Characteristics of Extended-Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011–2021
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolate Identification, Antimicrobial Susceptibility Test Results & Patient Data
2.2. Whole Genome Sequencing
2.3. Genomic Similarity Comparison
3. Results
3.1. Isolate Identification, Antimicrobial Susceptibility Test Results & Patient Data
3.2. Whole Genome Sequencing
3.3. Genomic Similarity Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ur Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res. Int. 2018, 2018, 9519718. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular-structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Rawat, D.; Nair, D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J. Glob. Infect. Dis. 2010, 2, 263–274. [Google Scholar] [CrossRef]
- Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; McCarthy, N.; Paul, P.; McDonald, L.C.; Kallen, A.; et al. Multidrug-Resistant Bacterial Infections in U.S. Hospitalized Patients, 2012–2017. N. Engl. J. Med. 2020, 382, 1309–1319. [Google Scholar] [CrossRef]
- Melzer, M.; Petersen, I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J. Infect. 2007, 55, 254–259. [Google Scholar] [CrossRef]
- Pitout, J.D.; Nordmann, P.; Kevin, B.; Laupland, K.B.; Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 2005, 56, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moein, K.A.; Samir, A. Occurrence of extended spectrum β-lactamase-producing Enterobacteriaceae among pet dogs and cats: An emerging public health threat outside health care facilities. Am. J. Infect. Control. 2014, 42, 796–798. [Google Scholar] [CrossRef]
- Van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.; et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Kong, N.; Davis, M.; Arabyan, N.; Huang, B.C.; Weis, A.M.; Chen, P.; Thao, K.; Ng, W.; Chin, N.; Foutouhi, S.; et al. Draft Genome Sequences of 1183 Salmonella Strains from the 100K Pathogen Genome Project. Genome Announc. 2017, 5, e00518-17. [Google Scholar] [CrossRef] [Green Version]
- Weis, A.M.; Clothier, K.A.; Huang, B.C.; Kong, N.; Weimer, B.C. Draft Genome Sequence of Multidrug-Resistant Abortive Campylobacter jejuni from Northern California. Genome Announc. 2017, 5, e00171-17. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Juárez, L.E.; Camorlinga, M.; Méndez-Tenorio, A.; Calderón, J.F.; Huang, B.C.; Bandoy, D.R.; Weimer, B.C.; Torres, J. Analyses of publicly available Hungatella hathewayi genomes revealed genetic distances indicating they belong to more than one species. Virulence 2021, 12, 1950–1964. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- The Comprehensive Antibiotic Resistance Database. Available online: https://card.mcmaster.ca/ (accessed on 1 May 2022).
- Seemann, T.A.; Goncalves da Silva, A.; Bulach, D.M.; Schultz, M.B.; Kwong, J.C.; Howden, B.P. “Nullarbor” Github. Available online: https://github.com/tseemann/nullarbor (accessed on 25 January 2023).
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.T.; Irber, L. Sourmash: A library for MinHash sketching of DNA. J. Open Source Softw. 2016, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Sequence Read Archive Database. Available online: https://www.ncbi.nlm.nih.gov/sra (accessed on 20 January 2023).
- Byron, J.K. Urinary tract infection. Vet. Clin. North Am. Small Anim. Pract. 2019, 49, 211–221. [Google Scholar] [CrossRef]
- Quan, J.; Dai, H.; Liao, W.; Zhao, D.; Shi, Q.; Zhang, L.; Shi, K.; Akova, M.; Yu, Y. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: A prospective multicenter study. J. Infect. 2021, 83, 175–181. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Vena, A.; Roberto-Giacobbe, D.; Castaldo, N. Management of Infections Caused by Multidrug-resistant Gram-negative Pathogens: Recent Advances and Future Directions. Arch. Med. Res. 2021, 52, 817–827. [Google Scholar] [CrossRef]
- Patel, H.B.; Lusk, K.A.; Cota, J.M. The Role of Cefepime in the Treatment of Extended-Spectrum Beta-Lactamase Infections. J. Pharm. Pract. 2019, 32, 458–463. [Google Scholar] [CrossRef]
- Yousfi, M.; Touati, A.; Mairi, A.; Brasme, L.; Gharout-Sait, A.; Guillard, T.; De Champs, C. Emergence of Carbapenemase-Producing Escherichia coli Isolated from Companion Animals in Algeria. Microb. Drug Resist. 2016, 22, 342–346. [Google Scholar] [CrossRef]
- Seo, Y.B.; Lee, J.; Kim, Y.K.; Lee, S.S.; Lee, J.A.; Kim, H.Y.; Uh, Y.; Kim, H.S.; Song, W. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect. Dis. 2017, 17, 404. [Google Scholar] [CrossRef] [Green Version]
- Senard, O.; Bouchand, F.; Deconinck, L.; Matt, M.; Fellous, L.; Rottman, M.; Perronne, C.; Dinh, A.; Davido, B. Efficacy of cefoxitin for the treatment of urinary tract infection due to extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates. Ther. Adv. Infect. Dis. 2019, 6, 2049936118811053. [Google Scholar] [CrossRef] [Green Version]
- Sfaciotte, R.; Parussolo, L.; Melo, F.D.; Wildemann, P.; Bordignon, G.; Israel, N.D.; Leitzke, M.; Wosiacki, S.R.; Salbego, F.Z.; da Costa, U.M.; et al. Identification and Characterization of Multidrug-Resistant Extended-Spectrum Beta-Lactamase-Producing Bacteria from Healthy and Diseased Dogs and Cats Admitted to a Veterinary Hospital in Brazil. Microb. Drug Resist. 2021, 27, 855–864. [Google Scholar] [CrossRef]
- Dupouy, V.; Abdelli, M.; Moyano, G.; Arpaillange, N.; Bibbal, D.; Cadiergues, M.C.; Lopez-Pulin, D.; Sayah-Jeanne, S.; de Gunzburg, J.; Saint-Lu, N.; et al. Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae From Dogs in France and Spain-Characterization of ESBL/pAmpC Isolates, Genes, and Conjugative Plasmids. Front. Vet. Sci. 2019, 6, 279. [Google Scholar] [CrossRef] [Green Version]
- Karkaba, A.; Hill, K.; Benschop, J.; Pleydell, E.; Grinberg, A. Carriage and population genetics of extended spectrum β-lactamase-producing Escherichia coli in cats and dogs in New Zealand. Vet. Microbiol. 2019, 233, 61–67. [Google Scholar] [CrossRef]
- Shaheen, B.W.; Nayak, R.; Foley, S.L.; Kweon, O.; Deck, J.; Park, M.; Rafii, F.; Boothe, D.M. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob. Agents Chemother. 2011, 55, 5666–5675. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.J.; Shen, Y.H.; Hwang, K.P. Clinical implications, risk factors and mortality following community-onset bacteremia caused by extended-spectrum β-lactamase (ESBL) and non-ESBL producing Escherichia coli. J. Microbiol. Immunol. Infect. 2010, 43, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Otter, J.A.; Natale, A.; Batra, R.; Tosas Auguet, O.; Dyakova, E.; Goldenberg, S.D.; Edgeworth, J.D. Individual- and community-level risk factors for ESBL Enterobacteriaceae colonization identified by universal admission screening in London. Clin. Microbiol. Infect. 2019, 25, 1259–1265. [Google Scholar] [CrossRef]
- Belas, A.; Salazar, A.S.; Gama, L.T.; Couto, N.; Pomba, C. Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs. Vet. Rec. 2014, 175, 202. [Google Scholar] [CrossRef]
- Ljungquist, O.; Ljungquist, D.; Myrenås, M.; Rydén, C.; Finn, M.; Bengtsson, B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs—A pilot study. Infect. Ecol. Epidemiol. 2016, 6, 31514. [Google Scholar] [CrossRef]
- Kaur, J.; Mahajan, G.; Chand, K.; Sheevani; Chopra, S. Enhancing Phenotypic Detection of ESBL in AmpC co-producers by using Cefepime and Tazobactam. J. Clin. Diagn. Res. 2016, 10, DC05–DC8. [Google Scholar] [CrossRef]
Isolate | Organism | Year Isolated | Source | SRA Name | MLST Number | ESBL Gene Product | Other β-Lactamase Gene Products |
---|---|---|---|---|---|---|---|
1 | Escherichia coli | 2012 | BAL fluid | BCW_12610 | 410 | CTX-M-15 | AmpC, AmpH, OXA-1 |
2 | Klebsiella pneumoniae | 2020 | Urine | BCW_12638 | 16 | CTX-M-15, SHV-1, TEM-1 | AmpH, CBP-1 |
3 | Escherichia coli | 2021 | Urine | BCW_12625 | 224 | CTX-M-1 | AmpC, AmpH |
4 | Escherichia coli | 2021 | Urine | BCW_12626 | 162 | CTX-M-14, TEM-1 | AmpC, AmpH |
5 | Escherichia coli | 2021 | Skin | BCW_12627 | 46 | CTX-M-15 | AmpC, AmpH, CMY-136 |
6 | Klebsiella pneumoniae | 2021 | Skin | BCW_12640 | 307 | CTX-M-15, SHV-28 | AmpH, CBP-1 |
7 | Escherichia coli | 2020 | Pleural fluid | BCW_12621 | 10 | CTX-M-15 | AmpC, AmpH |
8 | Escherichia coli | 2020 | Skin | BCW_12622 | 450 | CTX-M-15 | AmpC, AmpH |
9 | Escherichia coli | 2017 | Urine | BCW_12615 | 162 | CTX-M-14 | AmpC, AmpH |
10 | Escherichia coli | 2013 | Bile | BCW_12611 | 410 | CTX-M-15 | AmpC, AmpH, OXA-1 |
11 | Escherichia coli | 2019 | Bile | BCW_12616 | 90 | CTX-M-15, TEM-1 | AmpC, AmpH |
12 | Escherichia coli | 2013 | Skin | BCW_12614 | 410 | CTX-M-15, TEM-1, FONA-6 | AmpC, AmpH, OXA-1 |
13 | Escherichia coli | 2013 | Ear swab | BCW_12613 | 44 | CTX-M-15, FONA-6 | AmpC, AmpH, OXA-1, DHA-1 |
14 | Escherichia coli | 2019 | Urine | BCW_12617 | 1193 | CTX-M-27 | AmpC, AmpH, CMY-12 |
15 | Escherichia coli | 2020 | Blood | BCW_12620 | 162 | CTX-M-14 | AmpC, AmpH |
16 | Escherichia coli | 2019 | Skin | BCW_12619 | 1148 | FONA-6, TEM-1 | AmpC, AmpH |
17 | Escherichia coli | 2019 | Tracheal wash | BCW_12618 | 162 | CTX-M-14, TEM-1 | AmpC, AmpH |
18 | Klebsiella oxytoca | 2012 | Urine | BCW_12637 | 101 | TEM-1, SHV-66 | AmpH, OXY-2-10 |
19 | Escherichia coli | 2021 | Urine | BCW_12628 | 162 | CTX-M-14, TEM-1 | AmpC, AmpH |
20 | Escherichia coli | 2021 | Urine | BCW_12624 | 68 | CTX-M-15 | AmpC, AmpH, OXA-1 |
21 | Escherichia coli | 2021 | Urine | BCW_12623 | 1431 | CTX-M-15, TEM-1 | AmpC, AmpH, CMY-2 |
22 | Klebsiella pneumoniae | 2021 | Pleural fluid | BCW_12639 | 307 | CTX-M-15, SHV-28, TEM-1 | AmpH, OXA-1, CBP-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woerde, D.J.; Reagan, K.L.; Byrne, B.A.; Weimer, B.C.; Epstein, S.E.; Schlesener, C.; Huang, B.C.; Sykes, J.E. Characteristics of Extended-Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011–2021. Vet. Sci. 2023, 10, 178. https://doi.org/10.3390/vetsci10030178
Woerde DJ, Reagan KL, Byrne BA, Weimer BC, Epstein SE, Schlesener C, Huang BC, Sykes JE. Characteristics of Extended-Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011–2021. Veterinary Sciences. 2023; 10(3):178. https://doi.org/10.3390/vetsci10030178
Chicago/Turabian StyleWoerde, Dennis J., Krystle L. Reagan, Barbara A. Byrne, Bart C. Weimer, Steven E. Epstein, Cory Schlesener, Bihua C. Huang, and Jane E. Sykes. 2023. "Characteristics of Extended-Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011–2021" Veterinary Sciences 10, no. 3: 178. https://doi.org/10.3390/vetsci10030178
APA StyleWoerde, D. J., Reagan, K. L., Byrne, B. A., Weimer, B. C., Epstein, S. E., Schlesener, C., Huang, B. C., & Sykes, J. E. (2023). Characteristics of Extended-Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011–2021. Veterinary Sciences, 10(3), 178. https://doi.org/10.3390/vetsci10030178