < 0.005 | p = 0.412 |
SGR (%/d) | 1.22 ± 0.02 c | 1.12 ± 0.02 b | 0.96 ± 0.02 a | 1.29 ± 0.01 C | 1.21 ± 0.01 B | 1.03 ± 0.02 A | p < 0.001 | p < 0.001 | p = 0.684 |
WGR (%/d) | 131.68 ± 3.15 c | 116.87 ± 2.71 b | 94.28 ± 1.90 a | 143.29 ± 2.03 C | 130.93 ± 1.84 B | 102.96 ± 2.90 A | p < 0.001 | p < 0.001 | p = 0.563 |
Indexes | Without AE | With AE | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
10FM | 5FM | 0FM | 10FM | 5FM | 0FM | FM | AE | FM * AE | |
Moisture (%) | 78.73 ± 1.48 | 74.19 ± 2.52 | 78.81 ± 1.53 | 75.02 ± 1.15 | 78.70 ± 1.20 | 80.82 ± 2.17 | p = 0.157 | p = 0.523 | p = 0.094 |
Protein (%) | 14.05 ± 0.85 b | 14.25 ± 0.66 b | 10.47 ± 0.69 a | 11.21 ± 1.40 | 12.78 ± 0.87 | 12.06 ± 1.20 | p = 0.202 | p < 0.05 | p = 0.697 |
Lipid (%) | 6.38 ± 0.79 | 7.24 ± 0.69 | 6.14 ± 0.70 | 8.01 ± 0.44 B | 6.58 ± 0.68 AB | 5.19 ± 0.51 B | p = 0.08 | p = 0.99 | p = 0.134 |
Ash (%) | 2.71 ± 0.33 | 3.59 ± 0.25 | 3.16 ± 0.17 | 3.46 ± 0.09 | 3.14 ± 0.07 | 3.16 ± 0.27 | p = 0.287 | p = 0.966 | p < 0.05 |
Indexes | Without AE | With AE | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
10FM | 5FM | 0FM | 10FM | 5FM | 0FM | FM | AE | FM * AE | |
ALB (g/L) | 20.14 ± 2.80 | 19.59 ± 4.16 | 19.51 ± 2.98 | 20.56 ± 1.05 | 19.76 ± 2.64 | 19.92 ± 2.11 | p > 0.05 | p > 0.05 | p > 0.05 |
ALP (mmol/L) | 13.54 ± 1.62 | 15.59 ± 3.41 | 16.43 ± 1.99 | 15.46 ± 3.19 | 16.90 ± 3.20 | 17.69 ± 2.57 | p > 0.05 | p > 0.05 | p > 0.05 |
ALT (U/L) | 8.59 ± 1.43 | 8.94 ± 1.92 | 9.71 ± 1.41 | 11.29 ± 2.45 | 10.81 ± 2.5 | 9.51 ± 1.31 | p > 0.05 | p < 0.05 | p > 0.05 |
AST (U/L) | 268.44 ± 49.36 | 251.41 ± 25.66 | 218.50 ± 92.39 | 288.69 ± 68.69 | 276.44 ± 45.67 | 285.34 ± 64.95 | p > 0.05 | p > 0.05 | p > 0.05 |
TP (g/L) | 39.29 ± 5.10 | 38.85 ± 7.32 | 37.88 ± 5.59 | 40.86 ± 4.05 | 39.82 ± 4.38 | 39.65 ± 3.65 | p > 0.05 | p > 0.05 | p > 0.05 |
GLU (mmol/L) | 4.65 ± 1.96 | 4.89 ± 1.25 | 5.16 ± 1.75 | 4.56 ± 1.26 | 5.93 ± 1.84 | 5.56 ± 1.36 | p > 0.05 | p > 0.05 | p > 0.05 |
TG (mmol/L) | 2.89 ± 0.47 | 2.76 ± 0.54 | 2.67 ± 0.39 | 2.99 ± 0.38 | 2.61 ± 0.56 | 3.10 ± 0.84 | p > 0.05 | p > 0.05 | p > 0.05 |
TC (mmol/L) | 7.42 ± 0.95 | 7.29 ± 1.59 | 7.18 ± 1.26 | 7.69 ± 1.29 | 8.14 ± 1.69 | 7.57 ± 0.84 | p > 0.05 | p > 0.05 | p > 0.05 |
Indexes | Without AE | With AE | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
10FM | 5FM | 0FM | 10FM | 5FM | 0FM | FM | AE | FM * AE | |
T-AOC (U/mg Protein) | 7.98 ± 0.51 c | 5.13 ± 0.15 b | 2.05 ± 0.14 a | 9.27 ± 0.76 B | 7.02 ± 0.36 A | 5.65 ± 0.24 A | p < 0.001 | p < 0.001 | p < 0.05 |
GPx (U/mg Protein) | 361.08 ± 8.15 b | 260.16 ± 15.08 a | 253.59 ± 8.81 a | 387.75 ± 7.86 B | 355.17 ± 10.29 B | 293.67 ± 8.20 A | p < 0.001 | p < 0.001 | p < 0.05 |
CAT (U/mg Protein) | 58.86 ± 2.82 | 72.03 ± 4.58 | 62.28 ± 3.65 | 67.61 ± 3.13 | 87.50 ± 2.53 | 72.92 ± 3.03 | p < 0.001 | p < 0.001 | p = 0.558 |
T-SOD (U/mg Protein) | 70.90 ± 0.99 b | 66.87 ± 1.67 ab | 64.54 ± 1.05 a | 78.49 ± 0.64 B | 74.64 ± 1.69 AB | 72.34 ± 1.32 A | p < 0.001 | p < 0.001 | p = 0.997 |
Cu/Zn-SOD (U/mg Protein) | 7.13 ± 0.15 | 7.63 ± 0.12 | 7.83 ± 0.28 | 9.97 ± 0.35 | 10.36 ± 1.10 | 9.29 ± 0.77 | p = 0.678 | p < 0.001 | p = 0.404 |
Mn-SOD (U/mg Protein) | 63.76 ± 0.98 b | 59.24 ± 1.60 ab | 56.71 ± 1.06 a | 68.52 ± 0.97 B | 64.27 ± 2.35 AB | 63.05 ± 0.74 A | p < 0.05 | p < 0.001 | p = 0.198 |
MDA (nmol/mg Protein) | 12.39 ± 0.82 a | 14.41 ± 0.63 a | 16.65 ± 0.55 b | 9.28 ± 0.49 | 11.56 ± 0.70 | 11.43 ± 0.74 | p < 0.001 | p < 0.001 | p = 0.342 |
Indexes | Without AE | With AE | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
10FM | 5FM | 0FM | 10FM | 5FM | 0FM | FM | AE | FM * AE | |
TNF-α | 1.13 ± 0.03 a | 1.18 ± 0.03 a | 1.79 ± 0.10 b | 1.02 ± 0.05 | 1.13 ± 0.04 | 1.06 ± 0.05 | p < 0.001 | p < 0.001 | p < 0.001 |
IL-10 | 0.43 ± 0.02 | 0.40 ± 0.02 | 0.36 ± 0.03 | 0.33 ± 0.02 | 0.32 ± 0.04 | 0.33 ± 0.02 | p = 0.411 | p < 0.05 | p = 0.432 |
IFN-γ | 1.39 ± 0.14 a | 3.88 ± 0.12 b | 1.74 ± 0.12 a | 1.16 ± 0.05 A | 2.72 ± 0.10 B | 1.20 ± 0.07 A | p < 0.001 | p < 0.001 | p < 0.05 |
Mn-SOD | 0.40 ± 0.01 b | 0.20 ± 0.01 a | 0.18 ± 0.01 a | 0.36 ± 0.02 B | 0.35 ± 0.01 B | 0.15 ± 0.02 A | p < 0.001 | p = 0.077 | p < 0.001 |
GPx | 0.33 ± 0.02 b | 0.28 ± 0.01 ab | 0.23 ± 0.02 a | 0.42 ± 0.02 | 0.35 ± 0.03 | 0.34 ± 0.01 | p < 0.001 | p < 0.001 | p = 0.061 |
CAT | 0.79 ± 0.04 | 0.67 ± 0.02 | 0.72 ± 0.03 | 0.95 ± 0.06 B | 0.93 ± 0.05 AB | 0.72 ± 0.05 A | p < 0.05 | p < 0.05 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Kasiya, H.C.; Huang, D.; Ren, M.; Zhang, L.; Yin, H.; Mi, H. The Role of Algae Extract (Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp (Carrassius auratus gibeilo). Vet. Sci. 2023, 10, 501. https://doi.org/10.3390/vetsci10080501
Liang H, Kasiya HC, Huang D, Ren M, Zhang L, Yin H, Mi H. The Role of Algae Extract (Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp (Carrassius auratus gibeilo). Veterinary Sciences. 2023; 10(8):501. https://doi.org/10.3390/vetsci10080501
Chicago/Turabian StyleLiang, Hualiang, Hopeson Chisomo Kasiya, Dongyu Huang, Mingchun Ren, Lin Zhang, Heng Yin, and Haifeng Mi. 2023. "The Role of Algae Extract (Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp (Carrassius auratus gibeilo)" Veterinary Sciences 10, no. 8: 501. https://doi.org/10.3390/vetsci10080501
APA StyleLiang, H., Kasiya, H. C., Huang, D., Ren, M., Zhang, L., Yin, H., & Mi, H. (2023). The Role of Algae Extract (Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp (Carrassius auratus gibeilo). Veterinary Sciences, 10(8), 501. https://doi.org/10.3390/vetsci10080501