Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. Sample Collection and Bacterial Isolation
2.3. Antimicrobial Susceptibility Testing
2.4. DNA Extraction and WGS Tecnhique
2.4.1. Bioinformatic Analysis of K. pneumoniae
2.4.2. Bioinformatic Analysis of S. pseudintermedius
2.4.3. Data Availability
3. Results
3.1. Dog Hospital Procedures and Bacterial Analysis
3.2. Antimicrobial Susceptibility Testing
3.3. WGS and In Silico Genomic Characterization
3.3.1. ESBL K. pneumoniae Strains Characterization
3.3.2. MRSP Strains Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Klebsiella pneumoniae | Staphylococcus pseudintermedius | ||||||
---|---|---|---|---|---|---|---|
Antibiotic Class | 3055 | 3089/2 | Genome | 3089/1 | 3099 | Genome | |
Penicillin | R | 2/2 | 2/2 | blaDHA-1, blaOXA-1, blaTEM-1D, blaSHV-11 | 2/2 | 2/2 | blaZ, mecA |
S | 0/2 | 0/2 | 0/2 | 0/2 | |||
Cephalosporin | R | 4/4 | 4/4 | blaCTX-M-15 | 1/1 | 1/1 | Missing |
S | 0/4 | 0/4 | 0/1 | 0/1 | |||
Monobactam | R | 1/1 | 1/1 | Missing | na | na | na |
S | 0/1 | 0/1 | na | na | |||
Macrolides | R | 1/1 | 1/1 | Missing | 2/2 | 2/2 | erm(B) |
S | 0/1 | 0/1 | 0/2 | 0/2 | |||
Aminoglycosides | R | 2/4 | 2/4 | aac(6′)-Ib-cr, aph3-Ia, strA, strB | 2/2 | 2/2 | aph(3′)-III, ant(6)-Ia), aac(6′)-aph(2″) * |
S | 2/4 | 2/4 | 0/2 | 0/2 | |||
Tetracyclines | R | 2/2 | 2/2 | Missing | 1/2 | 1/2 | tet(K), tet(M) |
S | 0/2 | 0/2 | 1/2 | 1/2 | |||
Fluoroquinolones | R | 2/2 | 2/2 | qnrB1, qnrB4, gyrA-83I, parC-80I | 2/2 | 2/2 | Missing |
S | 0/2 | 0/2 | 0/2 | 0/2 | |||
Ansamycin | R | na | na | na | 0/1 | 0/1 | na |
S | na | na | 1/1 | 1/1 | |||
Lincosamide | R | na | na | na | 1/1 | 1/1 | erm(B) |
S | na | na | 0/1 | 0/1 | |||
Folate inhibitor | R | 1/1 | 1/1 | sul1, sul2, dfrA14 | 1/1 | 1/1 | drfG |
S | 0/1 | 0/1 | 0/1 | 0/1 | |||
Phenicol | R | 1/1 | 1/1 | catB3 | 0/1 | 0/1 | na |
S | 0/1 | 0/1 | 1/1 | 1/1 | |||
Nitrofuran | R | 1/1 | 1/1 | Missing | 0/1 | 0/1 | na |
S | 0/1 | 0/1 | 1/1 | 1/1 | |||
Carbapenems | R | 0/1 | 0/1 | na | na | na | na |
S | 1/1 | 1/1 | na | na | |||
Streptogramins | R | na | na | na | 0/1 | 0/1 | na |
S | na | na | 1/1 | 1/1 | |||
Oxazolidinones | R | na | na | na | 0/1 | 0/1 | na |
S | na | na | 1/1 | 1/1 |
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial resistance in veterinary medicine: An overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, T.S.; Garcias, B.; Castellanos, G.; Seminati, C.; Molina-López, R.A.; Darwich, L. Occurrence of multidrug resistant Gram-negative bacteria and resistance genes in semi-aquatic wildlife—Trachemys scripta, Neovison vison and Lutra lutra—As sentinels of environmental health. Sci. Total Environ. 2022, 830, 154814. [Google Scholar] [CrossRef]
- Grakh, K.; Mittal, D.; Kumar, T.; Thakur, S.; Panwar, D.; Singh, L.; Kumar, M.; Jindal, N. Attitude, opinions, and working preferences survey among pet practitioners relating to antimicrobials in India. Antibiotics 2022, 11, 1289. [Google Scholar] [CrossRef]
- Skalet, A.H.; Cevallos, V.; Ayele, B.; Gebre, T.; Zhou, Z.; Jorgensen, J.H.; Zerihun, M.; Habte, D.; Assefa, Y.; Emerson, P.M.; et al. Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: A cluster-randomized clinical trial. PLoS Med. 2010, 7, e1000377. [Google Scholar] [CrossRef] [PubMed]
- Redding, L.; Grunwald, H.; Cole, S.; Rankin, S.; Nolen-Walston, R. Modification of empirical antimicrobial regimens in large animal medicine. Vet. Rec. 2020, 187, e78. [Google Scholar] [CrossRef] [PubMed]
- Moulin, G.; Cavalié, P.; Pellanne, I.; Chevance, A.; Laval, A.; Millemann, Y.; Colin, P.; Chauvin, C. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J. Antimicrob. Chemother. 2008, 62, 617–625. [Google Scholar] [CrossRef]
- Tompson, A.C.; Mateus, A.L.P.; Brodbelt, D.C.; Chandler, C.I.R. Understanding antibiotic use in companion animals: A literature review identifying avenues for future efforts. Front. Vet. Sci. 2021, 8, 1125. [Google Scholar] [CrossRef]
- Windels, E.M.; Van Den Bergh, B.; Michiels, J. Bacteria under antibiotic attack: Different strategies for evolutionary adaptation. PLoS Pathog. 2020, 16, e1008431. [Google Scholar] [CrossRef]
- Goossens, H. Antibiotic consumption and link to resistance. Clin. Microbiol. Infect. 2009, 15, 12–15. [Google Scholar] [CrossRef]
- van Opijnen, T.; Dedrick, S.; Bento, J. Strain dependent genetic networks for antibiotic-sensitivity in a bacterial pathogen with a large pan-genome. PLoS Pathog. 2016, 12, e1005869. [Google Scholar] [CrossRef]
- Chevin, L.M.; Hoffmann, A.A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160138. [Google Scholar] [CrossRef]
- European Commission. EU Guidelines for the prudent use of antimicrobials in human health (2017/C 212/01). EN Off. J. Eur. Union 2007, 44, 159–177. [Google Scholar]
- The Council of the European Union. Council conclusions on the next steps towards making the EU a best practice region in combatting antimicrobial resistance (2019/C 214/01). Off. J. Eur. Union 2019, 19, 1–7. [Google Scholar]
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; pp. 1–28. Available online: https://www.amcra.be/swfiles/files/WHO%20actieplan_90.pdf (accessed on 2 February 2023).
- European Centre for Disease Prevention and Control. Survey of Healthcare Workers’ Knowledge, Attitudes and Behaviours on Antibiotics, Antibiotic Use and Antibiotic Resistance in the EU/EEA; European Centre for Disease Prevention and Control: Solna, Sweden, 2019; 108p. Available online: www.ecdc.europa.eu (accessed on 10 February 2023).
- Alvarez-Uria, G.; Gandra, S.; Mandal, S.; Laxminarayan, R. Global forecast of antimicrobial resistance in invasive isolates of Escherichia coli and Klebsiella pneumoniae. Int. J. Infect. Dis. 2018, 68, 50–53. [Google Scholar] [CrossRef]
- Fursova, N.K.; Astashkin, E.I.; Ershova, O.N.; Aleksandrova, I.A.; Savin, I.A.; Novikova, T.S.; Fedyukina, G.N.; Kislichkina, A.A.; Fursov, M.V.; Kuzina, E.S.; et al. Multidrug-resistant Klebsiella pneumoniae causing severe infections in the neuro-icu. Antibiotics 2021, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- Bünsow, D.; Tantawy, E.; Ostermeier, T.; Bähre, H.; Garbe, A.; Larsen, J.; Winstel, V. Methicillin-resistant Staphylococcus pseudintermedius synthesizes deoxyadenosine to cause persistent infection. Virulence 2021, 12, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. How to Collect an Anterior Nasal Swab Specimen for COVID-19 Testing Set-Up. 2020. Available online: https://stacks.cdc.gov/view/cdc/90444/cdc_90444_DS1.pdf (accessed on 3 December 2022).
- Public Health England. UK Standards for Microbiology Investigations; Public Health England: London, UK, 2014. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard, M02, 11th ed.; CLSI: St. Louis, MO, USA, 2012; Volume 32, pp. 1–58. [Google Scholar]
- Clinical and Laboratory Standards Institute. M100. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: St. Louis, MO, USA, 2018; pp. 30–220. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.D.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae Population genomics and antimicrobial-resistant clones. Trends Microbiol. 2016, 24, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Argimón, S.; Yeats, C.A.; Goater, R.J.; Abudahab, K.; Taylor, B.; Underwood, A.; Sánchez-Busó, L.; Wong, V.K.; Dyson, Z.A.; Nair, S.; et al. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella typhi at pathogenwatch. Nat. Commun. 2021, 12, 2879. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Irfan, M.; Almotiri, A.; AlZeyadi, Z.A. Antimicrobial resistance and its drivers—A review. Antibiotics 2022, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Khan, R.A.; Khalid, K.E.; Chong, C.W.; Bakhtiar, A. Correlation between antibiotic consumption and the occurrence of multidrug-resistant organisms in a Malaysian tertiary hospital: A 3-year observational study. Sci. Rep. 2022, 12, 3106. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.; Tedin, K.; Lübke-Becker, A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet. Microbiol. 2017, 200, 71–78. [Google Scholar] [CrossRef]
- Khan, R.; Petersen, F.C.; Shekhar, S. Commensal bacteria: An emerging player in defense against respiratory pathogens. Front. Immunol. 2019, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Shea, A.; Mccarthy, R.; Lindenmayer, J. Therapeutic antibiotic use patterns in dogs: Observations from a veterinary teaching hospital. J. Small Anim. Pract. 2011, 52, 310–318. [Google Scholar]
- Almeida, A.; Duarte, S.; Nunes, R.; Rocha, H.; Pena, A.; Meisel, L. Human and veterinary antibiotics used in portugal—A ranking for ecosurveillance. Toxics 2014, 2, 188–225. [Google Scholar] [CrossRef]
- Müller-Schulte, E.; Tuo, M.N.; Akoua-Koffi, C.; Schaumburg, F.; Becker, S.L. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d’Ivoire. Int. J. Infect. Dis. 2020, 91, 207–209. [Google Scholar] [CrossRef]
- Wyres, K.L.; Nguyen, T.N.T.; Lam, M.M.C.; Judd, L.M.; Van Vinh Chau, N.; Dance, D.A.B.; Ip, M.; Karkey, A.; Ling, C.L.; Miliya, T.; et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from south and southeast Asia. Genome Med. 2020, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Bachman, M.A.; Oyler, J.E.; Burns, S.H.; Caza, M.; Lépine, F.; Dozois, C.M.; Weiser, J.N. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin. Infect. Immun. 2011, 79, 3309–3316. [Google Scholar]
- Farzand, R.; Rajakumar, K.; Barer, M.R.; Freestone, P.P.E.; Mukamolova, G.V.; Oggioni, M.R.; O’Hare, H.M. A virulence associated siderophore importer reduces antimicrobial susceptibility of Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 607512. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Lindsay, J.A. The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol. 2012, 12, 104. [Google Scholar] [CrossRef]
- Rodrigues, C.; Machado, E.; Ramos, H.; Peixe, L.; Novais, Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: A successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int. J. Med. Microbiol. 2014, 304, 1100–1108. [Google Scholar] [CrossRef]
- Morgado, S.; Fonseca, E.; Vicente, A.C. Genomics of Klebsiella pneumoniae species complex reveals the circulation of high-risk multidrug-resistant pandemic clones in human, animal, and environmental sources. Microorganisms 2022, 10, 2281. [Google Scholar] [CrossRef]
- Novais, Â.; Ferraz, R.V.; Viana, M.; da Costa, P.M.; Peixe, L. NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae widespread in Europe. Antibiotics 2022, 11, 92. [Google Scholar] [CrossRef]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First outbreak of NDM-1-producing Klebsiella pneumoniae ST11 in a portuguese hospital centre during the COVID-19 pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef]
- Rocha, J.; Henriques, I.; Gomila, M.; Manaia, C.M. Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings. Sci. Rep. 2022, 12, 10441. [Google Scholar] [CrossRef]
- Andrade, L.N.; Curiao, T.; Ferreira, J.C.; Longo, J.M.; Clímaco, E.C.; Martinez, R.; Bellissimo-Rodrigues, F.; Basile-Filho, A.; Evaristo, M.A.; Del Peloso, P.F.; et al. Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob. Agents Chemother. 2011, 55, 3579–3583. [Google Scholar] [CrossRef]
- Tan, D.; Zhang, Y.; Cheng, M.; Le, S.; Gu, J.; Bao, J.; Qin, J.; Guo, X.; Zhu, T. Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses 2019, 11, 1080. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Wyres, K.L.; Holt, K.E. Genomic surveillance framework and global population structure for Klebsiella pneumoniae. bioRxiv 2020. [Google Scholar] [CrossRef]
- Borrego, B. Demographics of Immigration in Portugal; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Chow, J.W.; Kak, V.; You, I.; Kao, S.J.; Petrin, J.; Clewell, D.B.; Lerner, S.A.; Miller, G.H.; Shaw, K.J. Aminoglycoside resistance genes aph(2′)-Ib and aac(6′)-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 2691–2694. [Google Scholar] [CrossRef] [PubMed]
- Souza-Silva, T.; Rossi, C.C.; Andrade-Oliveira, A.L.; Vilar, L.C.; Pereira, M.F.; de Araújo Penna, B.; Giambiagi-deMarval, M. Interspecies transfer of plasmid-borne gentamicin resistance between Staphylococcus isolated from domestic dogs to Staphylococcus aureus. Infect. Genet. Evol. 2022, 98, 105230. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Antar, A.A.R.; Hao, S.; Gurtowski, J.; Tamma, P.D.; Rock, C.; Opene, B.N.A.; Tekle, T.; Carroll, K.C.; Schatz, M.C.; et al. Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018, 73, 1796–1803. [Google Scholar] [CrossRef]
- Yamba, K.; Kapesa, C.; Mpabalwani, E.; Hachaambwa, L.; Smith, A.M.; Young, A.L.; Gally, D.; Mainda, G.; Mukuma, M.; Samutela, M.T.; et al. Antimicrobial susceptibility and genomic profiling of Salmonella enterica from bloodstream infections at a tertiary referral hospital in Lusaka, Zambia, 2018–2019. IJID Reg. 2022, 3, 248–255. [Google Scholar] [CrossRef]
- Papp, M.; Solymosi, N. Review and comparison of antimicrobial resistance gene databases. Antibiotics 2022, 11, 339. [Google Scholar] [CrossRef]
- Asante, J.; Hetsa, B.A.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Essack, S.Y. Genomic analysis of antibiotic-resistant Staphylococcus epidermidis isolates from clinical sources in the Kwazulu-Natal Province, South Africa. Front. Microbiol. 2021, 12, 656306. [Google Scholar] [CrossRef]
- Carroll, K.C.; Burnham, C.A.D.; Westblade, L.F. From canines to humans: Clinical importance of Staphylococcus pseudintermedius. PLoS Pathog. 2021, 17, e1009961. [Google Scholar] [CrossRef]
- Wegener, A.; Broens, E.M.; van der Graaf-Van Bloois, L.; Zomer, A.L.; Visser, C.E.; van Zeijl, J.; van der Meer, C.; Kusters, J.G.; Friedrich, A.W.; Kampinga, G.A.; et al. Absence of host-specific genes in canine and human Staphylococcus pseudintermedius as inferred from comparative genomics. Antibiotics 2021, 10, 854. [Google Scholar] [CrossRef]
- Larsen, J.; Clasen, J.; Hansen, J.E.; Paulander, W.; Petersen, A.; Larsen, A.R.; Frees, D. Copresence of tet(K) and tet(M) in livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 is associated with increased fitness during exposure to sublethal concentrations of tetracycline. Antimicrob. Agents Chemother. 2016, 60, 4401–4403. [Google Scholar] [CrossRef] [PubMed]
Antibiotic Class | Antibiotic | Klebsiella pneumoniae | Staphylococcus pseudintermedius | ||
---|---|---|---|---|---|
3055 | 3089/2 | 3089/1 | 3099 | ||
Penicillin | AMP | R | R | - | - |
AMC | R | R | - | - | |
OXA | - | - | R | R | |
PEN | - | - | R | R | |
Cephalosporins | CAZ | R | R | - | - |
CFZ | R | R | - | - | |
CTX | R | R | - | - | |
FOX | R | R | R | R | |
Monobactam | ATM | R | R | - | - |
Macrolides | AZM | R | R | R | R |
ERY | - | - | R | R | |
Aminoglycosides | AMK | S | S | - | - |
GEN | S | S | I | I | |
STR | R | R | - | - | |
TOB | R | R | R | R | |
Tetracyclines | DOX | I | I | S | S |
TET | I | I | R | R | |
Fluoroquinolones | CIP | R | R | R | R |
LEV | R | R | R | R | |
Ansamycin | RIF | - | - | S | S |
Lincosamide | CLI | - | - | R | R |
Folate inhibitor | SXT | R | R | R | R |
Phenicol | CHL | R | R | S | S |
Nitrofuran | NIT | R | R | S | S |
Carbapenems | IMP | S | S | - | - |
Streptogramins | QDA | - | - | S | S |
Oxazolidinones | LZD | - | - | S | S |
Sampling order | 1st | 2nd | 2nd | 3rd |
Sample ID | Antimicrobial Resistance Genes | Virulence Genes | Plasmid Typing | MLST | Closest cgMLST | Capsule (K) Locus | O Serotype Locus |
---|---|---|---|---|---|---|---|
3055 | aac(6′)-Ib-cr, aph3-Ia, strA, strB, blaCTX-M-15, qnrB1, qnrB4, gyrA-83I, parC-80I, blaDHA-1, blaOXA-1, blaTEM-1D, blaSHV-11, catB3, sul1, sul2, dfrA14 | ybt 1 | IncFII(K), IncFIB(K), IncR | 11 | 1509 | KL105 | O1/O2v2 |
3089/2 | aac(6′)-Ib-cr, aph3-Ia, strA, strB, blaCTX-M-15, qnrB1, qnrB4, gyrA-83I, parC-80I, blaDHA-1, blaOXA-1, blaTEM-1D, blaSHV-11, catB3, sul1, sul2, dfrA14 | ybt 1 | IncFII(K), IncFIB(K), IncR | 11 | 1509 | KL105 | O1/O2v2 |
Sample ID | Antimicrobial Resistance Genes | Plasmid | MLST | SCCmec Type |
---|---|---|---|---|
3089/1 | aph(3′)-III, ant(6)-Ia, erm(B), drfG, blaZ, mecA, tet(K), tet(M) | rep7a, repUS43 | 551 | Vc(5C2&5) |
3099 | aac(6′)-aph(2″), aph(3′)-III, ant(6)-Ia, erm(B), dfrG, blaZ, mecA, tet(K), tet(M) | rep7a, repUS43 | 551 | Vc(5C2&5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, I.C.; Ribeiro-Almeida, M.; Ribeiro, J.; Silveira, L.; Prata, J.C.; Pista, A.; Martins da Costa, P. Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Vet. Sci. 2023, 10, 326. https://doi.org/10.3390/vetsci10050326
Rodrigues IC, Ribeiro-Almeida M, Ribeiro J, Silveira L, Prata JC, Pista A, Martins da Costa P. Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Veterinary Sciences. 2023; 10(5):326. https://doi.org/10.3390/vetsci10050326
Chicago/Turabian StyleRodrigues, Inês C., Marisa Ribeiro-Almeida, Jorge Ribeiro, Leonor Silveira, Joana C. Prata, Angela Pista, and Paulo Martins da Costa. 2023. "Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea" Veterinary Sciences 10, no. 5: 326. https://doi.org/10.3390/vetsci10050326
APA StyleRodrigues, I. C., Ribeiro-Almeida, M., Ribeiro, J., Silveira, L., Prata, J. C., Pista, A., & Martins da Costa, P. (2023). Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Veterinary Sciences, 10(5), 326. https://doi.org/10.3390/vetsci10050326