Essential Oils for a Sustainable Control of Honeybee Varroosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Primary and Secondary Metabolites of Plants
3. Essential Oils
4. Composition
4.1. Terpenes and Terpenoids
4.2. Monoterpenes
4.3. Diterpenes
4.4. Triterpenes
4.5. Sesquiterpene
4.6. Alkaloids
4.7. Phenolic Compounds
5. Essential Oils: Extraction Techniques
6. Mechanism of Action
7. Application Method in Laboratory and Field Studies
8. Analysis of Laboratory and Field Study Achievements
9. Disadvantages to Overcome and Future Perspectives
10. Residues
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morse, R.A.; Calderone, N.W. The value of honey bees as pollinators of US crops in 2000. Bee Cult. 2000, 128, 1–15. [Google Scholar]
- Asma, S.T.; Bobiş, O.; Bonta, V.; Acaroz, U.; Shah, S.R.A.; Istanbullugil, F.R.; Arslan-Acaroz, D. General nutritional profile of bee products and their potential antiviral properties against mammalian viruses. Nutrients 2022, 14, 3579. [Google Scholar] [CrossRef] [PubMed]
- Mutinelli, F.; Pinto, A.; Barzon, L.; Toson, M. Some Considerations about Winter Colony Losses in Italy According to the Coloss Questionnaire. Insects 2022, 13, 1059. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Carreck, N.L. Honey bee colony losses. J. Apic. Res. 2015, 49, 1–6. [Google Scholar] [CrossRef]
- Seitz, K.; Buczolich, K.; Dikunová, A.; Plevka, P.; Power, K.; Rümenapf, T.; Lamp, B. A molecular clone of Chronic Bee Paralysis Virus (CBPV) causes mortality in honey bee pupae (Apis mellifera). Sci. Rep. 2019, 9, 16274. [Google Scholar] [CrossRef] [PubMed]
- Power, K.; Martano, M.; Altamura, G.; Piscopo, N.; Maiolino, P. Histopathological Features of Symptomatic and Asymptomatic Honeybees Naturally Infected by Deformed Wing Virus. Pathogens 2021, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Goblirsch, M. Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 2018, 49, 131–150. [Google Scholar] [CrossRef]
- Fisher, A.; Rangel, J. Exposure to pesticides during development Negatively affects honey bee (Apis mellifera) Drone sperm viability. PLoS ONE 2018, 13, e0208630. [Google Scholar] [CrossRef] [PubMed]
- Boecking, O.; Genersch, E. Varroosis–The ongoing crisis in bee keeping. J. Verbrauch. Leb. 2008, 3, 221–228. [Google Scholar] [CrossRef]
- Kefuss, J.; Vanpoucke, J.; Bolt, M.; Kefuss, C. Selection for resistance to Varroa destructor under commercial beekeeping conditions. J. Apic. Res. 2015, 54, 563–576. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.Y.; Chantawannakul, P.; McAfee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; L’Hostis, M.; Wiest, L.; Buleté, A.; Delbac, F.; Pouliquen, H. Widespread Occurrence of Chemical Residues in Beehive Matrices from Apiaries Located in Different Landscapes of Western France. PLoS ONE 2013, 8, e67007. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.K.; Maggi, M.D.; Sarlo, E.G.; Ruffinengo, S.; Marioli, J.M.; Eguaras, M.J. The presence of synthetic acaricides in beeswax and its influence on the development of resistance in Varroa destructor. J. Apic. Res. 2015, 54, 267–274. [Google Scholar] [CrossRef]
- de Mattos, I.M.; Soares, A.E.E.; Tarpy, D.R. Effects of synthetic acaricides on honey bee grooming behavior against the parasitic Varroa destructor mite. Apidologie 2017, 48, 483–494. [Google Scholar] [CrossRef]
- Chmiel, J.A.; Daisley, B.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Front. Ecol. Evol. 2020, 8, 22. [Google Scholar] [CrossRef]
- Dai, P.; Jack, C.J.; Mortensen, A.N.; Bustamante, T.A.; Ellis, J.D. Chronic toxicity of amitraz, coumaphos and fluvalinate to Apis mellifera L. larvae reared in vitro. Sci. Rep. 2018, 8, 5635. [Google Scholar] [CrossRef] [PubMed]
- Demeter, S.; Lebbe, O.; Hecq, F.; Nicolis, S.C.; Kenne Kemene, T.; Martin, H.; Fauconnier, M.L.; Hance, T. Insecticidal activity of 25 essential oils on the stored product pest, Sitophilus granarius. Foods 2021, 10, 200. [Google Scholar] [CrossRef] [PubMed]
- Nardoni, S.; D’Ascenzi, C.; Rocchigiani, G.; Papini, R.A.; Pistelli, L.; Formato, G.; Najar, B.; Mancianti, F. Stonebrood and chalkbrood in Apis mellifera causing fungi: In vitro sensitivity to some essential oils. Nat. Prod. Res. 2018, 32, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C.; Hamraoui, A.; Holeman, M.; Theron, E.; Pinel, R. Insecticidal effect of essential oils from mediterranean plants upon Acanthoscelides Obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J. Chem. Ecol. 1993, 19, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Pusceddu, M.; Floris, I.; Mangia, N.P.; Angioni, A.; Satta, A. In vitro activity of several essential oils extracted from aromatic plants against Ascosphaera apis. Vet. Sci. 2021, 8, 80. [Google Scholar] [CrossRef]
- Pellegrini, M.C.; Alonso-Salces, R.M.; Umpierrez, M.L.; Rossini, C.; Fuselli, S.R. Chemical Composition, Antimicrobial Activity, and Mode of Action of Essential Oils against Paenibacillus larvae, Etiological Agent of American Foulbrood on Apis mellifera. Chem. Biodivers. 2017, 14, e1600382. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.; Carbonell, V.; Sepúlveda, B.; Delporte, C.; Valdovinos, C.E.; Martín-Hernández, R.; Higes, M. Antifungal activity of the essential oil obtained from Cryptocarya alba against infection in honey bees by Nosema ceranae. J. Invertebr. Pathol. 2017, 149, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Aparecida de Freitas Formenton Macedo dos Santos, V.; Pereira dos Santos, D.; Castro-Gamboa, I.; Zanoni, M.V.B.; Furlan, M. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae). Molecules 2010, 15, 6956–6973. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal; Universitat Jaume I: Castellón de la Plana, Spain, 2006; Volume 10, ISBN 8480216018. [Google Scholar]
- Gonzaga, A.D.; Garcia, M.V.B.; Sousa, S.G.A.; Py-Daniel, V.; Raquel da Silva, C.; Ribeiro, J. Toxicidade de manipueira de mandioca (Manihot esculenta Crantz) e erva-de-rato (Palicourea marcgravii St. Hill) a adultos de Toxoptera citricida Kirkaldy (Homoptera: Aphididae). Acta Amaz. 2008, 38, 101–106. [Google Scholar] [CrossRef]
- Iason, G.R.; Dicke, M.; Hartley, S.E. The Ecology of Plant Secondary Metabolites: From Genes to Global Processes; Cambridge University Press: Cambridge, UK, 2012; ISBN 1107375703. [Google Scholar]
- Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.M.; La, P. PR Farmacognosia: Da Planta ao Medicamento; Editora da UFSC: Florianópolis, Brazil, 2004. [Google Scholar]
- Simas, N.K.; Lima, E.C.; da Rocha Conceição, S.; Kuster, R.M.; de Oliveira Filho, A.M.; Lage, C.L.S. Produtos naturais para o controle da transmissão da dengue: Atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim. Nova 2004, 27, 46–49. [Google Scholar] [CrossRef]
- Gutiérrez, G.P.A.; Villegas, M.C.V. Efecto tóxico de Verbena officinalis (família Verbenaceae) en Sitophilus granarius (coleoptera: Curculionidae). Rev. Lasallista Investig. 2008, 5, 74–82. [Google Scholar]
- Misra, H.P. Role of botanicals, biopesticides and bioagents in integrated pest management. Odisha Rev. 2014, 2, 62–67. [Google Scholar]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Rao, J. Evaluation of plant products as antifeedants against rice storage insects. Pestic. Residues Environ. Pollut. 1986. [Google Scholar]
- Prakash, A.; Rao, J. Botanical Pesticides in Agriculture; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315138573. [Google Scholar]
- Adebayo, T.; Gbolade, A.; Olaifa, J. Comparative study of toxicity of some essential oils to larvae of three mosquito species. Niger. J. Nat. Prod. Med. 1999, 3, 74–76. [Google Scholar] [CrossRef]
- Larocque, N.; Vincent, C.; Bélanger, A.; Bourassa, J.P. Effects of tansy essential oil from Tanacetum vulgare on biology of oblique-banded leafroller, Choristoneura rosaceana. J. Chem. Ecol. 1999, 25, 1319–1330. [Google Scholar] [CrossRef]
- Gbolade, A.A. Plant-derived insecticides in the control of malaria vector. J. Trop. Med. Plants 2001, 2, 91–97. [Google Scholar]
- Marimuthu, S.; Gurusubramanian, G.; Krishna, S.S. Effect of Exposure of Eggs to Vapours from Essential Oils on Egg Mortality, Development and Adult Emergence in Earias vittella (F.) (Lepidoptera: Noctuidae). Biol. Agric. Hortic. 1997, 14, 303–307. [Google Scholar] [CrossRef]
- Landolt, P.J.; Hofstetter, R.W.; Biddick, L.L. Plant essential oils as arrestants and repellents for neonate larvae of the Codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 1999, 28, 954–960. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; Von Wright, A. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Paster, N.; Menasherov, M.; Ravid, U.; Juven, B. Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J. Food Prot. 1995, 58, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Shaaya, E.; Kostjukovsky, M. Efficacy of phyto-oils as contact insecticides and fumigants for the control of stored-product insects. In Insecticides with Novel Modes of Action: Mechanisms and Application; Springer: Berlin/Heidelberg, Germany, 1998; pp. 171–187. [Google Scholar]
- Chou, J.T.; Rossignol, P.A.; Ayres, J.W. Evaluation of Commercial Insect Repellents on Human Skin Against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1997, 34, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Blitzke, T. Ätherische Öle und Aromaextrakte in der Kosmetik, der Aromatherapie und im Lebensmittelbereich. In Handbuch des Arznei- und Gewürzpflanzenbaus; Band1 Grundlagen des Arznei- und Gewürzpflanzenbaus I.; Hoppe, B., Hoppe, K., Junghanns, W., Eds.; Harri Deutsch: Frankfurt am Main, Germany, 2009; Volume 52, pp. 383–394. [Google Scholar]
- Bowles, E.J. The Pharmacology of Essential Oils. In The Chemistry of Aromatherapeutic Oils; Routledge: Oxfordshire, UK, 2020; pp. 113–157. [Google Scholar]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Ávalos García, A.; Pérez-Urria Carril, E. Metabolismo secundario de plantas. Reduca Ser. Fisiol. Veg. 2009, 2. [Google Scholar]
- Mann, R.; Kaufman, P. Natural Product Pesticides: Their Development, Delivery and Use Against Insect Vectors. Mini. Rev. Org. Chem. 2012, 9, 185–202. [Google Scholar] [CrossRef]
- Viegas Júnior, C. Terpenos com atividade inseticida: Uma alternativa para o controle químico de insetos. Quim. Nova 2003, 26, 390–400. [Google Scholar] [CrossRef]
- Marangoni, C.; Moura, N.F.; Garcia, F.R.M. Utilização De Óleos Essenciais E Extratos De Plantas No Controle De Insetos. Rev. Ciências Ambient. 2012, 6. [Google Scholar]
- Belles, X.; Camps, F.; Coll, J.; Piulachs, M.D. Insect antifeedant activity of clerodane diterpenoids against larvae of Spodoptera Littoralis (Boisd.) (Lepidoptera). J. Chem. Ecol. 1985, 11, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Lajide, L.; Escoubas, P.; Mizutani, J. Termite antifeedant activity in Xylopia aethiopica. Phytochemistry 1995, 40, 1105–1112. [Google Scholar] [CrossRef]
- Adeyemi, M.M.H. The potential of secondary metabolites in plant material as deterents against insect pests: A review. Afr. J. Pure Appl. Chem. 2010, 4, 243–246. [Google Scholar]
- Mordue (Luntz), A.J.; Blackwell, A. Azadirachtin: An update. J. Insect Physiol. 1993, 39, 903–924. [Google Scholar] [CrossRef]
- Ivie, G.W.; Witzel, D.A. Sesquiterpene lactones: Structure, biological action, and toxicological significance. Handb. Nat. Toxins 1983, 14, 12780–12805. [Google Scholar]
- Thebtaranonth, C.; Thebtaranonth, Y.; Wanauppathamkul, S.; Yuthavong, Y. Antimalarial sesquiterpenes from tubers of Cyperus rotundus: Structure of 10,12-Peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry 1995, 40, 125–128. [Google Scholar] [CrossRef]
- Pelletier, S.W. The nature and definition of an alkaloid. In Alkaloids: Chemical and Biological Perspectives; Springer: New York, NY, USA, 1983. [Google Scholar]
- Cornelius, W.W.; Akeng’a, T.; Obiero, G.O.; Lutta, K.P. Antifeedant activities of the erythrinaline alkaloids from Erythrina latissima against Spodoptera littoralis (Lepidoptera noctuidae). Rec. Nat. Prod. 2009, 3. [Google Scholar]
- Harborne, J.B. The Flavonoids: Advances in Research Since 1986; Chapman & Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Carvalho, J.C.T.; Gosmann, G.; Schenkel, E.P. Compostos fenólicos simples e heterosídicos. Farmacogn. Planta Medicam. 2007, 6, 519–535. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiologia vegetal. In Fisiologia Vegetal; Artmed: Porto Alegre, Brazil, 2009; p. 848. [Google Scholar]
- Asbahani, A.E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential-a review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.; Plainfossé, H.; Brochet, X.; Chemat, F.; Fernandez, X. Extraction of Natural Fragrance Ingredients: History Overview and Future Trends. Chem. Biodivers. 2019, 16, e1900424. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.-S.; Chemat, F. Essential Oils as Reagents in Green Chemistry; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Devi, M.P.; Chakrabarty, S.; Ghosh, S.K.; Bhowmick, N. Essential oil: Its economic aspect, extraction, importance, uses, hazards and quality. Value Addit. Hortic. Crop. Recent Trends Futur. Dir. 2015, 269–278. [Google Scholar]
- Arce, A.; Soto, A. Tree and Forestry Science and Biotechnology Citrus Essential Oils: Extraction and Deterpenation. Tree For. Sci. Biotechnol. 2008, 2, 1–9. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Dima, C.; Dima, S. Essential oils in foods: Extraction, stabilization, and toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Pani, F.; Porcedda, S.; Ballero, M. Extraction, separation and isolation of essential oils from natural matrices by supercritical CO2. Flavour Fragr. J. 2003, 18, 505–509. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef]
- Xu, L.; Zhan, X.; Zeng, Z.; Chen, R.; Li, H.; Xie, T.; Wang, S. Recent advances on supercritical fluid extraction of essential oils. Afr. J. Pharm. Pharmacol. 2011, 5, 1196–1211. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. TrAC Trends Anal. Chem. 2019, 118, 182–193. [Google Scholar] [CrossRef]
- Araus, K.; Uquiche, E.; del Valle, J.M. Matrix effects in supercritical CO2 extraction of essential oils from plant material. J. Food Eng. 2009, 92, 438–447. [Google Scholar] [CrossRef]
- Soto Ayala, R.; Luque de Castro, M.D. Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem. 2001, 75, 109–113. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015, 7, 275–297. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.-S.; Chemat, F. An improved ultrasound Clevenger for extraction of essential oils. Food Anal. Methods 2014, 7, 9–12. [Google Scholar] [CrossRef]
- Ferhat, M.A.; Meklati, B.Y.; Smadja, J.; Chemat, F. An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr. A 2006, 1112, 121–126. [Google Scholar] [CrossRef]
- Chemat, F.; Cravotto, G. Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 4, ISBN 1461448301. [Google Scholar]
- Chouhan, K.B.S.; Tandey, R.; Sen, K.K.; Mehta, R.; Mandal, V. Critical analysis of microwave hydrodiffusion and gravity as a green tool for extraction of essential oils: Time to replace traditional distillation. Trends Food Sci. Technol. 2019, 92, 12–21. [Google Scholar] [CrossRef]
- Tigrine-Kordjani, N.; Meklati, B.Y.; Chemat, F. Microwave ‘dry’distillation as an useful tool for extraction of edible essential oils. Int. J. Aromather. 2006, 16, 141–147. [Google Scholar] [CrossRef]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (CEOs) and their applications in food: An overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- Shakir, I.K.; Salih, S.J. Extraction of essential oils from citrus by-products using microwave steam distillation. Iraqi J. Chem. Pet. Eng. 2015, 16, 11–22. [Google Scholar]
- Kohn, G.K. Pesticide Synthesis through Rational Approaches; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1984. [Google Scholar]
- Nathanson, J.A. Octopamine receptors, adenosine 3′, 5′-monophosphate, and neural control of firefly flashing. Science 1979, 203, 65–68. [Google Scholar] [CrossRef]
- Orchard, I.; Carlisle, J.A.; Loughton, B.G.; Gole, J.W.D.; Downer, R.G.H. In vitro studies on the effects of octopamine on locust fat body. Gen. Comp. Endocrinol. 1982, 48, 7–13. [Google Scholar] [CrossRef]
- Evans, P.D. Biogenic Amines in the Insect Nervous System. Adv. Insect Phys. 1980, 15, 317–473. [Google Scholar] [CrossRef]
- Roeder, T.; Nathanson, J.A. Characterization of insect neuronal octopamine receptors (OA3 receptors). Neurochem. Res. 1993, 18, 921–925. [Google Scholar] [CrossRef]
- Enan, E.E. Insecticidal action of terpenes and phenols to the cockroaches: Effect on octopamine receptors. In Proceedings of the International Symposium on Crop Protection, Gent, Belgium, 5 May 1998. [Google Scholar]
- Enan, E.E. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 2005, 35, 309–321. [Google Scholar] [CrossRef]
- Hollingworth, R.M.; Johnstone, E.M.; Wright, N. Aspects of the Biochemistry and Toxicology of Octopamine in Arthropods. ACS Symp. Ser. 1984, 103–125. [Google Scholar]
- Priestley, C.M.; Williamson, E.M.; Wafford, K.A.; Sattelle, D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Veal, L. The potential effectiveness of essential oils as a treatment for headlice, Pediculus humanus capitis. Complement. Ther. Nurs. Midwifery 1996, 2, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Priestley, C.M.; Burgess, I.F.; Williamson, E.M. Lethality of essential oil constituents towards the human louse, Pediculus humanus, and its eggs. Fitoterapia 2006, 77, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Gnagey, A.L.; Forte, M.; Rosenberry, T.L. Isolation and characterization of acetylcholinesterase from Drosophila. J. Biol. Chem. 1987, 262, 13290–13298. [Google Scholar] [CrossRef] [PubMed]
- Bourguet, D.; Roig, A.; Toutant, J.P.; Arpagaus, M. Analysis of molecular forms and pharmacological properties of acetylcholinesterase in several mosquito species. Neurochem. Int. 1997, 31, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Marcel, V.; Palacios, L.G.; Pertuy, C.; Masson, P.; Fournier, D. Two invertebrate acetylcholinesterases show activation followed by inhibition with substrate concentration. Biochem. J. 1998, 329, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Jung, C.S.; Koh, Y.H.; Lee, S.H. Molecular, biochemical and histochemical characterization of two acetylcholinesterase cDNAs from the German cockroach Blattella germanica. Insect Mol. Biol. 2006, 15, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Pezzementi, L.; Rowland, M.; Wolfe, M.; Tsigelny, I. Inactivation of an invertebrate acetylcholinesterase by sulfhydryl reagents: The roles of two cysteines in the catalytic gorge of the enzyme. Invertebr. Neurosci. 2006, 6, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Polsinelli, G.A.; Singh, S.K.; Mishra, R.K.; Suranyi, R.; Ragsdale, D.W.; Pang, Y.P.; Brimijoin, S. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle. Chem. Biol. Interact. 2010, 187, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.-P.; Brimijoin, S.; Ragsdale, D.; Yan Zhu, K.; Suranyi, R. Novel and Viable Acetylcholinesterase Target Site for Developing Effective and Environmentally Safe Insecticides. Curr. Drug Targets 2012, 13, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.P.; Singh, S.K.; Gao, Y.; Lassiter, T.L.; Mishra, R.K.; Zhu, K.Y.; Brimijoin, S. Selective and irreversible inhibitors of aphid acetylcholinesterases: Steps toward human-safe insecticides. PLoS ONE 2009, 4, e4349. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.; Şenol, F.S.; Gülpinar, A.R.; Kartal, M.; Şekeroglu, N.; Deveci, M.; Kan, Y.; Şener, B. Acetylcholinesterase inhibitory and antioxidant properties of Cyclotrichium niveum, Thymus praecox subsp. caucasicus var. caucasicus, Echinacea purpurea and E. pallida. Food Chem. Toxicol. 2009, 47, 1304–1310. [Google Scholar] [CrossRef]
- Perry, N.S.L.; Houghton, P.J.; Jenner, P.; Keith, A.; Perry, E.K. Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo. Phytomedicine 2002, 9, 48–51. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, E.; Lee, S.H.; Park, I.K. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. Pestic. Biochem. Physiol. 2013, 105, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Yeom, H.J.; Jung, C.S.; Kang, J.; Kim, J.; Lee, J.H.; Kim, D.S.; Kim, H.S.; Park, P.S.; Kang, K.S.; Park, I.K. Insecticidal and acetylcholine esterase inhibition activity of asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J. Agric. Food Chem. 2015, 63, 2241–2248. [Google Scholar] [CrossRef]
- Picollo, M.I.; Toloza, A.C.; Mougabure Cueto, G.; Zygadlo, J.; Zerba, E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 2008, 79, 271–278. [Google Scholar] [CrossRef]
- Tel, G.; Öztürk, M.; Duru, M.E.; Harmandar, M.; Topçu, G. Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities. Food Chem. Toxicol. 2010, 48, 3189–3193. [Google Scholar] [CrossRef]
- Seo, S.-M.; Kim, J.; Kang, J.; Koh, S.-H.; Ahn, Y.-J.; Kang, K.-S.; Park, I.-K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol. 2014, 113, 55–61. [Google Scholar] [CrossRef]
- Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crops Prod. 2016, 89, 507–513. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.H.; Choi, W.S.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag. Sci. 2001, 57, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Reegan, A.D.; Stalin, A.; Paulraj, M.G.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A. In silico molecular docking of niloticin with acetylcholinesterase 1 (AChE1) of Aedes aegypti L. (Diptera: Culicidae): A promising molecular target. Med. Chem. Res. 2016, 25, 1411–1419. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K. Fumigant toxicity of oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components, including their acetylcholinesterase inhibitory activity, against Japanese termites (Reticulitermes speratus). Molecules 2014, 19, 12547–12558. [Google Scholar] [CrossRef]
- Anderson, J.A.; Coats, J.R. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol. 2012, 102, 124–128. [Google Scholar] [CrossRef]
- Ryan, M.F.; Byrne, O. Plant-insect coevolution and inhibition of acetylcholinesterase. J. Chem. Ecol. 1988, 14, 1965–1975. [Google Scholar] [CrossRef]
- Park, T.J.; Seo, H.K.; Kang, B.J.; Kim, K.T. Noncompetitive inhibition by camphor of nicotinic acetylcholine receptors. Biochem. Pharmacol. 2001, 61, 787–793. [Google Scholar] [CrossRef]
- Mills, C.; Cleary, B.V.; Walsh, J.J.; Gilmer, J.F. Inhibition of acetylcholinesterase by Tea Tree oil. J. Pharm. Pharmacol. 2004, 56, 375–379. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by tea tree oil and constituent terpenoids. Flavour Fragr. J. 2005, 21, 198–201. [Google Scholar] [CrossRef]
- López, M.D.; Campoy, F.J.; Pascual-Villalobos, M.J.; Muñoz-Delgado, E.; Vidal, C.J. Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration-dependent manner. Chem. Biol. Interact. 2015, 229, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Pitasawat, B.; Choochote, W.; Tuetun, B.; Tippawangkosol, P.; Kanjanapothi, D.; Jitpakdi, A.; Riyong, D. Repellency of aromatic turmeric Curcuma aromatica under laboratory and field conditions. J. Vector Ecol. 2003, 28. [Google Scholar]
- Sharma, R.N. The utilization of essential oils and some common allelochemic constituent for non-insecticidal pest management strategies. Newer Trends Essent. Oils Flavours 1993, 341–351. [Google Scholar]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chang, K.; Yang, Y.; Kim, B.; Ahn, Y. Repellency of aerosol and cream products containing fennel oil to mosquitoes under laboratory and field conditions. Pest Manag. Sci. Former. Pestic. Sci. 2004, 60, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Toloza, A.C.; Lucia, A.; Zerba, E.; Masuh, H.; Picollo, M.I. Interspecific hybridization of Eucalyptus as a potential tool to improve the bioactivity of essential oils against permethrin-resistant head lice from Argentina. Bioresour. Technol. 2008, 99, 7341–7347. [Google Scholar] [CrossRef]
- Feng, R.; Isman, M.B. Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia 1995, 51, 831–833. [Google Scholar] [CrossRef]
- Peng, G.; Kashio, M.; Morimoto, T.; Li, T.; Zhu, J.; Tominaga, M.; Kadowaki, T. Plant-derived tick repellents activate the honey bee ectoparasitic mite TRPA1. Cell Rep. 2015, 12, 190–202. [Google Scholar] [CrossRef]
- Li, L.; Lin, Z.-G.; Wang, S.; Su, X.-L.; Gong, H.-R.; Li, H.-L.; Hu, F.-L.; Zheng, H.-Q. The effects of clove oil on the enzyme activity of Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae). Saudi J. Biol. Sci. 2017, 24, 996–1000. [Google Scholar] [CrossRef]
- Maggi, M.D.; Ruffnengo, S.R.; Gende, L.B.; Sarlo, E.G.; Eguaras, M.J.; Bailac, P.N.; Ponzi, M.I. Laboratory evaluations of Syzygium aromaticum (L.) Merr. et Perry essential oil against Varroa destructor. J. Essent. Oil Res. 2010, 22, 119–122. [Google Scholar] [CrossRef]
- Sabahi, Q.; Gashout, H.; Kelly, P.G.; Guzman-Novoa, E. Continuous release of oregano oil effectively and safely controls Varroa destructor infestations in honey bee colonies in a northern climate. Exp. Appl. Acarol. 2017, 72, 263–275. [Google Scholar] [CrossRef]
- Sergio, R.R.; Maggi, M.D.; Fuselli, S.; Fiorella, G.; Negri, P.; Brasesco, C.; Satta, A.; Floris, I.; Eguaras, M.J. Bioactivity of microencapsulated essentials oils and perspectives of their use in the control of Varroa destructor. Bull. Insectology 2014, 67, 81–86. [Google Scholar]
- Bava, R.; Castagna, F.; Palma, E.; Musolino, V.; Carresi, C.; Cardamone, A.; Lupia, C.; Marrelli, M.; Conforti, F.; Roncada, P.; et al. Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet. Sci. 2022, 9, 684. [Google Scholar] [CrossRef]
- Hoppe, H. Vergleichende Untersuchungen zur Biotechnischen Bekämpfung der Varroatose; Justus-Liebig-Universität: Gießen, Germany; Giessen und Tierhygienisches Institut Freiburg: Deutschland, Germany, 1990; Volume 9, pp. 247–249. [Google Scholar]
- Imdorf, A.; Bogdanov, S.; Ochoa, R.I.; Calderone, N.W. Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 1999, 30, 209–228. [Google Scholar] [CrossRef]
- Mondet, F.; Goodwin, M.; Mercer, A. Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J. Comp. Physiol. A 2011, 197, 1055–1062. [Google Scholar] [CrossRef]
- Bergougnoux, M.; Treilhou, M.; Armengaud, C. Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie 2012, 44, 82–89. [Google Scholar] [CrossRef]
- Floris, I.; Satta, A.; Cabras, P.; Garau, V.L.; Angioni, A. Comparison between two thymol formulations in the control of Varroa destructor: Effectiveness, persistence, and residues. J. Econ. Entomol. 2004, 97, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, S.; Barbattini, R.; d’Agaru, M. Comparative effectiveness of treatments used to control Varroa jacobsoni oud. Apidologie 1984, 15, 363–378. [Google Scholar] [CrossRef]
- Dahlgren, L.; Johnson, R.M.; Siegfried, R.D.; Ellis, M.D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 2012, 105, 1895–1902. [Google Scholar] [CrossRef]
- Romo-Chacón, A.; Martínez-Contreras, L.J.; Molina-Corral, F.J.; Acosta-Muñiz, C.H.; Ríos-Velasco, C.; León-Door, A.P.; Rivera, R. Evaluation of oregano (Lippia berlandieri) essential oil and Entomopathogenic Fungi for Varroa destructor control in colonies of honey bee, Apis mellifera. Southwest. Entomol. 2016, 41, 971–982. [Google Scholar] [CrossRef]
- Sinia, A.; Guzman-Novoa, E. Evaluation of the entomopathogenic fungi Beauveria bassiana GHA and Metarhizium anisopliae UAMH 9198 alone or in combination with thymol for the control of Varroa destructor in honey bee ( Apis mellifera ) colonies. J. Apic. Res. 2018, 57, 308–316. [Google Scholar] [CrossRef]
- Sammataro, D.; Degrandi-Hoffman, G.; Needham, G.; Wardell, G. Some Volatile Plant Oils as Potential Control Agents for Varroa Mites (Acari: Varroidae) in Honey Bee Colonies (Hymenoptera: Apidae). Am. Bee J. 1998, 138. [Google Scholar]
- Vieira, G.H.C.; da Paz Andrade, W.; Nascimento, D.M. do Uso de óleos essenciais no controle do ácaro Varroa destructor em Apis mellifera. Pesqui. Agropecuária Trop. 2012, 42, 317–322. [Google Scholar] [CrossRef]
- Su, X.; Zheng, H.; Fei, Z.; Hu, F. Effectiveness of herbal essential oils as fumigants to control Varroa destructor in laboratory assays. Chin. J. Appl. Entomol. 2012, 49, 1189–1195. [Google Scholar]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G.H. Laboratory cage studies on the efficacy of some medicinal plant essential oils for controlling varroosis in Apis mellifera (Hym.: Apidae). Syst. Appl. Acarol. 2016, 21, 1681–1692. [Google Scholar] [CrossRef]
- Aglagane, A.; Laghzaoui, E.-M.; Soulaimani, B.; Er-Rguibi, O.; Abbad, A.; Mouden, E.H.E.; Aourir, M. Acaricidal activity of Mentha suaveolens subsp. timija, Chenopodium ambrosioides, and Laurus nobilis essential oils, and their synergistic combinations against the ectoparasitic bee mite, Varroa destructor (Acari: Varroidae). J. Apic. Res. 2022, 61, 9–18. [Google Scholar] [CrossRef]
- Fuselli, S.R.; Maggi, M.; García De La Rosa, S.B.; Principal, J.; Eguaras, M.J.; Fritz, R. In vitro antibacterial and antiparasitic effect of citrus fruit essential oils on the honey bee pathogen Paenibacillus larvae and the parasitic mite Varroa destructor. J. Apic. Res. 2009, 48. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In vitro evaluation of acute toxicity of five citrus spp. Essential oils towards the parasitic mite Varroa destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Su, X.; Wang, S.; Ji, T.; Hu, F.L.; Zheng, H.Q. Fumigant toxicity of eleven Chinese herbal essential oils against an ectoparasitic mite (Varroa destructor) of the honey bee (Apis mellifera). J. Apic. Res. 2019, 59, 204–210. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Carresi, C.; Cardamone, A.; Federico, G.; Roncada, P.; Palma, E.; Musella, V.; Britti, D. Comparison of Two Diagnostic Techniques for the Apis mellifera Varroatosis: Strengths, Weaknesses and Impact on the Honeybee Health. Vet. Sci. 2022, 9, 354. [Google Scholar] [CrossRef]
- Lindberg, C.M.; Melathopoulos, A.P.; Winston, M.L. Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite. J. Econ. Entomol. 2000, 93, 189–198. [Google Scholar] [CrossRef]
- Gashout, H.A.; Guzmán-Novoa, E. Acute toxicity of Essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.). J. Apic. Res. 2009, 48, 263–269. [Google Scholar] [CrossRef]
- Abed, M.S.; Salim, H.A. Effectiveness of Eco-friendly Oils and Methods of Fumigation against Varroa Mite Infesting Varroa destructor Apis mellifera Colony. Indian J. Ecol. 2020, 47, 281–283. [Google Scholar]
- Ariana, A.; Ebadi, R.; Tahmasebi, G. Laboratory evaluation of some plant essences to control Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 2002, 27, 319–327. [Google Scholar] [CrossRef]
- Abd El-Wahab, T.E.; Ebada, M.A. Evaluation of some volatile plant oils and Mavrik against Varroa destructor in honey bee colonies. J. Appl. Sci. Res 2006, 2, 514–521. [Google Scholar]
- Kraus, B. Untersuchungen zur Olfaktorischen Orientierung von’Varroa jacobsoni’Oudemans und Deren Störung Durch Etherische Öle. Ph.D. Thesis, Universität in Frankfurt am Main, Frankfurt, Germany, 1990. [Google Scholar]
- Ruiz, J.A.; Flores, J.M.; Ruiz, J.M. Eficacia de plantas medicinales contra Varroa jacobsoni Oud. en laboratorio. In Proceedings of the Actas del III Congreso de la Sociedad Espanola de Agricultura Ecológica, Córdoba, Spain; 1998. [Google Scholar]
- Eguaras, M.J.; Fuselli, S.; Gende, L.; Fritz, R.; Ruffinengo, S.R.; Clemente, G.; Gonzalez, A.; Bailac, P.N.; Ponzi, M.I. An in vitro evaluation of Tagetes minuta essential oil for the control of the honeybee pathogens Paenibacillus larvae and Ascosphaera apis, and the parasitic mite Varroa destructor. J. Essent. Oil Res. 2005, 17, 336–340. [Google Scholar] [CrossRef]
- Ruffinengo, S.; Eguaras, M.; Floris, I.; Faverin, C.; Bailac, P.; Ponzi, M. LD50 and repellent effects of essential oils from argentinian wild plant species on Varroa destructor. J. Econ. Entomol. 2005, 98, 651–655. [Google Scholar] [CrossRef]
- Ruffinengo, S.R.; Maggi, M.; Fuselli, S.; Floris, I.; Clemente, G.; Firpo, N.H.; Bailac, P.N.; Ponzi, M.I. Laboratory evaluation of Heterothalamus alienus essential oil against different pests of Apis mellifera. J. Essent. Oil Res. 2006, 18, 704–707. [Google Scholar] [CrossRef]
- Damiani, N.; Gende, L.B.; Bailac, P.; Marcangeli, J.A.; Eguaras, M.J. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitol. Res. 2009, 106, 145–152. [Google Scholar] [CrossRef]
- Gende, L.; Maggi, M.; Van Baren, C.; Di Leo, A.; Bandoni, A.; Fritz, R.; Eguaras, M. Antimicrobial and miticide activities of Eucalyptus globulus essential oils obtained from different Argentine regions. Span. J. Agric. Res. 2010, 8, 642–650. [Google Scholar] [CrossRef]
- Maggi, M.; Gende, L.; Russo, K.; Fritz, R.; Eguaras, M. Bioactivity of Rosmarinus officinalis essential oils against Apis mellifera, Varroa destructor and Paenibacillus larvae related to the drying treatment of the plant material. Nat. Prod. Res. 2011, 25, 397–406. [Google Scholar] [CrossRef]
- Damiani, N.; Gende, L.B.; Maggi, M.D.; Palacios, S.; Marcangeli, J.A.; Eguaras, M.J. Repellent and acaricidal effects of botanical extracts on Varroa destructor. Parasitol. Res. 2011, 108, 79–86. [Google Scholar] [CrossRef]
- Chamorro, E.R.; Sequeira, A.F.; Velasco, G.A.; Zalazar, M.F.; Ballerini, G.A. Evaluation of Tagetes minuta L. essential oils to control Varroa destructor (Acari: Varroidae). J. Argent. Chem. Soc. 2011, 98, 39–47. [Google Scholar]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G. Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 2011, 55, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Umpiérrez, M.L.; Santos, E.; Mendoza, Y.; Altesor, P.; Rossini, C. Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitol. Res. 2013, 112, 3389–3400. [Google Scholar] [CrossRef]
- Sabahi, Q.; Hamiduzzaman, M.M.; Barajas-Pérez, J.S.; Tapia-Gonzalez, J.M.; Guzman-Novoa, E. Toxicity of anethole and the essential oils of lemongrass and sweet marigold to the parasitic mite Varroa destructor and their selectivity for honey bee (Apis mellifera) workers and larvae. Psyche 2018, 2018, 6196289. [Google Scholar] [CrossRef]
- Iglesias, A.; Mitton, G.; Szawarski, N.; Cooley, H.; Ramos, F.; Arcerito, F.M.; Brasesco, C.; Ramirez, C.; Gende, L.; Eguaras, M. Essential oils from Humulus lupulus as novel control agents against Varroa destructor. Ind. Crops Prod. 2020, 158, 113043. [Google Scholar] [CrossRef]
- Karimi, P.; Malekifard, F.; Tavassoli, M. Medicinal plant essential oils as promising Anti-Varroa agents: Oxidative/nitrosative screens. S. Afr. J. Bot. 2022, 148, 344–351. [Google Scholar] [CrossRef]
- Castagna, F.; Bava, R.; Piras, C.; Carresi, C.; Musolino, V.; Lupia, C.; Marrelli, M.; Conforti, F.; Palma, E.; Britti, D.; et al. Green Veterinary Pharmacology for Honey Bee Welfare and Health: Origanum heracleoticum L. (Lamiaceae) Essential Oil for the Control of the Apis mellifera Varroatosis. Vet. Sci. 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Colin, M.E. Essential oils of Labiatae for controlling honey bee varroosis. J. Appl. Entomol. 1990, 110, 19–25. [Google Scholar] [CrossRef]
- Nazer, I.K.; Al-Abbadi, A. Control of Varroa Mite (Varroa destructor) on Honeybees by Aromatic Oils and Plant Materials. J. Agric. Mar. Sci. 2003, 8, 15–20. [Google Scholar] [CrossRef]
- Principal, J.; D’Aubeterre, R.; Virguez, G. Esencia de Eucalipto para controlar Varroa destructor en colonias de Apis mellífera L. Gac. Cienc. Vet. 2005, 9, 1–6. [Google Scholar]
- Castagnino, G.L.B.; de Oliveira Orsi, R. Produtos naturais para o controle do ácaro Varroa destructor em abelhas africanizadas. Pesqui. Agropecuária Bras. 2012, 47, 738–744. [Google Scholar] [CrossRef]
- Kütükoğlu, F.; GİRİŞGİN, A.O.; Aydin, L. Varroacidal efficacies of essential oils extracted from Lavandula officinalis, Foeniculum vulgare, and Laurus nobilis in naturally infested honeybee (Apis mellifera L.) colonies. Turk. J. Vet. Anim. Sci. 2012, 36, 554–559. [Google Scholar] [CrossRef]
- Goswami, V.; Khan, M.S. Management of varroa mite, Varroa destructor by essential oil and formic acid in Apis mellifera Linn. colonies. J. Nat. Prod 2013, 6, 206–210. [Google Scholar]
- El-Hady, A.M.; Nowar, E.E.; EL-Sheikh, M.F. Evaluation of some essential oils for controlling Varroa mites and their effects on brood rearing activity in honey bee colonies. J. Plant Prot. Pathol. 2015, 6, 235–243. [Google Scholar] [CrossRef]
- Kouache, B.; Brada, M.; Saadi, A.; Fauconnier, M.L.; Lognay, G.; Heuskin, S. Chemical composition and acaricidal activity of Thymus algeriensis essential oil against Varroa destructor. Nat. Prod. Commun. 2017, 12, 1934578X1701200138. [Google Scholar] [CrossRef]
- Ramzi, H.; Ismaili, M.R.; Aberchane, M.; Zaanoun, S. Chemical characterization and acaricidal activity of Thymus satureioides C. & B. and Origanum elongatum E. & M. (Lamiaceae) essential oils against Varroa destructor Anderson & Trueman (Acari: Varroidae). Ind. Crops Prod. 2017, 108, 201–207. [Google Scholar] [CrossRef]
- Stanimirović, Z.; Glavinić, U.; Lakić, N.; Radović, D.; Ristanić, M.; Tarić, E.; Stevanović, J. Efficacy of plant-derived formulation Argus Ras in Varroa destructor control. Acta Vet. 2017, 67, 191–200. [Google Scholar] [CrossRef]
- Bakar, M.A.; Aqueel, M.A.; Raza, A.B.M.; Ullah, M.I.; Arshad, M.; Sohail, M.; Molina-Ochoa, J. Evaluation of Few Essential Oils for the Management of Parasitic Bee Mites, Varroa destructor (Acari: Varroidae) in Apis mellifera L. Colonies. Pak. J. Zool. 2017, 49. [Google Scholar] [CrossRef]
- Atmani-Merabet, G.; Belkhiri, A.; Dems, M.A.; Lalaouna, A.; Khalfaoui, Z.; Mosbah, B. Chemical composition, toxicity, and acaricidal activity of Eucalyptus globulus essential oil from Algeria. Curr. Issues Pharm. Med. Sci. 2018, 31, 89–93. [Google Scholar] [CrossRef]
- Bendifallah, L.; Belguendouz, R.; Hamoudi, L.; Arab, K. Biological activity of the Salvia officinalis L.(Lamiaceae) essential oil on Varroa destructor infested honeybees. Plants 2018, 7, 44. [Google Scholar] [CrossRef]
- Atmani-Merabet, G.; Fellah, S.; Belkhiri, A. Comparative study of two Eucalyptus species from Algeria: Chemical composition, toxicity and acaricidal effect on Varroa destructor. Curr. Issues Pharm. Med. Sci. 2020, 33, 144–148. [Google Scholar] [CrossRef]
- Regnault-Roger, C. The potential of botanical essential oils for insect pest control. Integr. Pest Manag. Rev. 1997, 2, 25–34. [Google Scholar] [CrossRef]
- Sara Burt Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 3.
- Kraus, B.; Velthuis, H.H.W.; Tingek, S. Temperature profiles of the brood nests of Apis cerana and Apis mellifera colonies and their relation to varroosis. J. Apic. Res. 1998, 37, 175–181. [Google Scholar] [CrossRef]
- Robinson, J.R. Controlled drug delivery: Past, present, and future. Control. drug Deliv. Chall. Strateg. 1997, 1–7. [Google Scholar]
- Rice, N.D.; Winston, M.L.; Whittington, R.; Higo, H.A. Comparison of release mechanisms for botanical oils to control Varroa destructor (Acari: Varroidae) and Acarapis woodi (acari: Tarsonemidae) in colonies of honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 2002, 95, 221–226. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, B.W.; Boue, S.; De-Grandi Hoffman, G.; Deeby, T.; McCready, H.; Loeffelmann, K. β-Cyclodextrins as carriers of monoterpenes into the hemolymph of the honey bee (Apis mellifera) for integrated pest management. J. Agric. Food Chem. 2008, 56, 8565–8573. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Kilchenmann, V.; Fluri, P.; Bühler, U.; Lavanchy, P. Influence of organic acids and components of essential oils on honey taste. Am. Bee J. 1999, 139, 61–63. [Google Scholar]
Family | Botanical Name | Varroa destructor Toxicity | Honeybee Toxicity | Method of Administration | Reference (Ordered by Year of Publication) |
---|---|---|---|---|---|
Myrtaceae | Syzyygium spp. | Mortality rate > 80% at 1% concentration | Equal to untreated control group | Complete exposure | Kraus et al. (1990) [161] |
Lamiaceae | Origanum spp. | Mortality rate 100% at 10% concentration | Mortality rate 20% at 10% concentration | Complete exposure | Kraus et al. (1990) [161] |
Myrtaceae | Syzyygium aromaticum | Mortality rate of 87.2% | Not evaluated | Fumigation | Sammataro et al. (1998) [147] |
Myrtaceae | Melaleuca alternifolia | Mortality rate of 59.4% | Not evaluated | Fumigation | Sammataro et al. (1998) [147] |
Lauraceae | Laurus nobilis | Mortality rate of 75.5% | Not evaluated | Fumigation | Sammataro et al. (1998) [147] |
Urticaceae | Urtica dioica | Mortality rate of 25–80% | Non toxic | Fumigation | Ruiz et al. (1998) [162] |
Rutaceae | Ruta graveolens | Mortality rate of 100% | 100% mortality rate | Fumigation | Ruiz et al. (1998) [162] |
Myrtaceae | Syzygium aromaticum | 100% at best dose (1 mg) and best time (after 48 h) | Apis mellifera LD50 estimates were not available for clove oil because of low bee mortality at all doses assayed | Complete exposure | Lindberg et al. (2000) [156] |
Lamiaceae | (1) Satureja hortensis (2) Salvia rosmarinus (3) Lavandula angustifolia (4) Origanum majorana (5) Mentha spicata | All the essences caused more than 97% mortality at 2% of concentration | Bee mortality ranged from 2–3% for thyme, spearmint, lavender and savory; Marjoram, rosemary caused 4–14% bee mortality | Contact in Petri dish | Ariana et al. (2002) [159] |
Asteraceae | Tagetes minuta | LD50 = 4.37 mg after 24 h | At the highest concentration (5%), the oil did not exhibit bee toxicity. | Complete exposure | Eguaras et al. (2005) [163] |
Asteraceae | (1) Eupatorium buniifolium (2) Tagetes minuta (3) Wedelia glauca | LD50 = 5.1077 LD50 = 3.2209 LD50 = 0.5903 | LD50 = 7.7885 LD50 = 12.3068 LD50 = 1.0925 | Complete exposure in Petri dish | Ruffinengo et al. (2005) [164] |
Anacardiacae | Schinus molle | LD50 = 1.3302 | LD50 = 23.5647 | Complete exposure in Petri dish | Ruffinengo et al. (2005) [164] |
Verbenaceae | (1) Aloysia polystachya (2) Acantholippia seriphioides (3) Lippia turbinata (4) Lippia junelliana | LD50 = 4.9819 LD50 = 1.0980 LD50 = 2.2290 LD50 = 1.9847 | LD50 = >25 LD50 = 1.2217 LD50 = 3.9751 LD50 = 4.0749 | Complete exposure in Petri dish | Ruffinengo et al. (2005) [164] |
Lamiaceae | Minthostachys mollis | LD50 = 6.6027 | LD50 = 11.7725 | Complete exposure in Petri dish | Ruffinengo et al. (2005) [164] |
Asteraceae | Heterothalamus alienus | LC50 = 1.37 mg/cage after 48 h | LC50 = 5.51 mg/cage after 48 h | Complete exposure in Petri dish | Ruffinengo et al. (2006) [165] |
Rutaceae | (1) Citrus paradisi (2) Citrus sinensis | (1) 76% mortality at 8 µL/Petri dish (2) 40% mortality at 40 µL/Petri dish | Not observed | Contact in Petri dish | Fuselli et al. (2009) [152] |
Lamiaceae | (1) Lavandula officinalis (2) Lavandula hibrida (3) Thymus vulgaris | (1) LD50 = 2.24 after 72 h (2) LD50 = 7.95 after 72 h (3) LD50 = 2.93 after 72 h | (1) LD50 = >20 after 72 h (2) LD50 = >20 after 72 h (3) LD50 = 8.05 after 72 h | Complete exposure in Petri dish | Ruffinengo et al. (2009) [166] |
Lamiaceae | (1) Origanum vulgare (2) Mentha spicata | (1) LC50 = 56.1 µg/vial after 4 h (2) LC50 = 173.2 µg/vial after 4 h | (1) LC50 = 331.3 µg/bee after 4 h (2) LC50 = 523.5 µg/bee after 4 h | Contact in glass scintillation vials | Gashout and Guzmán-Novoa (2009) [157] |
Myrtaceae | Eucalyptus globulus | LC50 (μL Petri dish−1) = 11.7 after 72 h | LC50 (μL Petri dish−1) = >20 after 72 h | Complete exposure in Petri dish | Gende et al. (2010) [167] |
Lamiaceae | (1) Salvia rosmarinus (leaves air dried) (2) Salvia rosmarinus (leaves oven dried) | (1) LC50 (µL per Petri dish) = >20 after 72 h (2) LC50 (µL per Petri dish) = 7.07 after 72 h | (1) LC50 (µL per Petri dish) = >20 after 72 h (2) LC50 (µL per Petri dish) = >20 after 72 h | Complete exposure in Petri dish | Maggi et al. (2010) [168] |
Myrtaceae | Syzygium aromaticum (floral buds) | LC50 = 0.59 µL/dish after 24 h | LC50 = 15.53 µL/dish after 24 h | Complete exposure | Damiani et al. (2011) [169] |
Asteraceae | Baccharis flabellate | LC50 = 1.14 after 48 h | LC50 = >10 after 48 h | Spraying application in Petri dish | Damiani et al. (2011) [169] |
Asteraceae | (1) Tagetes minuta (leaves of bloomed plant) (2) Tagetes minuta (leaves of not-bloomed plant) (3)Tagetes minuta (flowers) | (1) 97.7% after 6 h (2) 98.3% after 6 h (3) 100% after 6 h | 24.4% after 6 h | Contact in Petri dish | Chamorro et al. (2011) [170] |
Lamiaceae | Thymus kotschyanus (leaves) | LC50 = 1.07 µL/L air | LC50 = 5.08 µL/L air | Fumigation in Petri dish | Ghasemi et al. (2011) [171] |
Myrtaceae | Eucalyptus camaldulensis | LC50 = 1.74 µL/L air | LC50 = 3.05 µL/L air | Fumigation in Petri dish | Ghasemi et al. (2011) [171] |
Lamiaceae | Minthostachys verticillata | LC50 = 1.44 after 48 h | LC50 = >10 after 48 h | Spraying application in Petri dish | Damiani et al. (2011) [169] |
Apiaceae | Pimpinella asinum | 92.5% after 6 h at 200 µL | 3.7% after 6 h at 200 µL | Fumigation | Vieira et al. (2012) [148] |
Lamiaceae | Salvia rosmarinus | 77.5% after 6 h at 200 µL | 3.7% after 6 h at 200 µL | Fumigation | Vieira et al. (2012) [148] |
Lamiaceae | Mentha spp. | 47.5% after 6 h at 200 µL | 6.2% after 6 h at 200 µL | Fumigation | Vieira et al. (2012) [148] |
Lauraceae | Cinnamomum verum | 52.5% after 6 h at 200 µL | 5% after 6% at 200 µL | Fumigation | Vieira et al. (2012) [148] |
Myrtaceae | Syzygium aromaticum | 87.5% after 6 h at 200 µL | 13.75% after 6% at 200 µL | Fumigation | Vieira et al. (2012) [148] |
Apiaceae | Pimpinella asinum | 92.5% after 48 h | Not registered | Fumigation | Xiao-ling et al. (2012) [149] |
Myrtaceae | Syzygium aromaticum | 54% after 48 h | Not registered | Fumigation | Xiao-ling et al. (2012) [149] |
Asteraceae | Eupatorium buniifolium (leaves) | 80% after 48 h | 13% after 48 h | Fumigation | Umpiérrez et al. (2013) [172] |
Verbenaceae | Acantholippia seriphi-oides (microencapsulated oil) | 99% after 72 h | 54% after 72 h | Complete exposure in Petri dish | Ruffinengo et al. (2014) [136] |
Anacardiacae | Schinus molle (microencapsulated oil) | 87% after 72 h | 42% after 72 h | Complete exposure in Petri dish | Ruffinengo et al. (2014) [136] |
Lamiaceae | (1) Thymus kotschyanus (aerial parts) (2) Mentha longifolia (aerial parts) | (1) 84.4% after 10 h; (2) 65.5% after 10 h | (1) 7.2% after 10 h; (2) 10.13 after 10 h | Fumigation | Ghasemi et al. (2016) [150] |
Myrtaceae | Eucalyptus camaldulensis (aerial parts) | 71 % after 10 h | 12% after 10 h | Fumigation | Ghasemi et al. (2016) [150] |
Apiaeceae | Ferula gummosa roots | 49.9% after 10 h | 26% after 10 h | Fumigation | Ghasemi et al. (2016) [150] |
Poaceae | Cymbopogoncitratus | LC50 = 474.13 µg/mL after 4 h | LD50 = 54,844.0 µg/mL after 4 h | Contact in glass scintillation vials | Sabahi et al. (2018) [173] |
Asteraceae | Tagetes lucida | LC50 = 1256.27 µg/mL after 4 h | LD50 = 83,297.0 µg/mL after 4 h | Contact in glass scintillation vials | Sabahi et al. (2018) [173] |
Apiaceae | Foeniculum vulgare | LD50 (µL) = 1.837 after 48 h | LD50 (µL) = 4.055 | Fumigant toxicity in two level cage | Lin et al. (2019) [154] |
Leguminosae | Dalbergia odorifera | LD50 (µL) = 12.212 after 48 h | LD50 (µL) = 24.646 after 48 h | Fumigant toxicity in two level cage | Lin et al. (2019) [154] |
Lamiaceae | (1) Mentha haplocalyx (2) Pogostemon spp. | (1) LD50 (µL) = 2.274 after 48 h (2) LD50 (µL) = 2.047 after 48 h | LD50 (µL) = 5.003 after 48 h 2) LD50 (µL) = 3.745 after 48 h | Fumigant toxicity in two level cage | Lin et al. (2019) [154] |
Zigiberaceae | Amomum tsao-ko | LD50 (µL) = 2.548 after 48 h | LD50 (µL) = 3.769 after 48 h | Fumigant toxicity in two level cage | Lin et al. (2019) [154] |
Cannubaceae | Humulus lupulus (flowers) victoria variety | LC50 (μL/mL) = 2.7 after 48 h | NOAEL of 5 μL/mL (X2(1, N = 50) = 5.35, p = 0.02) | Complete exposure in Petri dish | Iglesisas et al. (2020) [174] |
Rutaceae | (1) Citrus paradisi (2) Citrus limon (3) Citrus bergamia (4) Citrus sinensis (5) Citrus reticulata | (1) 65% after 1 h (2) 82% after 1 h (3) 77% after 1 h (4) 89% after 1 h (5) 67% after 1 h | No mortality was reported | Contact in Eppendorf tube | Bava et al. (2021) [153] |
Chenopodiaceae | Chenopodium ambrosioides | LD50 = 5.238 mL/Lair | Not evaluated | Fumigation in glass vial | Aglagane et al. (2022) [151] |
Lamiaceae | Mentha suaveolens subsp. timija | LD50 = 3.360 µL/Lair | Not evaluated | Fumigation in glass vial | Aglagane et al. (2022) [151] |
Lauraceae | Laurus nobilis | LD50 = 5.470 µL/Lair | Not evaluated | Fumigation in glass vial | Aglagane et al. (2022) [151] |
Lamiaceae | Melissa officinalis | 100% (concentration 25 µL/L air) after 25 h | 1.7% after 25 h | Fumigation in two level cage | Karimi et al. (2022) [175] |
Fagaceae | Quercus infectoria | 100% (concentration 25 µL/L air) after 25 h | 1.7% after 25 h | Fumigation in two level cage | Karimi et al. (2022) [175] |
Caesalpiniaceae | Ceratonia siliqua | 100% (concentration 25 µL/L air) after 25 h | 2% after 25 h | Fumigation in two level cage | Karimi et al. (2022) [175] |
Lamiaceae | Origanum heracleoticum | 90.9% at a concentration of 2 mg/mL (contact); 84% after 90 min. (fumigation) | No mortality was reported | Contact toxicity in Eppendorf tube and fumigation in Eppendorf tube | Castagna et al. (2022) [176] |
Apiaceae | Foeniculum vulgare sbps. piperitum (whole plant) | 68% in Eppendorf tube, after 48 h, and at concentration of 2 mg/mL; 53.3% in two level cage, after 48 h, and at concentration of 40 mg/mL | At a concentration of 7% (70 mg/mL), after 48 h, 80% of the tested honeybees died | Fumigation in Eppenderf tube and in two level cage | Bava et al. (2022) [137] |
Family | Botanical Name | Varroa destructor Toxicity | Honeybee Toxicity | Method of Administration | Reference (Ordered by Year of Publication) |
---|---|---|---|---|---|
Lamiaceae | Water emulsion of Thymus spp. (1%) and Salvia spp. (0.5%) | 95% mortality rate | Not evaluated | Aerosol treatment repeated four times at intervals of 3–4 days | Colin et al. (1990) [177] |
Lamiaceae | (1) Lavandula coronopifolia (2) Menta piperita | (1) No effect (2) No effect | (1) Not evaluated (2) Not evaluated | Fumigation | Al-Abbadi and Nazer (2003) [178] |
Myrtaceae | Eucalyptus sp. | 50% mortality rate | Not evaluated | Fumigation | Principal et al. (2005) [179] |
Rutaceae | Citrus aurantium | General reduction in infestation rate | Brood rearing activity increased | Fumigation | Abd El-Wahab and Ebada (2006) [160] |
Poaceae | Cymbopogon winteranius | General reduction in infestation rate | Brood rearing activity increased | Fumigation | Abd El-Wahab and Ebada (2006) [160] |
Poaceae | Cymbopogon flexuosus | General reduction in infestation rate | Brood rearing activity increased | Fumigation | Abd El-Wahab and Ebada (2006) [160] |
Rutaceae | Ruta graveolens | 83% after 24 h | Not evaluated | Fumigation | Castagnino and Orsi (2012) [180] |
Myrtaceae | Eucalyptus spp. | 86.4% after 24 h | Not evaluated | Fumigation | Castagnino and Orsi (2012) [180] |
Lamiaceae | Mentha piperita | 81.3% after 24 h | Not evaluated | Fumigation | Castagnino and Orsi (2012) [180] |
Lamiaceae | Lavandula officinalis (leaves) | Average mortality calculated at 3 years = 78.9% | Not evaluated | Fumigation | Kütükoğlu et al. (2012) [181] |
Apiaceae | Foeniculum vulgare (leaves) | Average mortality calculated at 3 years = 70.5% | Not evaluated | Fumigation | Kütükoğlu et al. (2012) [181] |
Lauraceae | Laurus nobilis (leaves) | Average mortality calculated at 3 years = 70.9% | Not evaluated | Fumigation | Kütükoğlu et al. (2012) [181] |
Amaryllidaceae | Allium sativum | 76.7% average mortality | Not evaluated | Strip of blotting paper soaked with 5 mL of EO | Goswami and Khan (2013) [182] |
Lauraceae | Cinnamomum verum | 80.9% average mortality with a mixture of EO (30%), olive oil (70%) and talcum powder | Not evaluated | Fumigation | El-Hady et al. (2015) [183] |
Apiaceae | Pimpinella anisum | 80% average mortality with a mixture of EO (30%), olive oil (70%) and talcum powder | Not evaluated | Fumigation | El-Hady et al. (2015) [183] |
Verbenaceae | Lippia berlandieri | 74% mite mortality obtained with 1.16 mL of EO after 21 days | Not evaluated | Fumigation | Romo- Chacón et al. (2016) [145] |
Lamiaceae | Thymus algeriensis | 32.6% mortality after two months treatment | No negative effect on the brood | Spraying | Kouache et al. (2017) [184] |
Lamiaceae | Origanum elongatum (foliar biomass) | 81.8% after one day of treatment | Not observed | Fumigation | Ramzi et al. (2017) [185] |
Lamiaceae | Thymus satureioides (foliar biomass) | 60.8% after one day of treatment | Not observed | Fumigation | Ramzi et al. (2017) [185] |
Lamiaceae | Blend of Thymus satureioides and Origanum elongatum | 93.9% after one day of treatment | Not observed | Fumigation | Ramzi et al. (2017) [185] |
Lamiaceae | Origanum vulgare | 97.4% after 4 weeks | Equal to untreated control group | Electric vaporizer with 20 mL of oregano oil | Sabahi et al. (2017) [135] |
Lamiaceae and Myrtaceae | Blend of Origanum vulgare and Syzygium aromaticum | 57.8% after 4 weeks | Not evaluated | Fumigation | Sabahi et al. (2017) [135] |
Fabaceae, Ginkgoaceae, Febaceae and Lamiaceae | Blend of Sophora flavescens, Ginkgo biloba, Gleditsia sinensis and Teucrium chamaedrys | 80.8% after 20 days | Not evaluated | Fumigation | Stanimirović et al. (2017) [186] |
Myrtaceae | Azadirachta indica | 82.6% after 72 h | Not evaluated | Fumigation | Bakar et al. (2017) [187] |
Myrtaceae | Eucalyptus globulus (leaves) | 15.6% using 1 mL/week for 3 weeks | Not evaluated | Fumigation | Merabet et al. (2018) [188] |
Myrtaceae | Eucalyptus globulus (leaves) and thymol | 57% using 1 mL/week for 3 weeks | Not evaluated | Fumigation | Merabet et al. (2018) [188] |
Lamiaceae | Salvia officinalis (aerial parts) | Calculated infestation rate before treatment 16.24%; infestation rate after treatment 0.9% with a dose of 20% | Not evaluated | Fumigation | Bendifallah et al. (2018) [189] |
Myrtaceae | Eucalyptus amygdalina (leaves) | Mean mortality 14.1% | Not evaluated | Fumigation | A. Merabet et al. (2020) [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bava, R.; Castagna, F.; Palma, E.; Marrelli, M.; Conforti, F.; Musolino, V.; Carresi, C.; Lupia, C.; Ceniti, C.; Tilocca, B.; et al. Essential Oils for a Sustainable Control of Honeybee Varroosis. Vet. Sci. 2023, 10, 308. https://doi.org/10.3390/vetsci10050308
Bava R, Castagna F, Palma E, Marrelli M, Conforti F, Musolino V, Carresi C, Lupia C, Ceniti C, Tilocca B, et al. Essential Oils for a Sustainable Control of Honeybee Varroosis. Veterinary Sciences. 2023; 10(5):308. https://doi.org/10.3390/vetsci10050308
Chicago/Turabian StyleBava, Roberto, Fabio Castagna, Ernesto Palma, Mariangela Marrelli, Filomena Conforti, Vincenzo Musolino, Cristina Carresi, Carmine Lupia, Carlotta Ceniti, Bruno Tilocca, and et al. 2023. "Essential Oils for a Sustainable Control of Honeybee Varroosis" Veterinary Sciences 10, no. 5: 308. https://doi.org/10.3390/vetsci10050308
APA StyleBava, R., Castagna, F., Palma, E., Marrelli, M., Conforti, F., Musolino, V., Carresi, C., Lupia, C., Ceniti, C., Tilocca, B., Roncada, P., Britti, D., & Musella, V. (2023). Essential Oils for a Sustainable Control of Honeybee Varroosis. Veterinary Sciences, 10(5), 308. https://doi.org/10.3390/vetsci10050308