Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Milk Samples and Chemical Analysis
2.3. Data Selection
2.4. Statistical Analysis
3. Results
3.1. Amino Acid Concentrations in Sow Milk at d 0 (Colostrum), d 3, and d 10 after Parturition
3.2. Amino Acid Profile of Sow Milk at d 0 (Colostrum), d 3, and d 10 after Parturition
3.3. Amino Acid Profile of Sow Milk across Studies
3.4. Amino Acid Profile of Milk across Animal Species
3.5. Comparing Amino Acid Profiles of Sow Milk with Piglet Body Composition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fetrow, J.S.; Palumbo, M.J.; Berg, G. Patterns, structures, and amino acid frequencies in structural building blocks, a protein secondary structure classification scheme. Proteins Struct. Funct. Bioinform. 1997, 27, 249–271. [Google Scholar] [CrossRef]
- Jewell, J.L.; Russell, R.C.; Guan, K.-L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell. Biol. 2013, 14, 133–139. [Google Scholar] [CrossRef]
- Wang, C.; Kang, C.; Xian, Y.; Zhang, M.; Chen, X.; Pei, M.; Zhu, W.; Hang, S. Sensing of L-Arginine by Gut-Expressed Calcium Sensing Receptor Stimulates Gut Satiety Hormones Cholecystokinin and Glucose-Dependent Insulinotropic Peptide Secretion in Pig Model. J. Food Sci. 2018, 83, 2394–2401. [Google Scholar] [CrossRef]
- Zdraljevic, S.; Fox, B.W.; Strand, C.; Panda, O.; Tenjo, F.J.; Brady, S.C.; Crombie, T.A.; Doench, J.G.; Schroeder, F.C.; Andersen, E.C.; et al. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. elife 2019, 8, e40260. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Datta, S.; Johnson, G.A.; Li, P.; Satterfield, M.C.; Spencer, T. Proline metabolism in the conceptus: Implications for fetal growth and development. Amino Acids 2008, 35, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Yin, Y.-L.; Chu, W.; Liu, Z.; Deng, D.; Li, T.; Huang, R.; Zhang, J.; Tan, B.; Wang, W.; et al. Dietary Arginine Supplementation Increases mTOR Signaling Activity in Skeletal Muscle of Neonatal Pigs. J. Nutr. 2008, 138, 867–872. [Google Scholar] [CrossRef]
- Geiger, R.; Rieckmann, J.C.; Wolf, T.; Basso, C.; Feng, Y.; Fuhrer, T.; Kogadeeva, M.; Picotti, P.; Meissner, F.; Mann, M.; et al. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016, 167, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2007, 33, 547–562. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Arginine metabolism: Boundaries of our knowledge. J. Nutr. 2007, 137, 1602s–1609s. [Google Scholar] [CrossRef] [PubMed]
- Montañez, R.; Rodriguez-Caso, C.; Jiménez, F.M.S.; Medina, M.A. In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells. Amino Acids 2008, 34, 223–229. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Liu, S.; Lévesque, C.L.; Zhao, F.; Yin, J.; Dong, B. Branched chain amino acids alter fatty acid profile in colostrum of sows fed a high fat diet. J. Anim. Sci. Biotechnol. 2020, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Rose, W.C.; Oesterling, M.J.; Womack, M. Comparative growth on diets containing ten and 19 amino acids, with further observations upon the role of glutamic and aspartic acids. J. Biol. Chem. 1948, 176, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Li, P.; Knabe, D.A.; Kim, S.W.; Lynch, C.J.; Hutson, S.M.; Wu, G. Lactating Porcine Mammary Tissue Catabolizes Branched-Chain Amino Acids for Glutamine and Aspartate Synthesis. J. Nutr. 2006, 139, 1502–1509. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yao, K.; Yin, Y.; Wu, G. Endogenous Synthesis of Amino Acids Limits Growth, Lactation, and Reproduction in Animals. Adv. Nutr. 2016, 7, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Brunton, J.A.; Baldwin, M.P.; Hanna, R.A.; Bertolo, R.F. Proline Supplementation to Parenteral Nutrition Results in Greater Rates of Protein Synthesis in the Muscle, Skin, and Small Intestine in Neonatal Yucatan Miniature Piglets. J. Nutr. 2012, 142, 1004–1008. [Google Scholar] [CrossRef]
- Cabrera, R.A.; Usry, J.L.; Arrellano, C.; Nogueira, E.T.; Kutschenko, M.; Moeser, A.J.; Odle, J. Effects of creep feeding and supplemental glutamine or glutamine plus glutamate (Aminogut) on pre- and post-weaning growth performance and intestinal health of piglets. J. Anim. Sci. Biotechnol. 2013, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Wu, G.; Sun, Y.; Wang, B.; He, B.; Dai, Z.; Wu, Z. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J. Nutr. 2015, 145, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Bertocchi, M.; Bosi, P.; Luise, D.; Motta, V.; Salvarani, C.; Ribani, A.; Bovo, S.; Simongiovanni, A.; Matsunaga, K.; Takimoto, T.; et al. Dose-response of different dietary leucine levels on growth performance and amino acid metabolism in piglets differing for aminoadipate-semialdehyde synthase genotypes. Sci. Rep. 2019, 9, 18496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Albrecht, E.; Sciascia, Q.; Li, Z.; Görs, S.; Schregel, J.; Metges, C.; Maak, S. Effects of Oral Glutamine Supplementation on Early Postnatal Muscle Morphology in Low and Normal Birth Weight Piglets. Animals 2020, 10, 1976. [Google Scholar] [CrossRef]
- Scano, P.; Murgia, A.; Demuru, M.; Consonni, R.; Caboni, P. Metabolite profiles of formula milk compared to breast milk. Food Res. Int. 2016, 87, 76–82. [Google Scholar] [CrossRef]
- Wu, G.; Knabe, D.A.A. Free and protein-bound amino acids in sow’s colostrum and milk. J. Nutr. 1994, 124, 415–424. [Google Scholar] [CrossRef]
- Mahan, D.C.; Shields, R.G. Essential and nonessential amino acid composition of pigs from birth to 145 kilograms of body weight, and comparison to other studies. J. Anim. Sci. 1998, 76, 513–521. [Google Scholar] [CrossRef]
- Csapó, J.; Martin, T.G.; Csapó-Kiss, Z.S.; Házas, Z. Protein, fats, vitamin and mineral concentrations in porcine colostrum and milk from parturition to 60 days. Int. Dairy J. 1996, 6, 881–902. [Google Scholar] [CrossRef]
- Kim, S.W.; McPherson, R.L.; Wu, G. Dietary arginine supplementation enhances the growth of milk-fed young pigs. J. Nutr. 2004, 134, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Jentsch, W.; Kuhla, S.; Wittenburg, H.; Kreienbring, F.; Scholze, H.; Rudolph, P.E.; Metges, C.C. Effects of dietary energy intake during gestation and lactation on milk yield and composition of first, second and fourth parity sows. Arch Anim. Nutr. 2007, 61, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, L.; Ramos-Morales, E.; Adarve, G.; Díaz-Castro, J.; Martínez, L.; Sampelayo, M. Composition of goat and cow milk produced under similar conditions and analyzed by identical methods. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Garcia-Rodenas, C.L.; Affolter, M.; Vinyes-Pares, G.; De Castro, C.A.; Karagounis, L.G.; Zhang, Y.; Wang, P.; Thakkar, S.K. Amino Acid Composition of Breast Milk from Urban Chinese Mothers. Nutrients 2016, 8, 606. [Google Scholar] [CrossRef]
- Mudd, A.T.; Alexander, L.S.; Johnson, S.K.; Getty, C.M.; Malysheva, O.V.; A Caudill, M.; Dilger, R.N. Perinatal Dietary Choline Deficiency in Sows Influences Concentrations of Choline Metabolites, Fatty Acids, and Amino Acids in Milk throughout Lactation. J. Nutr. 2016, 146, 2216–2223. [Google Scholar] [CrossRef]
- Gu, F.; Wang, D.; Yang, D.; Liu, J.; Ren, D. Short communication: Effects of dietary N-carbamoylglutamate supplementation on the milk amino acid profile and mozzarella cheese quality in mid-lactating dairy cows. J. Dairy Sci. 2020, 103, 4935–4940. [Google Scholar] [CrossRef]
- Rezaei, R.; Gabriel, A.S.; Wu, G. Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids 2022, 54, 1055–1068. [Google Scholar] [CrossRef]
- Patterson, J.K.; Lei, X.G.; Miller, D.D. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp. Biol. Med. 2008, 233, 651–664. [Google Scholar] [CrossRef]
- Gerosa, S.; Skoet, J. Milk Availability: Trends in Production and Demand and Medium-Term Outlook; Sematic Scholar: Seattle, WA, USA, 2012. [Google Scholar]
- Gonzalez, L.M.; Moeser, A.J.; Blikslager, A.T. Porcine models of digestive disease: The future of large animal translational research. Transl. Res. J. Lab. Clin. Med. 2015, 166, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Le Boucher, J.; Charret, C.; Coudray-Lucas, C.; Giboudeau, J.; Cynober, L. Amino acid determination in biological fluids by automated ion-exchange chromatography: Performance of Hitachi L-8500A. Clin. Chem. 1997, 43, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Pappa-Louisi, A.; Nikitas, P.; Agrafiotou, P.; Papageorgiou, A. Optimization of separation and detection of 6-aminoquinolyl derivatives of amino acids by using reversed-phase liquid chromatography with on line UV, fluorescence and electrochemical detection. Anal. Chim. Acta 2007, 593, 92–97. [Google Scholar] [CrossRef]
- Thompson, A.L. Developmental origins of obesity: Early feeding environments, infant growth, and the intestinal microbiome. Am. J. Hum. Biol. 2012, 24, 350–360. [Google Scholar] [CrossRef]
- World Health Organization. WHO guidelines approved by the guidelines review committee. In WHO Recommendations on Postnatal Care of the Mother and Newborn; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Zhao, P.Y.; Zhang, Z.F.; Lan, R.X.; Liu, W.C.; Kim, I.H. Effect of lysophospholipids in diets differing in fat contents on growth performance, nutrient digestibility, milk composition and litter performance of lactating sows. Animal 2017, 11, 984–990. [Google Scholar] [CrossRef]
- Jin, C.; Fang, Z.; Lin, Y.; Che, L.; Wu, C.; Xu, S.; Feng, B.; Li, J.; Wu, D. Influence of dietary fat source on sow and litter performance, colostrum and milk fatty acid profile in late gestation and lactation. Anim. Sci. J. 2017, 88, 1768–1778. [Google Scholar] [CrossRef]
- Flummer, C.; Theil, P.K. Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. J. Anim. Sci. 2012, 90 (Suppl. 4), 372–374. [Google Scholar] [CrossRef]
- King, R.H.; Rayner, C.J.; Kerr, M. A note on the amino acid composition of sow’s milk. Anim. Prod. 2016, 57, 500–502. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, Z.; Xu, X.; Tian, Q.; Ma, X.; Long, S.; Piao, M.; Cheng, Z.; Piao, X. Effects of the standardized ileal digestible valine: Lysine ratio on performance, milk composition and plasma indices of lactating sows. Anim. Sci. J. 2017, 88, 1082–1092. [Google Scholar] [CrossRef]
- Aguinaga, M.A.; Gómez-Carballar, F.; Nieto, R.; Aguilera, J.F. Utilization of milk amino acids by the suckling Iberian piglet. J. Anim. Physiol. Anim. Nutr. 2011, 95, 771–780. [Google Scholar] [CrossRef]
- Elliott, R.F.; Noot, G.W.V.; Gilbreath, R.L.; Fisher, H. Effect of dietary protein level on composition changes in sow colostrum and milk. J. Anim. Sci. 1971, 32, 1128–1137. [Google Scholar] [CrossRef]
- Blachier, F.; Guihot-Joubrel, G.; Vaugelade, P.; Le Boucher, J.; Bernard, F.; Duée, P.; Cynober, L. Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 1999, 60, 349–357. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Johnson, G.A.; Knabe, D.A.; Burghardt, R.; Spencer, T.; Li, X.L.; Wang, J. Triennial Growth Symposium: Important roles for L-glutamine in swine nutrition and production. J. Anim. Sci. 2011, 89, 2017–2030. [Google Scholar] [CrossRef]
- Amorim, A.B.; Berto, D.A.; Saleh MA, D.; Miassi, G.M.; Ducatti, C. Dietary glutamine, glutamic acid and nucleotides increase the carbon turnover (δ 13C) on the intestinal mucosa of weaned piglets. Animal 2017, 11, 1472–1481. [Google Scholar] [CrossRef]
- He, Y.; Fan, X.; Liu, N.; Song, Q.; Kou, J.; Shi, Y.; Luo, X.; Dai, Z.; Yang, Y.; Wu, Z.; et al. l-Glutamine Represses the Unfolded Protein Response in the Small Intestine of Weanling Piglets. J. Nutr. 2019, 149, 1904–1910. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.V.; Soares, B.P.; Pimpão, C.; Pinto, R.M.A.; Costa, T.; Freire, J.P.B.; Corrent, E.; Chalvon-Demersay, T.; Prates, J.A.M.; Lopes, P.A.; et al. Glutamine and cystine-enriched diets modulate aquaporins gene expression in the small intestine of piglets. PLoS ONE 2021, 16, e0245739. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Gómez, M.; García-Contreras, C.; Astiz, S.; Torres-Rovira, L.; Pesantez-Pacheco, J.; Heras-Molina, A.; Madrigal, T.C.; López-Bote, C.; Óvilo, C.; González-Bulnes, A.; et al. Effects of L-Glutamine Supplementation during the Gestation of Gilts and Sows on the Offspring Development in a Traditional Swine Breed. Animals 2021, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J. Textbook of Biochemistry with Clinical Correlations, 6th ed.; Thomas, M.D., Ed.; Wiley-Liss, John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 1208. ISBN 0-471-67808-2. [Google Scholar]
- Baker, D.H. Advances in protein-amino acid nutrition of poultry. Amino Acids 2009, 37, 29–41. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.; Rafii, M.; Sgro, M.; O Ball, R.; Pencharz, P. Arginine is synthesized from proline, not glutamate, in enterally fed human preterm neonates. Pediatr. Res. 2011, 69, 46–50. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, X.; Satterfield, M.C.; Smith, S.B.; Spencer, T.; et al. Functional amino acids in swine nutrition and production. Dyn. Anim. Nutr. 2010, 69, 98. [Google Scholar]
- Bauchart-Thevret, C.; Cottrell, J.; Stoll, B.; Burrin, D.G. First-pass splanchnic metabolism of dietary cysteine in weanling pigs. J. Anim. Sci. 2011, 89, 4093–4099. [Google Scholar] [CrossRef]
- Escobar, J.; Frank, J.W.; Suryawan, A.; Nguyen, H.V.; Kimball, S.R.; Jefferson, L.S.; Davis, T.A. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E914–E921. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Gondret, F.; Matte, J.J.; Quesnel, H. Towards amino acid recommendations for specific physiological and patho-physiological states in pigs. Proc. Nutr. Soc. 2012, 71, 425–432. [Google Scholar] [CrossRef]
- Wiltafsky, M.K.; Pfaffl, M.W.; Roth, F.X. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. Br. J. Nutr. 2010, 103, 964–976. [Google Scholar] [CrossRef]
- Mason, G.F.; Gruetter, R.; Rothman, D.L.; Behar, K.L.; Shulman, R.G.; Novotny, E.J. Simultaneous Determination of the Rates of the TCA Cycle, Glucose Utilization, α-Ketoglutarate/Glutamate Exchange, and Glutamine Synthesis in Human Brain by NMR. J. Cereb. Blood Flow Metab. 1995, 15, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Knabe, D.A.; Yan, W.; Flynn, N.E. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am. J. Physiol. 1995, 268, R334–R342. [Google Scholar] [CrossRef]
- Pardo, B.; Rodrigues, T.; Contreras, L.; Garzón, M.; Llorente-Folch, I.; Kobayashi, K.; Saheki, T.; Cerdan, S.; Satrústegui, J. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J. Cereb. Blood Flow Metab. 2011, 31, 90–101. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Z.; Lin, G.; Hu, S.; Wang, B.; Dai, Z.; Wu, G. Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. J. Nutr. 2014, 144, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Flynn, N.E.; Knabe, D.A.; Mallick, B.K.; Wu, G. Postnatal changes of plasma amino acids in suckling pigs. J. Anim. Sci. 2000, 78, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [PubMed]
- Tsabouri, S.; Douros, K.N.; Priftis, K. Cow’s milk allergenicity. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2014, 14, 16–26. [Google Scholar] [CrossRef]
- Maines, E.; Gugelmo, G.; Tadiotto, E.; Pietrobelli, A.; Campostrini, N.; Pasini, A.; Ion-Popa, F.; Vincenzi, M.; Teofoli, F.; Camilot, M.; et al. High-protein goat’s milk diet identified through newborn screening: Clinical warning of a potentially dangerous dietetic practice. Public Health Nutr. 2017, 20, 2806–2809. [Google Scholar] [CrossRef] [PubMed]
- Turck, D. Cow’s milk and goat’s milk. World Rev. Nutr. Diet. 2013, 108, 56–62. [Google Scholar] [PubMed]
- Verduci, E.; D’elios, S.; Cerrato, L.; Comberiati, P. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef]
- Prosser, C.G. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J. Food Sci. 2021, 86, 257–265. [Google Scholar] [CrossRef]
- Brenes-Soto, A.; Dierenfeld, E.S.; Bosch, G.; Hendriks, W.H.; Janssens, G.P. Gaining insights in the nutritional metabolism of amphibians: Analyzing body nutrient profiles of the African clawed frog, Xenopus laevis. PeerJ 2019, 7, e7365. [Google Scholar] [CrossRef]
- Van Riet, M.M.; Millet, S.; Langendries, K.C.; Van Zelst, B.D.; Janssens, G.P.; Nutrition, A. Association between methylation potential and nutrient metabolism throughout the reproductive cycle of sows. J. Anim. Physiol. Anim. Nutr. 2019, 103, 858–867. [Google Scholar] [CrossRef]
- Okai, D.B.; Aherne, F.X.; Hardin, R.T. Effects of creep and starter composition on feed intake and performance of young pigs. Can. J. Anim. Sci. 1976, 56, 573–586. [Google Scholar] [CrossRef]
- Hurley, W. Composition of sow colostrum and milk. Gestating Lact. Sow 2015, 193–230. [Google Scholar]
- Heo, P.S.; Kim, D.H.; Jang, J.C.; Hong, J.S.; Kim, Y.Y. Effects of different creep feed types on pre-weaning and post-weaning performance and gut development. Asian-Australas. J. Anim. Sci. 2018, 31, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
Sow Breed | Number of Sows | Parity (Range) | Sampling Date (Day of Lactation) | Method | |
---|---|---|---|---|---|
This report | Topigs 20 | 25 | 3.65 (1–7) | D3 | IEC a |
Beyer et al. (2007) | Large White × German Landrace | 24 | 2.41 (1–4) | D3 | IEC |
Wu et al. (1994) | F1 hybrid | 10 | 3.3 (-) | D3 | Pre-column with RP-HPLC b |
Mudd et al. (2016) | Yorkshire | 14 | - | D7 | IEC |
Rezaei et al. (2022) | Yorkshire × Landrace | 30 | 2.5 (2–3) | D3 | Pre-column with RP-HPLC b |
Csapo et al. (1998) | Danish Large White + Duroc + Landrace | 30 | - | D5 | IEC |
Kim et al. (2004) | PIC Cambrough-22 | 10 | - | D7, 14, 21 | Pre-column with RP-HPLC b |
Amino Acids | Date of Lactation | p Value | ||
---|---|---|---|---|
D 0 | D 3 | D 10 | ||
Asp | 78.9 ± 14.2 a | 35.8 ± 4.4 b | 30.1 ± 3.4 c | <0.001 |
Thr | 57.1 ± 12.4 a | 19.9 ± 3.4 b | 16.6 ± 2.3 b | <0.001 |
Ser | 62.1 ± 12.5 a | 24.7 ± 3.9 b | 21.2 ± 2.9 b | <0.001 |
Glu | 137.0 ± 23.7 a | 68.4 ± 7.9 b | 61.6 ± 6.6 b | <0.001 |
Gly | 56.0 ± 11.2 a | 23.5 ± 2.9 b | 20.9 ± 2.9 b | <0.001 |
Ala | 59.8 ± 11.9 a | 24.6 ± 3.2 b | 20.5 ± 2.6 c | <0.001 |
Val | 72.5 ± 13.7 a | 26.2 ± 3.7 b | 21.9 ± 3.5 b | <0.001 |
Met | 11.0 ± 2.6 a | 5.5 ± 9.9 b | 4.9 ± 0.8 b | <0.001 |
Ileu | 38.3 ± 7.2 a | 18.5 ± 2.7 b | 16.1 ± 2.1 c | <0.001 |
Leu | 90.2 ± 17.8 a | 37.5 ± 4.9 b | 32.0 ± 4.1 c | <0.001 |
Tyr | 31.3 ± 6.5 a | 11.8 ± 2.0 b | 10.1 ± 1.5 b | <0.001 |
Phe | 34.5 ± 6.8 a | 13.8 ± 1.9 b | 12.0 ± 1.6 b | <0.001 |
Lys | 62.4 ± 11.2 a | 28.6± 3.1 b | 24.5 ± 2.7 c | <0.001 |
His | 21.1 ± 4.4 a | 9.4 ± 1.3 b | 8.2 ± 1.0 b | <0.001 |
Arg | 36.7 ± 6.9 a | 15.6 ± 2.2 b | 13.3 ± 1.9 c | <0.001 |
Pro | 97.3 ± 16.4 a | 49.3 ± 6.7 b | 44.7 ± 5.9 b | <0.001 |
EAA * | 423.7 ± 79.3 a | 174.8 ± 22.1 b | 149.5 ± 18.3 c | <0.001 |
NEAA * | 522.2 ± 93.7 a | 237.9 ± 28.8 b | 209.1 ± 22.3 c | <0.001 |
Total AA | 945.9 ± 172.3 a | 412.8 ± 50.2 b | 358.5 ± 40.0 c | <0.001 |
Amino Acids | Date of Lactation | p Value | ||
---|---|---|---|---|
D 0 | D 3 | D 10 | ||
Asp | 8.6 ± 0.2 c | 8.9 ± 0.2 a | 8.7 ± 0.2 b | <0.001 |
Thr | 5.6 ± 0.5 a | 4.4 ± 0.4 b | 4.3 ± 0.3 b | <0.001 |
Ser | 5.4 ± 0.2 a | 4.8 ± 0.3 b | 4.8 ± 0.4 b | <0.001 |
Glu | 16.2 ± 0.5 c | 18.5 ± 0.2 b | 19.2 ± 0.8 a | <0.001 |
Gly | 3.5 ± 0.3 a | 3.3 ± 0.3 b | 3.4 ± 0.5 ab | 0.005 |
Ala | 4.4 ± 0.3 a | 3.1 ± 0.30 c | 3.9 ± 0.3 b | <0.001 |
Val | 7.0 ± 0.4 a | 5.8 ± 0.4 b | 5.6 ± 0.4 c | <0.001 |
Met | 1.4 ± 0.2 b | 1.6 ± 0.1 a | 1.6 ± 0.2 a | <0.001 |
Ileu | 4.2 ± 0.2 b | 4.6 ± 0.3 a | 4.6 ± 0.2 a | <0.001 |
Leu | 9.8 ± 0.5 a | 9.3 ± 0.4 b | 9.1 ± 0.5 b | <0.001 |
Tyr | 4.7 ± 0.2 a | 4.3 ± 0.3 b | 4.3 ± 0.3 b | <0.001 |
Phe | 4.7 ± 0.2 a | 4.3 ± 0.2 b | 4.3 ± 0.2 b | <0.001 |
Lys | 7.5 ± 0.3 b | 7.9 ± 0.3 a | 7.8 ± 0.2 a | <0.001 |
His | 2.7 ± 0.1 | 2.7 ± 0.2 | 2.8 ± 0.2 | 0.301 |
Arg | 5.3 ± 0.2 a | 5.1 ± 0.3 ab | 5.0 ± 0.2 c | 0.010 |
Pro | 9.3 ± 0.6 c | 10.6 ± 0.8 b | 11.1 ± 0.72 a | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Cools, A.; Matthijs, A.; Deyn, P.P.D.; Maes, D.; Janssens, G.P.J. Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development. Vet. Sci. 2023, 10, 298. https://doi.org/10.3390/vetsci10040298
Yao R, Cools A, Matthijs A, Deyn PPD, Maes D, Janssens GPJ. Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development. Veterinary Sciences. 2023; 10(4):298. https://doi.org/10.3390/vetsci10040298
Chicago/Turabian StyleYao, Renjie, An Cools, Anneleen Matthijs, Peter P. De Deyn, Dominiek Maes, and Geert P. J. Janssens. 2023. "Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development" Veterinary Sciences 10, no. 4: 298. https://doi.org/10.3390/vetsci10040298
APA StyleYao, R., Cools, A., Matthijs, A., Deyn, P. P. D., Maes, D., & Janssens, G. P. J. (2023). Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development. Veterinary Sciences, 10(4), 298. https://doi.org/10.3390/vetsci10040298