Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Specimens
2.2. Experimental Design
2.3. Daily Management
2.4. RNA Extraction, Quality Estimation, and Sequencing
2.5. Analysis of DEGs
3. Results
3.1. Effects of Hypoxia and Acidification Stress on the Length and Height of L. crocea
3.2. Transcriptome Profiles and Annotation
3.3. Correlation Analysis between Samples
3.4. Analysis of DEGs
3.5. Function Enrichment of DEGs
3.6. Analysis of Transcription Factors (TFs) and Prediction of Novel Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Branch, T.A.; DeJoseph, B.M.; Ray, L.J.; Wagner, C.A. Impacts of ocean acidification on marine seafood. Trends Ecol. Evol. 2013, 28, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Allemand, D.; Osborn, D. Ocean acidification impacts on coral reefs: From sciences to solutions. Reg. Stud. Mar. Sci. 2019, 28, 100558. [Google Scholar] [CrossRef]
- Lebrec, M.; Stefanski, S.; Gates, R.; Acar, S.; Golbuu, Y.; Claudel-Rusin, A.; Kurihara, H.; Rehdanz, K.; Paugam-Baudoin, D.; Tsunoda, T. Ocean acidification impacts in select Pacific Basin coral reef ecosystems. Reg. Stud. Mar. Sci. 2019, 28, 100584. [Google Scholar] [CrossRef]
- Khan, F.U.; Hu, M.; Kong, H.; Shang, Y.; Wang, T.; Wang, X.; Xu, R.; Lu, W.; Wang, Y. Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 2020, 256, 127096. [Google Scholar] [CrossRef] [PubMed]
- Rato, L.D.; Novais, S.C.; Lemos, M.F.; Alves, L.M.; Leandro, S.M. Homarus gammarus (Crustacea: Decapoda) larvae under an ocean acidification scenario: Responses across different levels of biological organization. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2017, 203, 29–38. [Google Scholar] [CrossRef] [PubMed]
- DePasquale, E.; Baumann, H.; Gobler, C.J. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Mar. Ecol. Prog. Ser. 2015, 523, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Gobler, C.J.; Baumann, H. Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life. Biol. Lett. 2016, 12, 20150976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.H.; Breitburg, D.L.; Burrell, R.B.; Keppel, A.G. Acidification increases sensitivity to hypoxia in important forage fishes. Mar. Ecol.: Prog. Ser. 2016, 549, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Munday, P.L.; Gagliano, M.; Donelson, J.M.; Dixson, D.L.; Thorrold, S.R. Ocean acidification does not affect the early life history development of a tropical marine fish. Mar. Ecol. Prog. Ser. 2011, 423, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Esbaugh, A.J. Physiological implications of ocean acidification for marine fish: Emerging patterns and new insights. J. Comp. Physiol. B 2018, 188, 1–13. [Google Scholar] [CrossRef]
- Jarrold, M.D.; Munday, P.L. Diel CO2 cycles do not modify juvenile growth, survival and otolith development in two coral reef fish under ocean acidification. Mar. Biol. 2018, 165, 49. [Google Scholar] [CrossRef]
- Richards, J.G. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol. 2011, 214, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Feely, R.A.; Alin, S.R.; Newton, J.; Sabine, C.L.; Warner, M.; Devol, A.; Krembs, C.; Maloy, C. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci. 2010, 88, 442–449. [Google Scholar] [CrossRef]
- Cai, W.-J.; Hu, X.; Huang, W.-J.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Chou, W.-C.; Zhai, W.; Hollibaugh, J.T.; Wang, Y. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Caldeira, K.; Wickett, M.E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. Oceans 2005, 110, C09S04. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.B.; Baumann, H.; Grear, J.S.; Aller, R.C.; Gobler, C.J. Coastal ocean acidification: The other eutrophication problem. Estuar. Coast. Shelf Sci. 2014, 148, 1–13. [Google Scholar] [CrossRef]
- Baumann, H.; Wallace, R.B.; Tagliaferri, T.; Gobler, C.J. Large natural pH, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuar. Coast. 2015, 38, 220–231. [Google Scholar] [CrossRef]
- Melzner, F.; Thomsen, J.; Koeve, W.; Oschlies, A.; Gutowska, M.A.; Bange, H.W.; Hansen, H.P.; Körtzinger, A. Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar. Biol. 2013, 160, 1875–1888. [Google Scholar] [CrossRef]
- Bureau of Fishery. Fisheries Economic Statistics. In China Fishery Yearbook; Ministry of Agriculture, People’s Republic of China, China Agricultural Press: Beijing, China, 2022; p. 22. [Google Scholar]
- Yan, L.-T.; Jiang, Y.; Xu, Q.; Ding, G.-m.; Chen, X.-y.; Liu, M. Reproductive Dynamics of the Large Yellow Croaker Larimichthys crocea (Sciaenidae), A Commercially Important Fishery Species in China. Front. Mar. Sci. 2022, 9, 868580. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Suo, N.; Bai, H.; Ke, Q.; Chen, J.; Pan, Y.; Zheng, W.; Xu, P. Thermal tolerance, safety margins and acclimation capacity assessments reveal the climate vulnerability of large yellow croaker aquaculture. Aquaculture 2022, 561, 738665. [Google Scholar] [CrossRef]
- Ao, J.; Mu, Y.; Xiang, L.-X.; Fan, D.; Feng, M.; Zhang, S.; Shi, Q.; Zhu, L.-Y.; Li, T.; Ding, Y. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet. 2015, 11, e1005118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ding, J.; Liu, C.; Luo, S.; Gao, X.; Wu, Y.; Wang, J.; Wang, X.; Wu, X.; Shen, W. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals 2021, 11, 3021. [Google Scholar] [CrossRef]
- Mu, Y.; Li, W.; Wu, B.; Chen, J.; Chen, X. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea). Fish Shellfish. Immunol. 2020, 98, 738–747. [Google Scholar] [CrossRef]
- Huang, D.; Ren, M.; Liang, H.; Ge, X.; Xu, H.; Wu, L. Transcriptome analysis of the effect of high-temperature on nutrient metabolism in juvenile grass carp (Ctenopharyngodon idellus). Gene 2022, 809, 146035. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Li, X.; Sha, H.; Luo, X.; Zou, G.; Liang, H. Comparative transcriptome analysis provides novel insights into the molecular mechanism of the silver carp (Hypophthalmichthys molitrix) brain in response to hypoxia stress. Comp. Biochem. Physiol. Part D: Genom. Proteom. 2022, 41, 100951. [Google Scholar] [CrossRef]
- Xu, L.; Fu, Y.; Fu, H.; Zhang, W.; Qiao, H.; Jiang, S.; Xiong, Y.; Jin, S.; Gong, Y.; Wang, Y. Transcriptome analysis of hepatopancreas from different living states oriental river prawn (Macrobrachium nipponense) in response to hypoxia. Comp. Biochem. Physiol. Part D: Genom. Proteom. 2021, 40, 100902. [Google Scholar] [CrossRef]
- Wang, Q.-F.; Shen, W.-L.; Liu, C.; Mu, D.-L.; Wu, X.-F.; Guo, N.-G.; Zhu, J.-Q. Effects of multi-environmental factors on physiological and biochemical responses of large yellow croaker, Larimichthys crocea. Chemosphere 2017, 184, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Bakke, A.M.; Glover, C.; Krogdahl, Å. Feeding, digestion and absorption of nutrients. In Fish Physiology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 30, pp. 57–110. [Google Scholar]
- Ma, R.; Liu, X.; Meng, Y.; Wu, J.; Zhang, L.; Han, B.; Qian, K.; Luo, Z.; Wei, Y.; Li, C. Protein nutrition on sub-adult triploid rainbow trout (1): Dietary requirement and effect on anti-oxidative capacity, protein digestion and absorption. Aquaculture 2019, 507, 428–434. [Google Scholar] [CrossRef]
- Dabrowski, K. Comparative aspects of protein digestion and amino acid absorption in fish and other animals. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 1983, 74, 417–425. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, G.; Zhao, L.; Huang, L.; Qin, Y.; Su, Y.; Yan, Q. Integration of RNAi and RNA-seq uncovers the immune responses of Epinephelus coioides to L321_RS19110 gene of Pseudomonas plecoglossicida. Fish Shellfish Immunol. 2018, 81, 121–129. [Google Scholar] [CrossRef]
- Ma, R.; Fang, W.; Yang, Z.; Hu, K. Liver proteome analysis of grass carp (Ctenopharyngodon idellus) following treatment with enrofloxacin. Fish Physiol. Biochem. 2019, 45, 1941–1952. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Yang, R.; Chen, X.; Fu, Z.; Ma, Z.; Yu, G. Transcriptional response of golden pompano Trachinotus ovatus larvae to cold and heat stress. Aquacult. Rep. 2021, 20, 100755. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, R.; Wang, C.; Peng, S.; Wang, Q.; Zheng, L.; Ma, L. Effects of acidification and hypoxia on nonspecific immunity and antioxidant capacity of Larimichthys crocea. Mar. Fish. 2021, 43, 680–692. [Google Scholar]
- Bornstein, P.; Sage, H. Regulation of collagen gene expression. Prog. Nucleic Acid Res. Mol. Biol. 1989, 37, 67–106. [Google Scholar]
- Raghow, R.; Thompson, J.P. Molecular mechanisms of collagen gene expression. Mol. Cell Biochem. 1989, 86, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Birk, D.E.; Fitch, J.M.; Babiarz, J.P.; Doane, K.J.; Linsenmayer, T.F. Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 1990, 95, 649–657. [Google Scholar] [CrossRef]
- Forlino, A.; Cabral, W.A.; Barnes, A.M.; Marini, J.C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 2011, 7, 540–557. [Google Scholar] [CrossRef] [Green Version]
- Keller, R.B.; Tran, T.T.; Pyott, S.M.; Pepin, M.G.; Savarirayan, R.; McGillivray, G.; Nickerson, D.A.; Bamshad, M.J.; Byers, P.H. Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively. Genet. Med. 2018, 20, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, F.S.; Semler, O.; Etich, J.; Köhler, A.; Jimenez-Estrada, J.A.; Bravenboer, N.; Claeys, L.; Riesebos, E.; Gegic, S.; Piersma, S.R. Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. Am. J. Hum. Genet. 2020, 107, 989–999. [Google Scholar] [CrossRef]
- Moosa, S.; Yamamoto, G.L.; Garbes, L.; Keupp, K.; Beleza-Meireles, A.; Moreno, C.A.; Valadares, E.R.; de Sousa, S.B.; Maia, S.; Saraiva, J. Autosomal-recessive mutations in MESD cause osteogenesis imperfecta. Am. J. Hum. Genet. 2019, 105, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Özbek, S.; Balasubramanian, P.G.; Chiquet-Ehrismann, R.; Tucker, R.P.; Adams, J.C. The evolution of extracellular matrix. Mol. Biol. Cell 2010, 21, 4300–4305. [Google Scholar] [CrossRef] [Green Version]
- Dzobo, K.; Leaner, V.D.; Parker, M.I. Absence of feedback regulation in the synthesis of COL1A1. Life Sci. 2014, 103, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Cao, X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci. 2014, 35, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frangogiannis, N.G. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Invest. 2017, 127, 1600–1612. [Google Scholar] [CrossRef] [Green Version]
- Berman, A.; Kozlova, N.; Morozevich, G. Integrins: Structure and signaling. Biochemistry 2003, 68, 1284–1299. [Google Scholar] [CrossRef]
- Lee, J.W.; Juliano, R. Mitogenic signal transduction by integrin-and growth factor receptor-mediated pathways. Mol. Cells 2004, 17, 188–202. [Google Scholar] [PubMed]
- Hers, I.; Vincent, E.E.; Tavaré, J.M. Akt signalling in health and disease. Cell Signal. 2011, 23, 1515–1527. [Google Scholar] [CrossRef]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Skaper, S.D. The neurotrophin family of neurotrophic factors: An overview. In Neurotrophic Factors; Humana Press: Totowa, NJ, USA, 2012; Volume 846, pp. 1–12. [Google Scholar] [CrossRef]
- Feng, X.; Jia, Y.; Zhu, R.; Chen, K.; Chen, Y. Characterization and analysis of the transcriptome in Gymnocypris selincuoensis on the Qinghai-Tibetan Plateau using single-molecule long-read sequencing and RNA-seq. DNA Res. 2019, 26, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Xiu, Y.; Li, Y.; Liu, X.; Li, C. Full-length transcriptome sequencing from multiple immune-related tissues of Paralichthys olivaceus. Fish Shellfish Immunol. 2020, 106, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Vaquerizas, J.M.; Kummerfeld, S.K.; Teichmann, S.A.; Luscombe, N.M. A census of human transcription factors: Function, expression and evolution. Nat. Rev. Genet. 2009, 10, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Bibas, A.; Xenellis, J.; Michaels, L.; Anagnostopoulou, S.; Ferekidis, E.; Wright, A. Temporal bone study of development of the organ of Corti: Correlation between auditory function and anatomical structure. J. Laryngol. Otol. 2008, 122, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Razzaq, S.K.; Vo, A.D.; Gautam, M.; Li, H. Identifying fusion transcripts using next generation sequencing. Wiley Interdiscip. Rev. RNA 2016, 7, 811–823. [Google Scholar] [CrossRef] [PubMed]
Group | Raw Reads | Clean Reads | Total Mapped Reads | Multiple Mapped Reads | Unique Mapped Reads |
---|---|---|---|---|---|
A107-1 | 51,350,116 | 50,634,408 | 46,499,266 (91.83%) | 2,486,038 (4.91%) | 44,013,228 (86.92%) |
A107-2 | 39,767,726 | 39,188,754 | 35,953,671 (91.74%) | 1,909,427 (4.87%) | 34,044,244 (86.87%) |
A107-3 | 42,103,238 | 41,554,092 | 38,194,333 (91.91%) | 1,937,008 (4.66%) | 36,257,325 (87.25%) |
D107-1 | 47,421,264 | 46,738,380 | 42,831,314 (91.64%) | 2,306,149 (4.93%) | 40,525,165 (86.71%) |
D107-2 | 44,541,626 | 43,825,858 | 39,986,358 (91.24%) | 2,100,541 (4.79%) | 37,885,817 (86.45%) |
D107-3 | 44,308,218 | 43,637,372 | 39,926,492 (91.50%) | 2,112,779 (4.84%) | 37,813,713 (86.65%) |
H107-1 | 39,377,942 | 38,901,524 | 35,751,378 (91.90%) | 1,802,194 (4.63%) | 33,949,184 (87.27%) |
H107-2 | 41,232,648 | 40,666,410 | 37,285,801 (91.69%) | 1,790,844 (4.40%) | 35,494,957 (87.28%) |
H107-3 | 45,168,584 | 44,621,350 | 41,053,873 (92.00%) | 1,967,968 (4.41%) | 39,085,905 (87.59%) |
N107-1 | 49,941,386 | 49,268,714 | 45,159,242 (91.66%) | 2,341,067 (4.75%) | 42,818,175 (86.91%) |
N107-2 | 46,245,704 | 45,746,386 | 42,054,378 (91.93%) | 2,154,007 (4.71%) | 39,900,371 (87.22%) |
N107-3 | 49,370,134 | 48,956,334 | 45,188,019 (92.30%) | 2,344,150 (4.79%) | 42,843,869 (87.51%) |
Gene ID | Gene Name | log2FoldChange | ||||
---|---|---|---|---|---|---|
D107 vs. A107 | D107 vs. H107 | D107 vs. N107 | A107 vs. N107 | H107 vs. N107 | ||
gene-papln | Proteoglycan-like sulfated glycoprotein | −1.00 | −1.23 | 1.03 | 2.02 | 2.26 |
gene-LOC104921168 | Microfibril-associated glycoprotein 4-like | 3.14 | 2.25 | 1.25 | −1.90 | −1.01 |
gene-lamb3 | Laminin subunit beta 3 | 1.11 | 1.22 | 2.71 | 1.58 | 1.49 |
gene-LOC113744908 | Nebulin-like | −3.38 | −2.98 | −1.77 | 1.59 | 1.20 |
gene-LOC104937404 | Lamc2 laminin, gamma 2 | 1.96 | 2.01 | 4.17 | 2.19 | 2.15 |
gene-LOC104930325 | Collagenase 3 | 1.64 | 1.73 | 3.21 | 1.55 | 1.47 |
gene-LOC109139265 | Complement C1q-like protein 2 | 2.28 | 6.45 | 4.33 | 2.04 | −2.12 |
gene-LOC104927899 | Cytosolic sulfotransferase 3 | −1.17 | 3.04 | −2.42 | −1.27 | −5.47 |
gene-LOC109140889 | Endonuclease domain-containing 1 protein | 2.02 | 1.93 | 3.89 | 1.86 | 1.95 |
gene-LOC104935020 | Butyrophilin-like protein 2 | −1.54 | −1.77 | −2.82 | −1.29 | −1.05 |
gene-LOC104929223 | Proproteinase E-like | −1.14 | −2.59 | 1.91 | 3.03 | 4.49 |
gene-LOC113744424 | Collagenase 3-like | 1.23 | 1.74 | 3.60 | 2.35 | 1.86 |
gene-LOC109141109 | Rho-related GTP-binding protein RhoG-like | 1.37 | 1.62 | 3.05 | 1.66 | 1.42 |
gene-LOC104922034 | Elastase-1 | −3.24 | −5.16 | −1.77 | 1.45 | 3.37 |
gene-hgfac | HGF activator | 1.26 | 1.45 | 2.69 | 1.41 | 1.23 |
gene-LOC104937999 | Growth-regulated alpha protein | 3.96 | 1.83 | 5.19 | 1.21 | 3.35 |
gene-LOC104940478 | Gastricsin | 3.49 | 4.10 | 1.61 | −1.89 | −2.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, R.; Wang, Q.; Yue, Y.; Gao, Q.; Wang, C.; Zheng, H.; Peng, S. Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress. Vet. Sci. 2022, 9, 632. https://doi.org/10.3390/vetsci9110632
Wang Y, Chen R, Wang Q, Yue Y, Gao Q, Wang C, Zheng H, Peng S. Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress. Veterinary Sciences. 2022; 9(11):632. https://doi.org/10.3390/vetsci9110632
Chicago/Turabian StyleWang, Yabing, Run Chen, Qian Wang, Yanfeng Yue, Quanxin Gao, Cuihua Wang, Hanfeng Zheng, and Shiming Peng. 2022. "Transcriptomic Analysis of Large Yellow Croaker (Larimichthys crocea) during Early Development under Hypoxia and Acidification Stress" Veterinary Sciences 9, no. 11: 632. https://doi.org/10.3390/vetsci9110632