Association of Paraoxonase-1 and NT-proBNP with Clinical, Clinico-Pathologic and Echocardiographic Variables in Dogs with Mitral Valve Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Diagnosis of MVD, made by detection of an auscultable regurgitant murmur in asymptomatic dogs or those with heart failure, and confirmedby 2D and Doppler echocardiography (thickened, nodular or prolapsing mitral valve leaflets, and presence of regurgitant blood volume). Concurrent tricuspid valve degeneration was not a criterion for exclusion since the disease progress is the same.
- No evidence of clinical signs and/or clinico-pathological abnormalities indicative of a systemic or severe disease that may affect oxidative stress, such as kidney disease, liver disease, or pronounced diffuse/localized inflammation and endocrinopathies. This evidence was based on signalment, clinical examination, and basic hematology and biochemistry profiles, as well as radiographic evaluation.
2.1. Methodology for Measuring Paraoxonase-1 (PON-1)
2.2. Methodology for Measuring NT-proBNP
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borgarelli, M.; Buchanan, J. Historical review, epidemiology and natural history of degenerative mitral valve disease. J. Vet. Cardiol. 2012, 14, 93–101. [Google Scholar] [CrossRef]
- Häggström, J.; Deulund Pedersen, H.; Kvart, C. New insights into degenerative mitral valve disease in dogs. Vet. Clin. N. Am. Small Anim. Pract. 2004, 34, 1209–1226. [Google Scholar] [CrossRef] [PubMed]
- Borgarelli, M.; Haggstrom, J. Canine degenerative myxomatous mitral valve disease: Natural history, clinical presentation and therapy. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Mattin, M.; Boswood, A.; Church, D.B.; Lopez-Alvarez, J.; McGreevy, P.D.; O’Neill, D.G.; Thomson, P.C.; Brodbelt, D.C. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J. Vet. Intern. Med. 2015, 29, 847–854. [Google Scholar] [CrossRef]
- Häggström, J.; Hansson, K.; Kvart, C.; Swenson, L. Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet. Rec. 1992, 131, 549–553. [Google Scholar] [PubMed]
- Häggström, J.; Kvart, C.; Hansson, K. Heart sounds and murmurs: Changes related to severity of chronic valvular disease in the Cavalier King Charles spaniel. J. Vet. Intern. Med. 1995, 9, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Swenson, L.; Häggström, J.; Kvart, C.; Juneja, R.K. Relationship between parental cardiac status in Cavalier King Charles spaniels and prevalence and severity of chronic valvular disease in offspring. J. Am. Vet. Med. Assoc. 1996, 208, 2009–2012. [Google Scholar] [PubMed]
- Borgarelli, M.; Zini, E.; D’Agnolo, G.; Tarducci, A.; Santilli, R.A.; Chiavegato, D.; Tursi, M.; Prunotto, M.; Haggstrom, J. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J. Vet. Cardiol. 2004, 6, 27–34. [Google Scholar] [CrossRef]
- Boswood, A. Biomarkers in cardiovascular disease: Beyond natriuretic peptides. J. Vet. Cardiol. 2009, 11 (Suppl. S1), S23–S32. [Google Scholar] [CrossRef]
- Polizopoulou, Z.; Koutinas, C. Serial analysis of serum cardiac troponin I changes and correlation with clinical findings in 46 dogs with mitral valve disease. Vet. Clin. Pathol. 2014, 43, 218–225. [Google Scholar] [CrossRef]
- Verk, B.; NemecSvete, A.; Salobir, J.; Rezar, V.; Domanjko Petric, A. Markers of oxidative stress in dogs with heart failure. J. Vet. Diagn. Investig. 2017, 29, 636–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, C.; Saril, A.; Kocaturk, M.; Tanaka, R.; Koch, J.; Ceron, J.J.; Yilmaz, Z. Changes of inflammatory and oxidative stress biomarkers in dogs with different stages of heart failure. BMC Vet. Res. 2020, 16, 433. [Google Scholar] [CrossRef] [PubMed]
- Castillo Rodriguez, C.; Wittwer Menge, F.; Ceron, J.J. Oxidative stress in veterinary medicine. Vet. Med. Int. 2011, 2011, 812086. [Google Scholar] [CrossRef] [Green Version]
- James, R.W. A long and winding road: Defining the biological role and clinical importance of paraoxonases. Clin. Chem. Lab. Med. 2006, 44, 1052–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camps, J.; Marsillach, J.; Joven, J. The paraoxonases: Role in human diseases and methodological difficulties in measurement. Crit. Rev. Clin. Lab. Sci. 2009, 46, 83–106. [Google Scholar] [CrossRef]
- Martinelli, N.; Consoli, L.; Girelli, D.; Grison, E.; Corrocher, R.; Olivieri, O. Paraoxonases: Ancient substrate hunters and their evolving role in ischemic heart disease. Adv. Clin. Chem. 2013, 59, 65–100. [Google Scholar] [CrossRef]
- Gungoren, F.; Senturk, T.; Ozturk, A.; Koz, K.; Sarandol, E.; Yesilbursa, D.; Gullulu, S.; Ozkaya, G.; Aydinlar, A. Serum paraoxonase activity in patients with ischaemic and nonischaemic dilated cardiomyopathy. Acta Cardiol. 2018, 73, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Hammadah, M.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Weber, M.; Wu, Y.; Hazen, S.L.; Butler, J.; Tang, W.H.W. High-density lipoprotein-associated paraoxonase-1 activity for prediction of adverse outcomes in outpatients with chronic heart failure. Eur. J. Heart Fail. 2017, 19, 748–755. [Google Scholar] [CrossRef]
- Tvarijonaviciute, A.; Kocaturk, M.; Cansev, M.; Tecles, F.; Ceron, J.J.; Yilmaz, Z. Serum butyrylcholinesterase and paraoxonase 1 in a canine model of endotoxemia: Effects of choline administration. Res. Vet. Sci. 2012, 93, 668–674. [Google Scholar] [CrossRef]
- Kulka, M. A review of paraoxonase 1 properties and diagnostic applications. Pol. J. Vet. Sci. 2016, 19, 225–232. [Google Scholar] [CrossRef]
- Novak, F.; Vavrova, L.; Kodydkova, J.; Novak, F., Sr.; Hynkova, M.; Zak, A.; Novakova, O. Decreased paraoxonase activity in critically ill patients with sepsis. Clin. Exp. Med. 2010, 10, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Mogarekar, M.R.; Talekar, S.J. Serum lactonase and arylesterase activities in alcoholic hepatitis and hepatitis B. Indian J. Gastroenterol. 2013, 32, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Oyama, M.A.; Singletary, G.E. The use of NT-proBNP assay in the management of canine patients with heart disease. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Hori, Y.; Kanno, N.; Iwasa, N.; Toyofuku, T.; Isayama, N.; Yoshikawa, A.; Akabane, R.; Sakatani, A.; Miyakawa, H.; et al. Comparison of N-terminal pro-atrial natriuretic peptide and three cardiac biomarkers for discriminatory ability of clinical stage in dogs with myxomatous mitral valve disease. J. Vet. Med Sci. 2021, 83, 705–715. [Google Scholar] [CrossRef] [PubMed]
- van Kimmenade, R.R.; Januzzi, J.L., Jr. The evolution of the natriuretic peptides—Current applications in human and animal medicine. J. Vet. Cardiol. 2009, 11 (Suppl. S1), S9–S21. [Google Scholar] [CrossRef]
- Serres, F.; Pouchelon, J.L.; Poujol, L.; Lefebvre, H.P.; Trumel, C.; Daste, T.; Sampedrano, C.C.; Gouni, V.; Tissier, R.; Hawa, G.; et al. Plasma N-terminal pro-B-type natriuretic peptide concentration helps to predict survival in dogs with symptomatic degenerative mitral valve disease regardless of and in combination with the initial clinical status at admission. J. Vet. Cardiol. 2009, 11, 103–121. [Google Scholar] [CrossRef]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 2009, 191, 341–366. [Google Scholar] [CrossRef] [Green Version]
- Chetboul, V.; Serres, F.; Tissier, R.; Lefebvre, H.P.; Sampedrano, C.C.; Gouni, V.; Poujol, L.; Hawa, G.; Pouchelon, J. Association of plasma N-terminal pro-B-type natriuretic peptide concentration with mitral regurgitation severity and outcome in dogs with asymptomatic degenerative mitral valve disease. J. Vet. Intern. Med. 2009, 23, 984–994. [Google Scholar] [CrossRef]
- Oyama, M.A.; Fox, P.R.; Rush, J.E.; Rozanski, E.A.; Lesser, M. Clinical utility of serum N-terminal pro-B-type natriuretic peptide concentration for identifying cardiac disease in dogs and assessing disease severity. J. Am. Vet. Med. Assoc. 2008, 232, 1496–1503. [Google Scholar] [CrossRef]
- Tarnow, I.; Olsen, L.H.; Kvart, C.; Hoglund, K.; Moesgaard, S.G.; Kamstrup, T.S.; Pedersen, H.D.; Haggstrom, J. Predictive value of natriuretic peptides in dogs with mitral valve disease. Vet. J. 2009, 180, 195–201. [Google Scholar] [CrossRef]
- Cornell, C.C.; Kittleson, M.D.; Della Torre, P.; Haggstrom, J.; Lombard, C.W.; Pedersen, H.D.; Vollmar, A.; Wey, A. Allometric scaling of M-mode cardiac measurements in normal adult dogs. J. Vet. Intern. Med. 2004, 18, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Tvarijonaviciute, A.; Tecles, F.; Caldin, M.; Tasca, S.; Ceron, J. Validation of spectrophotometric assays for serum paraoxonase type-1 measurement in dogs. Am. J. Vet. Res. 2012, 73, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Cahill, R.J.; Pigeon, K.; Strong-Townsend, M.I.; Drexel, J.P.; Clark, G.H.; Buch, J.S. Analytical validation of a second-generation immunoassay for the quantification of N-terminal pro-B-type natriuretic peptide in canine blood. J. Vet. Diagn. Investig. 2015, 27, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungvall, I.; Hoglund, K.; Tidholm, A.; Olsen, L.H.; Borgarelli, M.; Venge, P.; Haggstrom, J. Cardiac troponin I is associated with severity of myxomatous mitral valve disease, age, and C-reactive protein in dogs. J. Vet. Intern. Med. 2010, 24, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Polizopoulou, Z.S.; Koutinas, C.K.; Ceron, J.J.; Tvarijonaviciute, A.; Martinez-Subiela, S.; Dasopoulou, A.; York, M.J.; Roman, I.F.; Gandhi, M.; Patel, S.; et al. Correlation of serum cardiac troponin I and acute phase protein concentrations with clinical staging in dogs with degenerative mitral valve disease. Vet. Clin. Pathol. 2015, 44, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Reimann, M.J.; Ljungvall, I.; Hillstrom, A.; Moller, J.E.; Hagman, R.; Falk, T.; Hoglund, K.; Haggstrom, J.; Olsen, L.H. Increased serum C-reactive protein concentrations in dogs with congestive heart failure due to myxomatous mitral valve disease. Vet. J. 2016, 209, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.M.; Rush, J.E.; Freeman, L.M. Systemic inflammation and endothelial dysfunction in dogs with congestive heart failure. J. Vet. Intern. Med. 2012, 26, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Carreton, E.; Ceron, J.J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Caro-Vadillo, A.; Montoya-Alonso, J.A. Acute phase proteins and markers of oxidative stress to assess the severity of the pulmonary hypertension in heartworm-infected dogs. Parasites Vectors 2017, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.R.; Oyama, M.A.; Hezzell, M.J.; Rush, J.E.; Nguyenba, T.P.; DeFrancesco, T.C.; Lehmkuhl, L.B.; Kellihan, H.B.; Bulmer, B.; Gordon, S.G.; et al. Relationship of plasma N-terminal pro-brain natriuretic peptide concentrations to heart failure classification and cause of respiratory distress in dogs using a 2nd generation ELISA assay. J. Vet. Intern. Med. 2015, 29, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R.; Memon, R.A.; Moser, A.H.; Grunfeld, C. Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 1998, 139, 307–315. [Google Scholar] [CrossRef]
- Yilmaz, N.; Simsek, N.; Aydin, O.; Yardan, E.; Aslan, S.; Eren, E.; Yegin, A.; Buyukbas, S. Decreased paraoxonase 1, arylesterase enzyme activity, and enhanced oxidative stress in patients with mitral and aortic valve insufficiency. Clin. Lab. 2013, 59, 597–604. [Google Scholar] [CrossRef]
- Reimann, M.J.; Haggstrom, J.; Moller, J.E.; Lykkesfeldt, J.; Falk, T.; Olsen, L.H. Markers of oxidative stress in dogs with myxomatous mitral valve disease are influenced by sex, neuter status, and serum cholesterol concentration. J. Vet. Intern. Med. 2017, 31, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonagura, J.D.; Schober, K.E. Can ventricular function be assessed by echocardiography in chronic canine mitral valve disease? J. Small Anim. Pract. 2009, 50, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Vezzosi, T.; Grosso, G.; Tognetti, R.; Meucci, V.; Patata, V.; Marchesotti, F.; Domenech, O. The Mitral INsufficiency Echocardiographic score: A severity classification of myxomatous mitral valve disease in dogs. J. Vet. Intern. Med. 2021, 35, 1238–1244. [Google Scholar] [CrossRef]
- Kulka, M.; Garncarz, M.; Parzeniecka-Jaworska, M.; Klucinski, W. Serum paraoxonase 1 activity and lipid metabolism parameter changes in Dachshunds with chronic mitral valve disease. Assessment of its diagnostic usefulness. Pol. J. Vet. Sci. 2017, 20, 723–729. [Google Scholar] [CrossRef]
- Wu, Q.Q.; Xiao, Y.; Yuan, Y.; Ma, Z.G.; Liao, H.H.; Liu, C.; Zhu, J.X.; Yang, Z.; Deng, W.; Tang, Q.Z. Mechanisms contributing to cardiac remodelling. Clin. Sci. 2017, 131, 2319–2345. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Subiela, S.; Bernal, L.J.; Tvarijonaviciute, A.; Garcia-Martinez, J.D.; Tecles, F.; Ceron, J.J. Canine demodicosis: The relationship between response to treatment of generalised disease and markers for inflammation and oxidative status. Vet. Dermatol. 2014, 25, 72-e24. [Google Scholar] [CrossRef]
- Martinez-Subiela, S.; Ceron, J.J.; Strauss-Ayali, D.; Garcia-Martinez, J.D.; Tecles, F.; Tvarijonaviciute, A.; Caldin, M.; Baneth, G. Serum ferritin and paraoxonase-1 in canine leishmaniosis. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 23–29. [Google Scholar] [CrossRef]
- Tvarijonaviciute, A.; Garcia-Martinez, J.D.; Caldin, M.; Martinez-Subiela, S.; Tecles, F.; Pastor, J.; Ceron, J.J. Serum paraoxonase 1 (PON1) activity in acute pancreatitis of dogs. J. Small Anim. Pract. 2015, 56, 67–71. [Google Scholar] [CrossRef]
- Kocaturk, M.; Tvarijonaviciute, A.; Martinez-Subiela, S.; Tecles, F.; Eralp, O.; Yilmaz, Z.; Ceron, J.J. Inflammatory and oxidative biomarkers of disease severity in dogs with parvoviral enteritis. J. Small Anim. Pract. 2015, 56, 119–124. [Google Scholar] [CrossRef]
- Karnezi, D.; Ceron, J.J.; Theodorou, K.; Leontides, L.; Siarkou, V.I.; Martinez, S.; Tvarijonaviciute, A.; Harrus, S.; Koutinas, C.K.; Pardali, D.; et al. Acute phase protein and antioxidant responses in dogs with experimental acute monocytic ehrlichiosis treated with rifampicin. Vet. Microbiol. 2016, 184, 59–63. [Google Scholar] [CrossRef]
- Franchini, A.; Borgarelli, M.; Abbott, J.A.; Menciotti, G.; Crosara, S.; Haggstrom, J.; Lahmers, S.; Rosenthal, S.; Tyrrell, W. The Longitudinal Outcome Of Canine (K9) myxomatous mitral valve disease (LOOK-Mitral registry): Baseline characteristics. J. Vet. Cardiol. 2021, 36, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Tidholm, A.; Hoglund, K.; Haggstrom, J.; Ljungvall, I. Diagnostic value of selected echocardiographic variables to identify pulmonary hypertension in dogs with myxomatous mitral valve disease. J. Vet. Intern. Med. 2015, 29, 1510–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattin, M.J.; Boswood, A.; Church, D.B.; Brodbelt, D.C. Prognostic factors in dogs with presumed degenerative mitral valve disease attending primary-care veterinary practices in the United Kingdom. J. Vet. Intern. Med. 2019, 33, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Nemec, A.; Verstraete, F.J.; Jerin, A.; Sentjurc, M.; Kass, P.H.; Petelin, M.; Pavlica, Z. Periodontal disease, periodontal treatment and systemic nitric oxide in dogs. Res. Vet. Sci. 2013, 94, 542–544. [Google Scholar] [CrossRef]
- bin Ali, A.; Zhang, Q.; Lim, Y.K.; Fang, D.; Retnam, L.; Lim, S.K. Expression of major HDL-associated antioxidant PON-1 is gender dependent and regulated during inflammation. Free Radic. Biol. Med. 2003, 34, 824–829. [Google Scholar] [CrossRef]
- Rossi, G.; Giordano, A.; Pezzia, F.; Kjelgaard-Hansen, M.; Paltrinieri, S. Serum paraoxonase 1 activity in dogs: Preanalytical and analytical factors and correlation with C-reactive protein and alpha-2-globulin. Vet. Clin. Pathol. 2013, 42, 329–341. [Google Scholar] [CrossRef]
- Ceron, J.J.; Tecles, F.; Tvarijonaviciute, A. Serum paraoxonase 1 (PON1) measurement: An update. BMC Vet. Res. 2014, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- James, R.W.; Deakin, S.P. The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic. Biol. Med. 2004, 37, 1986–1994. [Google Scholar] [CrossRef]
- Ferre, N.; Camps, J.; Prats, E.; Vilella, E.; Paul, A.; Figuera, L.; Joven, J. Serum paraoxonaseactivity: A new additional test for the improved evaluation of chronic liver damage. Clin. Chem. 2002, 48, 261–268. [Google Scholar] [CrossRef]
- Ece, A.; Atamer, Y.; Gurkan, F.; Davutoglu, M.; Kocyigit, Y.; Tutanc, M. Paraoxonase, total antioxidant response, and peroxide levels in children with steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 2005, 20, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Gerlach, N.; Weber, K.; Klima, A.; Wess, G. The diagnostic relevance of NT-proBNP and proANP 31-67 measurements in staging of myxomatous mitral valve disease in dogs. Vet. Clin. Pathol. 2013, 42, 196–206. [Google Scholar] [CrossRef] [PubMed]
Parameters | Clinical Stage of MVD | Correlation Coefficient | ||||
---|---|---|---|---|---|---|
B1 (n = 31) | B2 (n = 30) | C (n = 12) | D (n = 7) | PON-1 | NT-proBNP | |
Age | 9.23 (7.1–11.3) | 10.91 (9.0–12.3) | 12.25 (11.3–13.4) | 12.50 (12.0–13.0) | 0.111 | 0.384 ** |
Body weight (Kg) | 8 (5.3–8.5) | 6.8 (4.7–11.5) | 6 (4.9–8.6) | 8.5 (6–12.4) | N/A | N/A |
Reproductive status [Male:Female (Neutered)] | 20:11(10) | 15:15(14) | 9:3(3) | 4:3(3) | N/A | N/A |
White blood cells/μL (×102) | 9.47 (8.2–10.3) | 12.77 (8.1–15.0) | 14.00 (9.2–15.0) | 11.90 (8.7–15.0) | −0.242 * | 0.033 |
TP (g/dL) | 7.93 (7.4–8.2) | 7.62 (7.2–8.2) | 7.41 (6.7–8.0) | 6.60 (5.7–7.0) | 0.480 *** | 0.091 |
ALB (g/dL) | 3.74 (3.3–3.9) | 3.46 (3.3–3.9) | 3.69 (3.3–3.9) | 3.73 (3.3–4.9) | 0.431 *** | 0.059 |
CREA (mg/dL) | 0.83 (0.6–0.9) | 0.87 (0.6–1.0) | 1.08 (0.6–1.1) | 1.52 (0.7–1.4) | −0.127 | 0.095 |
Heart rate (bpm) | 126.12 (108.0–140.0) | 127.30 (116.0–144.0) | 150.86 (120.0–175.0) | 162.00 (140.0–160.0) | −0.082 | 0.105 |
Systolic blood pressure (mm Hg) | 144.13 (130.0–155.0) | 149.7 (128.8–173.0) | 134.0 (127.5–171.0) | 150.0 (140.0–195.0) | −0.033 | −0.148 |
LVIDdn | 1.77 (1.5–1.9) | 2.07 (1.7–2.2) | 2.19 (2.0–2.3) | 2.04 (1.7–2.5) | −0.257 * | 0.324 * |
LVIDsn | 1.00 (0.8–1.1) | 1.17 (0.9–1.4) | 1.10 (0.9–1.2) | 1.08 (0.7–1.5) | −0.283 * | 0.181 |
LA/Ao | 1.22 (1.1–1.3) | 1.46 (1.4–1.6) | 2.08 (1.8–2.5) | 1.97 (1.8–2.2) | 0.015 | 0.582 *** |
FS% | 41.98 (37.2–46.8) | 43.95 (38.3–49.8) | 48.25 (46.5–53.0) | 45.14 (37.5–52.0) | −0.008 | 0.202 |
MV E (m/s) | 0.84 (0.6–1.0) | 1.00 (0.8–1.1) | 1.15 (0.8–1.4) | 1.14 (0.8–1.4) | 0.000 | 0.089 |
MV E/A ratio | 1.27 (1.1–1.4) | 1.51 (1.1–1.9) | 1.77 (1.4–1.9) | 1.68 (1.3–1.5) | −0.277 * | 0.074 |
Factor | PON-1 | p-Value |
---|---|---|
Clinical Stage of MVD | 0.149 | |
B1 (n = 31) | 4.30 ± 0.96 | |
B2 (n = 30) | 3.82 ± 0.88 | |
C (n = 12) | 4.13 ± 0.71 | |
D (n = 7) | 3.72 ± 0.78 | |
Gender | 0.619 | |
Male (n = 48) | 4.10 ± 0.90 | |
Female (n = 32) | 4.00 ± 0.90 | |
Coexisting conditions | 0.659 | |
Yes (n = 21) | 4.31 ± 0.89 | |
No (n = 59) | 4.21 ± 0.79 |
Factor | NT-proBNP | p-Value |
---|---|---|
Clinical Stage of MVD | <0.001 | |
B1 (n = 27) | 232 (106–692) | |
B2 (n = 23) | 842 (571–1473) | |
Gender | 0.573 | |
Male (n = 30) | 644 (213–944) | |
Female (n = 20) | 593 (156–992) | |
Coexisting conditions | 0.011 | |
Yes (n = 8) | 883 (768–944) | |
No (n = 42) | 232 (95–645) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rammal, D.; Koutinas, C.K.; Athanasiou, L.V.; Tangalidi, M.; Rubio, C.P.; Cerón, J.J.; Tamvakis, A.; Patsikas, M.N.; Polizopoulou, Z.S. Association of Paraoxonase-1 and NT-proBNP with Clinical, Clinico-Pathologic and Echocardiographic Variables in Dogs with Mitral Valve Disease. Vet. Sci. 2023, 10, 33. https://doi.org/10.3390/vetsci10010033
Rammal D, Koutinas CK, Athanasiou LV, Tangalidi M, Rubio CP, Cerón JJ, Tamvakis A, Patsikas MN, Polizopoulou ZS. Association of Paraoxonase-1 and NT-proBNP with Clinical, Clinico-Pathologic and Echocardiographic Variables in Dogs with Mitral Valve Disease. Veterinary Sciences. 2023; 10(1):33. https://doi.org/10.3390/vetsci10010033
Chicago/Turabian StyleRammal, Diana, Christos K. Koutinas, Labrini V. Athanasiou, Melpomeni Tangalidi, Camila P. Rubio, José J. Cerón, Androniki Tamvakis, Michael N. Patsikas, and Zoe S. Polizopoulou. 2023. "Association of Paraoxonase-1 and NT-proBNP with Clinical, Clinico-Pathologic and Echocardiographic Variables in Dogs with Mitral Valve Disease" Veterinary Sciences 10, no. 1: 33. https://doi.org/10.3390/vetsci10010033
APA StyleRammal, D., Koutinas, C. K., Athanasiou, L. V., Tangalidi, M., Rubio, C. P., Cerón, J. J., Tamvakis, A., Patsikas, M. N., & Polizopoulou, Z. S. (2023). Association of Paraoxonase-1 and NT-proBNP with Clinical, Clinico-Pathologic and Echocardiographic Variables in Dogs with Mitral Valve Disease. Veterinary Sciences, 10(1), 33. https://doi.org/10.3390/vetsci10010033