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Simple Summary: Antimicrobial resistance (AMR) poses a major threat to human and animal health.
One of the causes underlying the emergence of increasingly resistant strains is antibiotic selective
pressure. This study aimed to evaluate the impact of treatment with amikacin on an extended
spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolated in a dog with rhinorrhea. In
the middle of the treatment, methicillin-resistant Staphylococcus pseudintermedius (MRSP) was isolated
from the left nasal cavity of the dog. At the end of the treatment, K. pneumoniae was not recovered
from nasal swab samples, while MRSP displayed phenotypical and genotypical changes. Six weeks
after the end of the treatment, only commensal flora was observed in both nasal cavities. These
results warn of the effects of antibiotic pressure, which can lead to the emergence of multidrug-
resistant strains either by directly promoting the enrichment of bacteria with resistance to multiple
antimicrobial agents or via the subsequent acquisition of resistance genes. Therefore, adapting clinical
practice to this new reality is crucial to limit the selection and spread of multi-resistant bacteria among
pets, humans and the environment.

Abstract: Because of public health concerns, much greater scrutiny is now placed on antibiotic use in
pets, especially for antimicrobial agents that have human analogs. Therefore, this study aimed to
characterize the phenotypic and genotypic profiles of multidrug-resistant bacteria isolated from nasal
swabs samples taken from a one-year-old male Serra da Estrela dog with rhinorrhea that was treated
with amikacin. An extended-spectrum β-lactamases (ESBL) Klebsiella pneumoniae was isolated in the
first sample taken from the left nasal cavity of the dog. Seven days later, methicillin-resistant (MRSP)
Staphylococcus pseudintermedius was also isolated. Nevertheless, no alterations to the therapeutic
protocol were performed. Once the inhibitory action of the antibiotic disappeared, the competitive
advantage of the amikacin-resistant MRSP was lost, and only commensal flora was observed on
both nasal cavities. The genotypic profile of extended-spectrum β-lactamase (ESBL)-producing
Klebsiella pneumoniae revealed the same characteristics and close relation to other strains, mainly from
Estonia, Slovakia and Romania. Regarding MRSP isolates, although resistance to aminoglycosides
was present in the first MRSP, the second isolate carried aac(6′)-aph(2′′), which enhanced its resistance
to amikacin. However, the veterinary action was focused on the treatment of the primary agent (ESBL

Vet. Sci. 2023, 10, 326. https://doi.org/10.3390/vetsci10050326 https://www.mdpi.com/journal/vetsci

https://doi.org/10.3390/vetsci10050326
https://doi.org/10.3390/vetsci10050326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com
https://orcid.org/0000-0003-1248-3452
https://orcid.org/0000-0001-9021-3437
https://orcid.org/0000-0001-7814-3659
https://orcid.org/0000-0002-9219-4222
https://orcid.org/0000-0001-6115-8811
https://doi.org/10.3390/vetsci10050326
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com/article/10.3390/vetsci10050326?type=check_update&version=1


Vet. Sci. 2023, 10, 326 2 of 16

K. pneumoniae), and the antibiotic applied was according to its phenotypic profile, which may have
led to the resolution of the infectious process. Therefore, this study highlights the importance of
targeted therapy, proper clinical practice and laboratory-hospital communication to safeguard animal,
human and environmental health.

Keywords: antibiotic pressure; dog; multidrug-resistant bacteria; ESBL Klebsiella pneumoniae; MRSP
Staphylococcus pseudintermedius

1. Introduction

Antimicrobial resistance (AMR) poses a major threat to human and animal health
worldwide [1,2]. The indiscriminate use and overuse of antimicrobials are some of the
most important causes underlying the emergence of increasingly resistant strains through
selective pressure [3–5]. Empirical antibiotic therapy frequently uses broad-spectrum an-
timicrobials or combinations of antimicrobials, which may also be required in polymicrobial
infections or life-threatening conditions [6]. Indeed, 76% of veterinary clinicians support
antimicrobial selection based on personal experience [4]. In addition to veterinary and
human medicines sharing antibiotics, the transmission of resistant bacteria may occur due
to the proximity between humans and companion animals [7,8].

Antibiotic therapy, either empirical or pathogen-directed, exerts selective pressure
triggering multiple survival strategies resulting in vertical (mutations) or horizontal (of
mobile genetic elements) transmission [9]. Bacterial populations present a notorious adap-
tative potential and high plasticity when facing different types of stress, including antibiotic
therapy [9,10]. Indeed, multidrug-resistant strains can be selected under antibiotic pressure
as a result of antibiotic treatment [11,12]. Therefore, physicians and veterinarians are im-
portant actors in the control of antimicrobial resistance as part of “One Health,” especially
for critical pathogens (WHO, ECDC) [13–16].

Klebsiella pneumoniae (K. pneumoniae) is one of the leading pathogens associated with
the emergence of antibiotic resistance and a clinically significant nosocomial pathogen,
also associated with high morbidity and mortality rates in companion animals [17,18].
Another emerging zoonotic pathogen of canine origin is methicillin-resistant Staphylococcus
pseudintermedius (S. pseudintermedius; MRSP), which is transmitted by direct contact with or
bites to pet owners or veterinary staff [19].

This study aimed at characterizing the phenotypic and genotypic profiles of multidrug-
resistant strains isolated during a single infectious process, evaluating the impact of an-
tibiotic selective pressure. A single case study of a dog presenting with mucopurulent
rhinorrhea caused by an extended spectrum β-lactamases (ESBL) producing K. pneumoniae
was investigated, followed by the appearance of MRSP. Antimicrobial resistance profiling
and Whole Genome Sequencing (WGS) were performed on the strains isolated from this
case. The impact of the applied antibiotic, amikacin, was evaluated during the therapeutic
protocol on the nasal flora of the animal.

2. Materials and Methods
2.1. Case Selection

Cases admitted to the Veterinary Hospital (UPVET) of the Institute of Biomedical
Sciences Abel Salazar, University of Oporto (ICBAS/UP) from the 1st of January 2022 to
the 31st of December 2022 were analyzed (n = 8338). Eligibility criteria for case enrolment
were: (i) admission to the UPVET for bacteriological infection, (ii) follow-up performed by
UPVET, (iii) sending of more than one consecutive sample to the microbiology laboratory
of ICBAS-UP during the same infectious process, (iv) isolation of a pure bacterial culture
with a multidrug-resistant profile and clinically relevant under the One Health approach. A
single case was selected based on these criteria. Informed consent was obtained from all of
the UPVET clients for the use of data of patients for scientific study and teaching purposes.
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Data was safely stored and anonymized according to Data Protection laws (Regulation
(EU) 2016/679).

The selected case pertains to a 1-year-old, unneutered, giant breed (Serra da Estrela)
dog with up-to-date vaccination and deworming, followed at UPVET. The owner of this
animal had requested an emergency appointment since his dog showed signs of vomiting
and mucopurulent rhinorrhea from the left nostril (Figure 1). Clinical examination revealed
pain on abdominal palpation and mucopurulent rhinorrhea from the left nostril with no
other abnormalities. The dog had been submitted for the surgical correction of a gastric
dilatation volvulus a week earlier. Therefore, the clinicians decided to hospitalize the
animal until the vomiting stopped. During hospitalization, supportive medication was
administered, keeping the antibiotic treatment instituted by the hospital where the surgery
was performed, consisting of cephazolin and metronidazole. After 2 days, the dog returned
home with gastric support medication, along with a cephalexin prescription. After the
first microbiological result of the left nasal cavity, the dog was again hospitalized, and
a computed tomography (CT) scan was performed to understand the severity of the
infectious process in the nasal cavities. The CT scan showed rhinosinusitis in the left nasal
cavity, decreased nasal turbinates in the middle cavity and homogeneous material partially
occupying the left nasal cavity (Appendix A). In order to discard fungal involvement, a
rhinoscopy was performed, in which no signs of fungal plaques were detected. Besides,
the biochemical analysis of blood to monitor urea and creatinine was also performed, and
no alterations were recorded. In parallel, 4 samples were collected in order to follow the
microbiological evolution of the clinical case. Samples were collected at 3 different times
during antibiotic treatment: 8 and 18 days after the antibiotics’ start and 6 weeks after the
end of antibiotic treatment.
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Figure 1. Timeline of the clinical case highlighting the main temporal events, antibiotic therapy and
bacterial analysis.

2.2. Sample Collection and Bacterial Isolation

Samples were collected using a sterile swab and vigorously rubbing the most cau-
dal side of the nasal cavity, as previously described by the Centers for Disease Control
and Prevention (CDC) [20]. The collected samples were immediately transported to the
microbiology laboratory and processed within 2 h of collection.

The first analysis was processed according to UK Standards for Microbiology Investi-
gations [21]. As ESBL K. pneumoniae was isolated in the first sample, Simmons Citrate Agar
(SCA) containing 1% (w/v) of myo-inositol (SCAi) was used along with blood agar media
(BA, Tryptone Soy Agar containing 5% of laked horse blood Agar). In the third sample,
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CHROMagar™ Staphylococcus aureus (CSA) was also used since, in the second sample,
K. pneumoniae and MRSP were isolated. Finally, in the fourth sample, these 3 culture medi-
ums were used: BA, CSA and SCAi. The schematic representation of the culture media
used throughout the five samples is shown in Figure 2.
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Figure 2. Culture media used in the microbiological analysis of the five samples. Additional culture
media were added to subsequent samples to specifically culture the previously identified bacteria. BA:
Blood agar, SCAi: Simmons Citrate agar contain 1% of inositol, CSA: CHROMagar™ S. aureus (CSA).

The plates with BA and CSA were incubated for 24 h, while the SCAi plates were left
for 48 h at 37 ◦C. Bacterial isolates obtained from BA were Gram-stained and identified with
conventional biochemical tests. Mauve to purple colonies growing on CSA were suspected
to be coagulase-positive Staphylococcus. Moreover, yellow, dome-shaped, often mucoid
colonies growing on SCAi were suspicious for Klebsiella spp. To confirm at the species level
of Klebsiella spp. isolates, the RapID™ ONE System (Thermo Fischer Scientifics, Waltham,
MA, USA) was used.

All isolated colonies were frozen in buffered peptone water (BPW) containing 1.5%
(v/v) glycerol at −20 ◦C.

2.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was performed and interpreted according to the
Clinical and Laboratory Standards Institute guidelines [22] using the Kirby–Bauer method.
Antimicrobials were selected to represent a wide range of classes, and selection between
different antimicrobial agents of the same class was based on the availability of clinical
CLSI breakpoints [23].

A panel of 19 antimicrobials was used for K. pneumoniae: amikacin (AMK, 30 µg), amox-
icillin/clavulanic acid (AMC, 30 µg), ampicillin (AMP, 10 µg), azithromycin (AZM, 15 µg),
aztreonam (ATM; 30 µg), cefotaxime (CTX; 30 µg), cefoxitin (FOX; 30 µg), ceftazidime
(CAZ; 30 µg), cephazolin (CFZ; 30 µg), chloramphenicol (CHL; 30 µg), ciprofloxacin (CIP;
5 µg), doxycycline (DOX; 30 µg), gentamycin (GEN; 120 µg), imipenem (IMP; 10 µg), lev-
ofloxacin (LEV; 5 µg), nitrofurantoin (NIT; 300 µg), streptomycin (STR; 10 µg), sulfamethox-
azole/trimethoprim (SXT; 25 µg), tetracycline (TET; 30 µg), and tobramycin (TOB; 10 µg).
For S. pseudintermedius, 17 antimicrobials were tested: azithromycin (AZM; 15 µg), cefoxitin
(FOX; 30 µg), chloramphenicol (CHL; 30 µg), ciprofloxacin (CIP; 5 µg), clindamycin (CLI;
2 µg), doxycycline (DOX; 30 µg), erythromycin (ERY; 15 µg), gentamycin (GEN; 120 µg),
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levofloxacin (LEV; 5 µg), linezolid (LZD; 30 µg), nitrofurantoin (NIT; 300 µg), oxacillin
(OXA; 1 µg), penicillin (PEN; 10 UI), quinupristin-dalfopristin (QDA; 15 µg), rifampicin
(RIF; 5 µg), sulfamethoxazole/trimethoprim (SXT; 25 µg), tetracycline (TET; 30 µg), and
tobramycin (TOB; 10 µg). All antimicrobial disks were from Oxoid (Basingstoke, UK).

Bacterial isolates were classified as susceptible, intermediate or resistant using current
CLSI breakpoints [23]. Isolates resistant to 3 or more antibiotics classes were defined as
multidrug-resistant (MDR) bacteria [24].

2.4. DNA Extraction and WGS Tecnhique

Genomic DNA was extracted from fresh cultures of each isolate using the Isolate II
Genomic DNA Kit (Bioline, London, UK), followed by quantification in the Qubit fluorometer
(Invitrogen, Waltham, MA, USA) with the dsDNA HS Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA), according to the manufacturer’s instructions. The DNA was subjected
to the NexteraXT library preparation protocol (Illumina, San Diego, CA, USA) prior to cluster
generation and paired-end sequencing (2 × 150 bp) on a NextSeq 550 instrument (Illumina),
according to the manufacturer’s instructions. FastQC v0.11.5 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 16 February 2023)) was used for quality control
and Trimmomatic v0.38 [25] for trimming low-quality bases.

2.4.1. Bioinformatic Analysis of K. pneumoniae

Online bioinformatic tools from PathogenWatch v20.0.13 (https://pathogen.watch/;
accessed on 8 February 2023), specifically, Kleborate v2.2.0, were used to evaluate
K. pneumoniae antibiotic resistance genes or known mutations, virulence genes, plasmid
typing, Multilocus Sequence Typing (MLST) [26], core genome Multilocus Sequence Typ-
ing (cgMLST), capsular polysaccharide (K) and lipopolysaccharide O locus types and
serotypes [27]. The phylogenetic analysis inferred by the neighbor-joining tree was based
on the Pathogenwatch pairwise-distance matrix, based on the single nucleotide polymor-
phism (SNP) distances of a core gene library (1972 genes) [28]. Closely related genomes
and the associated metadata (country, source and date) were collected from all public
genomes available from Pathogenwatch after cgMLST single-linkage clustering and the
selection of those with less than 5 allele differences. The neighbor-joining tree was edited
using iToL [29].

2.4.2. Bioinformatic Analysis of S. pseudintermedius

For bioinformatic analysis for S. pseudintermedius strains, DNA was assembled us-
ing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) platform (https:
//www.bv-brc.org/app/Assembly2; accessed on 8 February 2023). Moreover, tools from
Centre for Genomic and Epidemiology (http://www.genomicepidemiology.org; accessed
on 26 January 2023) were used to assess antibiotic resistance genes or known mutations (Res-
Finder 4.1; https://cge.food.dtu.dk/services/ResFinder/; accessed on 9 February 2023), vir-
ulence genes (VirulenceFinder 2.0; https://cge.food.dtu.dk/services/VirulenceFinder/; ac-
cessed on 9 February 2023), plasmid replicons (PlasmidFinder 2.1; https://cge.food.dtu.dk/
services/PlasmidFinder/; accessed on 16 February 2023), SCCmec elements (SCCmecFinder
1.2; https://cge.food.dtu.dk/services/SCCmecFinder/; accessed on 16 February 2023) and
Multilocus Sequence Typing (MLST 2.0; https://cge.food.dtu.dk/services/MLST/; ac-
cessed on 16 February 2023).

2.4.3. Data Availability

Sequence data were submitted to the European Nucleotide Archive (ENA) under
BioProject accession number PRJEB61067. Each strain was stored with the accession
numbers ERS14859644-ERS14859647, and the genomics sequences can be accessed with the
accession numbers ERR11179010-ERR11179013.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://pathogen.watch/
https://www.bv-brc.org/app/Assembly2
https://www.bv-brc.org/app/Assembly2
http://www.genomicepidemiology.org
https://cge.food.dtu.dk/services/ResFinder/
https://cge.food.dtu.dk/services/VirulenceFinder/
https://cge.food.dtu.dk/services/PlasmidFinder/
https://cge.food.dtu.dk/services/PlasmidFinder/
https://cge.food.dtu.dk/services/SCCmecFinder/
https://cge.food.dtu.dk/services/MLST/
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3. Results
3.1. Dog Hospital Procedures and Bacterial Analysis

A sample of the mucopurulent discharge of the left nostril was collected during the
emergency appointment and immediately transported to the microbiology laboratory.
Microbiological analysis of this first sample detected growth of a pure culture on BA
medium, being identified as a K. pneumoniae (strain 3055). Antimicrobial susceptibility
results of this isolate revealed the expression of extended-spectrum β-lactamases (ESBL).
Therefore, the clinicians decided to proceed with a second hospitalization in the isolation
ward and administer injectable amikacin (by slow intravenous infusion). During the
administration of antibiotics, the dog was kept in the isolation ward, where the following
care was performed: (i) cleaning both nostrils every eight hours with saline and nostril
aspiration; (ii) total restriction to public space (no access to the street); (iii) proper disposal
of all organic (feces, urine) and non-organic materials (e.g., gloves); (iv) no external visits;
and (v) the biochemical analysis of blood to monitor urea and creatinine every 5 days, in
order to control renal function.

Eight days after the start of injectable antibiotic therapy, a new sample was taken from
the left nasal cavity of the dog. In this sample, growth on BA and SCAi media was observed,
as it involved a recovered K. pneumoniae isolate (strain 3089/2, BA and SCAi) and an
S. pseudintermedius isolate (strain 3089/1, BA). Both strains revealed a multidrug-resistant
profile (ESBL Klebsiella pneumoniae and MRSP). Nevertheless, no alteration was made to
the clinical protocol: antibiotic therapy with amikacin in the isolation ward was maintained,
which lasted 14 days. After 4 days without medication, the third sample was collected
from the left nostril, and only MRSP could be found in microbiological samples. Therefore,
the dog was discharged without any antimicrobial therapy. New samples of both nostrils
(fourth and fifth samples) were taken six weeks after ending antimicrobial therapy, and no
growth on SCAi nor on MAC mediums was observed. The polymicrobial flora presented
on these samples were compatible with commensal flora, and none of the previous isolates
were identified.

3.2. Antimicrobial Susceptibility Testing

The antimicrobial profile of the four isolated strains (two K. pneumoniae and two
S. pseudintermedius) is presented in Table 1. All the strains were resistant to more than three
antibiotic classes, being classified as MDR.

The K. pneumoniae isolates recovered in this study were classified as ESBL since they
were resistant to aztreonam, cefotaxime and ceftazidime (Table 1) [23]. The antimicrobial
profile of both K. pneumoniae strains (3055 and 3089/2) displayed the same antibiotic sus-
ceptibility pattern with resistance to penicillin, cephalosporins, monobactam, macrolides,
tetracyclines, fluoroquinolones, folate inhibitor, phenicol, nitrofuran and aminoglycosides
antibiotic class. Regarding the aminoglycoside class, both K. pneumoniae strains only
showed resistance to tobramycin and streptomycin (Table 1).

The two S. pseudintermedius isolates recovered were resistant to oxacillin, being classi-
fied as MRSP. The antimicrobial profile of S. pseudintermedius isolates (3089/1 and 3099)
revealed antibiotic resistance to penicillin, cephalosporins, aminoglycosides, tetracyclines,
fluoroquinolones, lincosamides and folate inhibitor classes. Although both strains demon-
strated susceptibility to doxycycline, the diameter of inhibition was near the lower limit of
the breakpoint.
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Table 1. Antimicrobial susceptibility profile of K. pneumoniae and S. pseudintermedius isolated from
the dog in different sampling times.

Antibiotic Class Antibiotic
Klebsiella pneumoniae Staphylococcus pseudintermedius

3055 3089/2 3089/1 3099

Penicillin

AMP R R - -
AMC R R - -
OXA - - R R
PEN - - R R

Cephalosporins

CAZ R R - -
CFZ R R - -
CTX R R - -
FOX R R R R

Monobactam ATM R R - -

Macrolides
AZM R R R R
ERY - - R R

Aminoglycosides

AMK S S - -
GEN S S I I
STR R R - -
TOB R R R R

Tetracyclines
DOX I I S S

TET I I R R

Fluoroquinolones
CIP R R R R

LEV R R R R

Ansamycin RIF - - S S

Lincosamide CLI - - R R

Folate inhibitor SXT R R R R

Phenicol CHL R R S S

Nitrofuran NIT R R S S

Carbapenems IMP S S - -

Streptogramins QDA - - S S

Oxazolidinones LZD - - S S

Sampling order 1st 2nd 2nd 3rd

R, resistant; I, intermediate; S, susceptible; AMK, amikacin, AMC, amoxicillin/clavulanic acid; AMP, ampi-
cillin; ATM, aztreonam; AZM, azithromycin; CAZ, ceftazidime; CHL, chloramphenicol; CIP, ciprofloxacin, CTX,
cefotaxime; CLI, clindamycin; DOX, doxycycline; ERY, erythromycin; FOX, cefoxitin; GEN, gentamycin, IMP,
imipenem; CFZ: cephazolin; LEV, levofloxacin; LZD, linezolid; NIT, nitrofurantoin; OXA, oxacillin; PEN, penicillin;
QDA, quinupristin-dalfopristin; RIF, rifampicin, STR, streptomycin; SXT, sulfamethoxazole/trimethoprim; TET,
tetracycline; TOB, tobramycin.

3.3. WGS and In Silico Genomic Characterization
3.3.1. ESBL K. pneumoniae Strains Characterization

Both ESBL K. pneumoniae strains presented the same seventeen acquired genes related
to aminoglycoside (aac(6′)-Ib-cr, aph3-Ia, strA and strB), 3rd generation cephalosporins
(blaCTX-M-15), fluoroquinolones (qnrB1, qnrB4, gyrA-83I and parC-80I), penicillins (blaDHA-1,
blaOXA-1, blaTEM-1D and blaSHV-11), phenicols (catB3), sulfonamides (sul1 and sul2) and
trimethoprim resistances (dfrA14) (Table 2). No genes mediating resistance to carbapen-
ems, 3rd generation cefalosporins or penicillins combined with beta-lactamase inhibitors,
colistin, fosfomycin, tetracyclines, monobactams, nitrofurans and tigecycline were found.
Interestingly, the resistance of K. pneumoniae to monobactam, tetracycline and nitrofuran
was observed, but no associated genes were identified (Appendix B).
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Table 2. Whole genome characterization of Klebsiella pneumoniae.

Sample ID Antimicrobial Resistance
Genes

Virulence
Genes

Plasmid
Typing MLST Closest

cgMLST
Capsule (K)

Locus
O Serotype

Locus

3055

aac(6′)-Ib-cr, aph3-Ia, strA, strB,
blaCTX-M-15, qnrB1, qnrB4,

gyrA-83I, parC-80I, blaDHA-1,
blaOXA-1, blaTEM-1D, blaSHV-11,

catB3, sul1, sul2, dfrA14

ybt 1 IncFII(K),
IncFIB(K), IncR 11 1509 KL105 O1/O2v2

3089/2

aac(6′)-Ib-cr, aph3-Ia, strA, strB,
blaCTX-M-15, qnrB1, qnrB4,

gyrA-83I, parC-80I, blaDHA-1,
blaOXA-1, blaTEM-1D, blaSHV-11,

catB3, sul1, sul2, dfrA14

ybt 1 IncFII(K),
IncFIB(K), IncR 11 1509 KL105 O1/O2v2

In terms of virulence-associated genes, only the siderophore yersiniabactin gene was
found on both ESBL K. pneumoniae strains (Table 2).

Both ESBL K. pneumoniae strains presented the same three types of plasmids: IncFII(K),
IncFIB(K) and IncR. These strains also possessed identical MLST, closest cgMLST, capsule
locus and serotype O (11, 1509, KL105 and O1/O2v2, respectively; Table 2).

The neighbor-joining tree generated by comparing the cgMLST of K. pneumoniae
genomes isolated in this study with those available in PathogenWatch revealed an associa-
tion with isolates from human infections and a cat (Figure 3). Geographically, this group
was identified mainly in Romania and Slovakia, followed by Estonia, France and Croatia
(Figure 3).
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Figure 3. Neighbor-joining tree representing the phylogenetic relationships among K. pneumoniae
genomes obtained in this study and those available in PathogenWatch with less than 22 SNPs.
The cgMLST single linkage clustering was used for genome selection with a threshold of 5 allele
differences, and the neighbor-joining tree was inferred from the PathogenWatch pairwise-distance
matrix. The metadata of each isolate (country, source and date) was added using iTOL (https:
//itol.embl.de/; accessed on 10 March 2023).

3.3.2. MRSP Strains Characterization

Genes mediating resistance to penicillins (blaZ and mecA), macrolides (erm(B)), amino-
glycosides (aph(3′)-III and ant(6)-Ia), tetracyclines (tet(K) and tet(M)), clindamycin (erm(B))
and trimethoprim (drfG) were found on both strains (Table 3). The aac(6′)-aph(2′′) gene was
also detected in the 3099 strain. However, fluoroquinolone, streptogramin or phenicol genes
mediating resistance were not found. Resistance of S. pseudintermedius to cephalosporin
and fluoroquinolones was observed, but no associated genes were identified (Appendix B).

https://itol.embl.de/
https://itol.embl.de/
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Table 3. Whole genome characterization of Staphylococcus pseudintermedius.

Sample ID Antimicrobial Resistance Genes Plasmid MLST SCCmec Type

3089/1 aph(3′)-III, ant(6)-Ia, erm(B), drfG, blaZ,
mecA, tet(K), tet(M) rep7a, repUS43 551 Vc(5C2&5)

3099 aac(6′)-aph(2′′), aph(3′)-III, ant(6)-Ia,
erm(B), dfrG, blaZ, mecA, tet(K), tet(M) rep7a, repUS43 551 Vc(5C2&5)

Both isolates have the rep7a and repUS43 plasmid replicons and the Vc(5C2&5)
SCCmec element. No virulence-associated genes were identified in the MRSP strains
(Table 3).

4. Discussion

The frequent occurrence of multidrug-resistant bacteria has become a global threat
to public health [2]. Overuse of antibiotics has been identified as the leading driver of
AMR [30,31]. A case of a dog with rhinorrhea caused by an ESBL K. pneumoniae was
investigated. Due to the resistance profile presented by this isolate, injectable amikacin
was administered, and the animal was hospitalized in the isolation ward. Other causes
were ruled out using CT and rhinoscopy. While under antibiotic treatment, ESBL K. pneu-
moniae was again isolated along with MRSP. This last MDR bacterial strain was considered
opportunistic [32], derived from the selective pressure and depletion of the natural nasal
microbiome caused by the antibiotics [33]. Therefore, no additional treatment was pre-
scribed, and 6 weeks after the antibiotic treatment had ceased, only commensal flora was
found in samples from both nostrils.

The antimicrobial resistance profiles of the two strains of K. pneumoniae (3055 and
3089/2) showed identical antibiotic susceptibility patterns, both being considered ESBL.
The high level of resistance was remarkable, especially for the antibiotic classes of penicillin,
cephalosporin and fluoroquinolone, which can be explained by two reasons: these are
the most frequently prescribed antibiotics in veterinary medicine [34], and the dog under-
went an emergency gastric surgery one week before the first sample collection, in which
cephazolin antibiotherapy was prescribed. For instance, in Portugal, fluoroquinolones
and cephalosporins represented the second and fourth most often prescribed antibiotic
classes in both human and animal medicines [35]. Nonetheless, K. pneumoniae is commonly
resistant to aminopenicillins [23].

Considering the resistance genes found by PathogenWatch in K. pneumoniae isolates,
the ESBL phenotype was held by the detection of β-lactamase resistance genes (blaCTX-M-15;
Table 2). Also, fluoroquinolone, phenicol, aminoglycoside, sulfonamide and trimethoprim
resistance genes were detected, in accordance with previous studies, which demonstrated
that at least 80% of ESBL producers were also resistant to sulfonamides, quinolones and
aminoglycosides [36].

Nevertheless, a few discrepancies were found between phenotypic and genotypic
resistance profiles. Although aac(6′)-Ib-cr, aph3-Ia, strA and strB were detected, ESBL
K. pneumoniae strains were phenotypically susceptible to gentamycin and amikacin. Like-
wise, genes mediating resistance to penicillin combined with β-lactamase inhibitors,
monobactams, macrolides, tetracyclines and nitrofuran were not found, despite ESBL
K. pneumoniae strains showing intermediate resistance to tetracycline, doxycycline and
resistant to amoxicillin/clavulanic acid, aztreonam, azithromycin and nitrofurantoin.

The virulence gene Ybt 1 was found in both strains of K. pneumoniae, which encode
the iron-scavenging siderophore yersiniabactin, promoting systemic survival and dissem-
ination [37]. Also, previous studies demonstrated that this virulence gene favored the
maximum growth and lethality of K. pneumoniae in respiratory tract infection [38,39], which
may have largely contributed to the pathogenicity in this case.

Plasmids often transport resistance genes and virulence genes that can disseminate by
horizontal gene transfer mechanisms [40]. IncFII(K), IncFIB(K) and IncR plasmids were



Vet. Sci. 2023, 10, 326 10 of 16

detected for both strains of K. pneumoniae, being this type of plasmids associated with epi-
demic K. pneumoniae and implicated in the worldwide spread of multidrug resistance [41].
The same authors found an association between the blaCTX-M-15 gene and the IncR plasmid
in ESBL K. pneumoniae isolates from Portuguese hospitals [41].

The two strains of K. pneumoniae recovered in this study presented the capsular-type
KL105 and Sequence Type 11, previously associated with MDR and virulence determinants
(yersiniabactin and colibactin) [42]. The ST11 KL105 clade has been successfully dissemi-
nated in Europe, even circulating in Portuguese hospitals for years [43,44]. Therefore, it
can be hypothesized that a human previously hospitalized or working in a hospital may
have had contact with this dog.

Moreover, lipopolysaccharide O locus serotypes were identified as O1/O2v2 for both
strains of K. pneumoniae, which was associated with hypervirulent strains and was found
more frequently in clinical genomes, including in a Portuguese clinical genome [45].

Although strains circulating in Portugal with the same MLST, lipopolysaccharide O
locus and capsular type have been described, these Portuguese isolates of K. pneumoniae
were not available on PathogenWatch, and it was impossible to establish a phylogenetic
correlation between them. Therefore, the results of the phylogenetic tree supported kinship
(<22 SNPs) to strains mainly from eastern countries (Estonia, Slovakia and Romania) and
isolated especially from human infections (Figure 3). These data can be explained by
the migration (of both people and animals) from eastern countries to Portugal and the
consumption of imported food and feed. In addition, K. pneumoniae ST11 was first reported
in France (in 1997) and has since been reported all over the world, including in America,
Asia and most countries in Europe, such as The Netherlands, Norway, Poland, Slovakia
and Portugal [46–48]. ST11-K. pneumoniae lineage has only been reported in humans, and
no data was available in dogs. Moreover, in the 2000s, there was a wave of immigration
from Eastern European countries, namely from Ukraine, which is the third country with the
largest group of immigrants to Portugal [49]. Also, both strains of K. pneumoniae isolated
were closely related (5 allele differences).

Since ESBL K. pneumonia isolated in this study possessed a myriad of genetic determi-
nants, previously characterized with high pathogenicity and antimicrobial resistance, it
was assumed that the isolated strains were at the origin of the mucopurulent rhinorrhea
and that veterinary medical action was correctly adjusted to the microbiological findings.

Regarding the results of S. pseudintermedius strains (3089/1 and 3099), the isolation
of these strains during amikacin treatment may have been caused by antibiotic selection
pressure [32]. Hence, the susceptibility profiles were identical. Besides showing resistance
to cefoxitin and oxacillin, detection of the mecA resistance gene enabled both strains to be
classified as MRSP. Similar to ESBL K. pneumoniae strains, S. pseudintermedius presented
resistance to penicillin, aminoglycosides, macrolides, tetracyclines and trimethoprim classes.
Moreover, the aac(6′)-aph(2′′) gene was only detected on the 3099 strain, and it has been
described that it confers resistance to a broad spectrum of aminoglycosides [50,51]. The
acquisition of another gene to reinforce the resistance to aminoglycosides might have been
caused by the selective pressure of amikacin, allowing the bacteria to gain a competitive
advantage over other bacteria [52].

However, a few disparities were also found between the phenotypic and genotypic
resistance profiles. Indeed, no genes for resistance to fluoroquinolones were identified, and
phenotypically, both MRSP strains showed resistance to ciprofloxacin and levofloxacin.
These discrepancies observed in the two bacterial species (K. pneumoniae and S. pseud-
intermedius) were not pursued. However, potential antimicrobial mechanisms without
resistance gene expression include activation of multidrug efflux pumps or decreased
outer membrane permeability [53], which should be further explored for fluoroquinolone
resistance. Moreover, databases can differ essentially in the number and type of genes
and resistance determinants they comprise [54], so there is the possibility that quinolone-
resistant determinants were not found due to the database data used. Hence, phenotypic
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and genomic evaluation are complementary, both being required for a complete account
of resistance.

In both strains of MRSP, rep7a and repUS43 were identified. These plasmids frequently
carried the tet(M) and tet(K) resistance genes [55], which is in agreement with antimicrobial
resistance genes results.

In addition, the two MRSP strains were identified as ST551, being recorded between
2015 and 2018, 12 S. pseudintermedius ST551 strains in the PubMLST database, from different
geographical locations and animal hosts (https://pubmlst.org/, last accessed 28 February
2023). Among the 12 records, six samples were isolated from dogs (50%), four from cats
(33%) and two from humans (17%). Indeed, S. pseudintermedius has been correlated to
infections in dogs, being considered an important pathogen in canine pyodermas [56,57].
As for localization, these isolates were from Poland (50%), Switzerland (25%), Sweden
(17%) and the USA (8%), evidencing the spread of ST551 throughout Europe since 2015.

Also, both MRSP isolates harbored the SCCmec type Vc (5C2&5) element. Since these
strains possess the tet(K) gene, this is in agreement with previous studies, which showed
that isolates carrying the Vc (5C2&5) element co-harbor tet(K) in a higher proportion than
isolates with other SCCmec elements [58].

In this study, the right choice of antibiotic in combination with inpatient hospitalization
in the isolation ward might have contributed to the clinical success of the case. While the
choice based on the antibiogram allowed the elimination of the primary agent of infection,
the isolation of the animal possibly prevented the dissemination and spread of multidrug-
resistant bacteria. Although antibiotic therapy may have been at the origin of MRSP
recovery, once the inhibitory action of the prescribed aminoglycoside disappeared, the
competitive advantage of MRSP on nasal flora dissipated. Thereby, the decision of clinicians
to focus only on eliminating the ESBL K. pneumoniae strains may have been the correct one.

Some limitations should be considered in the present study. Firstly, data on antimicro-
bial prescriptions before the emergency appointment were not available. Secondly, since
only one clinical case was investigated, some bias in the interpretation of results may be
present. Despite these limitations, the results of this study provide valuable information
on the dynamics established between the antibiotic and the bacteria during a therapeutic
protocol of an infectious process.

Hence, pets can act as reservoirs of AMR genes that may transfer to other inhabitants
of the house, both humans and animals. Therefore, veterinary practices, along with micro-
biology laboratory guidance, must adapt to this new reality, ensuring effective treatment of
infections and protection of animal, human and environmental health.

5. Conclusions

The present study intended to investigate the effect of antibiotic pressure on the
isolation of multidrug-resistant bacteria. Our results showed that antibiotic therapy may
have been the cause of antimicrobial resistance and MRSP recovery. The isolation of MRSP
followed by its elimination may have been the result of antibiotic pressure for a long period,
combined with the competitive action of the commensal flora. The discrepancies observed
in this study between phenotypic and genotypic determinants of antimicrobial resistance
demonstrated their complementarity. Moreover, the geographical distribution of isolates
with similar characteristics to the isolates in this study showed the wide dispersion of the
bacteria. Thus, this study highlights the importance of readapting veterinary practices to
safeguard the effective treatment of infection and the protection of human, animal and
environmental health.
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Figure A1. Cranioencephalic computed tomography of a one-year-old Serra da Estrela dog. Left 
rhinosinusitis with no evidence of a foreign body with the left nasal cavity occupied with a 
homogeneous material with preservation of the nasal turbinates (A). This material extends caudally 
until the etmoturbinates and left frontal sinus (B, C), with no signs of osteolysis. The tympanic bullae 
are regular with normal aerial content, with the exception of the presence of an otolith in the left 
bulla (D). The cerebral parenchyma was normal (D). 

  

Figure A1. Cranioencephalic computed tomography of a one-year-old Serra da Estrela dog. Left
rhinosinusitis with no evidence of a foreign body with the left nasal cavity occupied with a homoge-
neous material with preservation of the nasal turbinates (A). This material extends caudally until
the etmoturbinates and left frontal sinus (B,C), with no signs of osteolysis. The tympanic bullae are
regular with normal aerial content, with the exception of the presence of an otolith in the left bulla
(D). The cerebral parenchyma was normal (D).
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Appendix B

Table A1. Summary of phenotypic resistance and resistance genes by the antibiotic class of the
four isolates.

Klebsiella pneumoniae Staphylococcus pseudintermedius

Antibiotic Class 3055 3089/2 Genome 3089/1 3099 Genome

Penicillin
R 2/2 2/2 blaDHA-1, blaOXA-1,

blaTEM-1D, blaSHV-11

2/2 2/2
blaZ, mecAS 0/2 0/2 0/2 0/2

Cephalosporin R 4/4 4/4 blaCTX-M-15
1/1 1/1 Missing

S 0/4 0/4 0/1 0/1

Monobactam
R 1/1 1/1 Missing na na na
S 0/1 0/1 na na

Macrolides
R 1/1 1/1 Missing 2/2 2/2 erm(B)
S 0/1 0/1 0/2 0/2

Aminoglycosides R 2/4 2/4 aac(6′)-Ib-cr, aph3-Ia,
strA, strB

2/2 2/2 aph(3′)-III, ant(6)-Ia),
aac(6′)-aph(2′′) *S 2/4 2/4 0/2 0/2

Tetracyclines R 2/2 2/2 Missing 1/2 1/2
tet(K), tet(M)S 0/2 0/2 1/2 1/2

Fluoroquinolones R 2/2 2/2 qnrB1, qnrB4,
gyrA-83I, parC-80I

2/2 2/2 Missing
S 0/2 0/2 0/2 0/2

Ansamycin R na na na 0/1 0/1 na
S na na 1/1 1/1

Lincosamide
R na na na 1/1 1/1

erm(B)S na na 0/1 0/1

Folate inhibitor
R 1/1 1/1 sul1, sul2, dfrA14 1/1 1/1 drfG
S 0/1 0/1 0/1 0/1

Phenicol
R 1/1 1/1

catB3
0/1 0/1 na

S 0/1 0/1 1/1 1/1

Nitrofuran
R 1/1 1/1 Missing 0/1 0/1 na
S 0/1 0/1 1/1 1/1

Carbapenems R 0/1 0/1 na na na na
S 1/1 1/1 na na

Streptogramins R na na na 0/1 0/1 na
S na na 1/1 1/1

Oxazolidinones
R na na na 0/1 0/1 na
S na na 1/1 1/1

* aac(6′)-aph(2′′) was only identified in 3099 strain. All results with intermediate susceptibility were classified as
resistant. na, not available.
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