Maternal Behavior in Beef Cattle: The Physiology, Assessment and Future Directions—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prepartum Behavior
3. Postpartum Behavior
4. Interest in Fetal Membranes
5. Contacts and Behavior in the Postpartum Period
6. Maternal Contact and Calf Health
7. Suckling and Immunity
8. Factors Influencing Maternal Behavior
8.1. Breed
8.2. Age and Parity
8.3. Hormones and Neurotransmitters
9. Influence of Genetics on Maternal Behavior
10. Calf Factors
11. Mustering and Handling
12. Assessment of Maternal Behavior
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mills, D.S.; Marchant-Forde, J.N. The Encyclopedia of Applied Animal Behaviour and Welfare, 1st ed.; CABI: Wallingford, UK, 2010; p. 685. [Google Scholar]
- Geburt, K.; Friedrich, M.; Piechotta, M.; Gauly, M.; von Borstel, U.K. Validity of physiological biomarkers for maternal behavior in cows—A comparison of beef and dairy cattle. Physiol. Behav. 2015, 139, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Michenet, A.; Saintilan, R.; Venot, E.; Phocas, F. Insights into the genetic variation of maternal behavior and suckling performance of continental beef cows. Genet. Sel. Evol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stookey, J.M. Maternal Behaviour of Beef Cows. In Proceedings of the Saskatchewan Beef Symposium, Saskatoon, SK, Canada, 18–19 November 1997. [Google Scholar]
- Chenoweth, P.J.; Landaeta-Hernández, A.J.; Flöercke, C. Reproductive and maternal behavior of livestock. In Genetics and the Behavior of Domestic Animals; Elsevier: Amsterdam, The Netherlands, 2014; pp. 159–194. [Google Scholar]
- Orihuela, A.; Galina, C.S. The Effect of Maternal Behavior around Calving on Reproduction and Wellbeing of Zebu Type Cows and Calves. Animals 2021, 11, 3164. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.; Bellows, R.; Burfening, P.; Carr, J. Occurrence of neonatal and postnatal mortality in range beef cattle. I. Calf loss incidence from birth to weaning, backward and breech presentations and effects of calf loss on subsequent pregnancy rate of dams. Theriogenology 1987, 28, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Barrier, A.C.; Ruelle, E.; Haskell, M.J.; Dwyer, C.M. Effect of a difficult calving on the vigour of the calf, the onset of maternal behaviour, and some behavioural indicators of pain in the dam. Prev. Vet. Med. 2012, 103, 248–256. [Google Scholar] [CrossRef]
- Veissier, I.; Boissy, A.; Nowak, R.; Orgeur, P.; Poindron, P. Ontogeny of social awareness in domestic herbivores. Appl. Anim. Behav. Sci. 1998, 57, 233–245. [Google Scholar] [CrossRef]
- Burns, B.; Fordyce, G.; Holroyd, R. A review of factors that impact on the capacity of beef cattle females to conceive, maintain a pregnancy and wean a calf—Implications for reproductive efficiency in northern Australia. Anim. Reprod. Sci. 2010, 122, 1–22. [Google Scholar] [CrossRef]
- Chang, A.Z.; Swain, D.L.; Trotter, M.G. Calf loss in northern Australia: A systematic review. Rangel. J. 2020, 42, 9–26. [Google Scholar] [CrossRef]
- McCosker, K. Risk Factors Affecting the Reproductive Outcome of Beef Breeding Herds in North Australia. Ph.D. Thesis, University of Queensland, St Lucia, Australia, 2016. [Google Scholar]
- Brown, A. Observational Study on Calf Losses on the Barkly Tableland: Brunchilly Station, Barkly Tableland, the Northern Territory; Brown, A., Towne, S., Jephcott, S., Eds.; Department of Business, Industry & Resource Development: Darwin, NT, USA, 2003. [Google Scholar]
- Fordyce, G. Pregnancy Nutrition Affects Calf Survival in the Tropics. Proceedings 2020, 36, 66. [Google Scholar] [CrossRef] [Green Version]
- Muller, J. Dehydration as a Risk Factor for Calf Mortality in Northern Australia. PhD Thesis, University of Queensland, St Lucia, Australia, 2017. [Google Scholar]
- Fordyce, G.; Olchowy, T.; Anderson, A. Hydration in non-suckling neonatal Brahman-cross calves. Aust. Vet. J. 2015, 93, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.; Muller, J.; Cavalieri, J.; Fordyce, G. Prepartum Supplementation to Improve Transfer of Passive Immunity and Growth. Multidiscip. Digit. Publ. Inst. Proc. 2019, 36, 7. [Google Scholar]
- Fordyce, G.; McGowan, M.R.; McCosker, K.D.; Burns, B.M. Reproductive Wastage in Extensively-Managed Beef Cattle. In Proceedings of the World Buiatrics Congress, Cairns, Australia, 27 July–1 August 2014. [Google Scholar]
- Nowak, R.; Porter, R.H.; Lévy, F.; Orgeur, P.; Schaal, B. Role of mother-young interactions in the survival of offspring in domestic mammals. Rev. Reprod. 2000, 5, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Poindron, P. Mechanisms of activation of maternal behaviour in mammals. Reprod. Nutr. Dev. 2005, 45, 341–351. [Google Scholar] [CrossRef]
- Swain, D.L.; Patison, K.; Heath, B.; Bishop-Hurley, G.; Finger, A. Pregnant cattle associations and links to maternal reciprocity. Appl. Anim. Behav. Sci. 2015, 168, 10–17. [Google Scholar] [CrossRef]
- Rørvang, M.V.; Nielsen, B.L.; Herskin, M.S.; Jensen, M.B. Prepartum Maternal Behavior of Domesticated Cattle: A Comparison with Managed, Feral, and Wild Ungulates. Front. Vet. Sci. 2018, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Aitken, B. Predicting Maternal Behaviour of Beef Cattle Using Temperament Tests. Masters Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2011. [Google Scholar]
- Leuthold, W. African ungulates: A comparative review of their ethology and behavioral ecology. Zoophysiol. Ecol. 2012, 8, 307. [Google Scholar]
- Lidfors, L.; Jensen, P. Behaviour of free-ranging beef cows and calves. Appl. Anim. Behav. Sci. 1988, 20, 237–247. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.; Weary, D.M. Maternal behavior in cattle. Horm. Behav. 2007, 52, 106–113. [Google Scholar] [CrossRef]
- Huzzey, J.; Von Keyserlingk, M.; Weary, D. Changes in feeding, drinking, and standing behavior of dairy cows during the transition period. J. Dairy Sci. 2005, 88, 2454–2461. [Google Scholar] [CrossRef] [Green Version]
- Gonyou, H.W.; Stookey, J.M. Maternal and neonatal behavior. Vet. Clin. N. Am. Food Anim. Pract. 1987, 3, 231–249. [Google Scholar] [CrossRef]
- Edwards, S.; Broom, D. Behavioural interactions of dairy cows with their newborn calves and the effects of parity. Anim. Behav. 1982, 30, 525–535. [Google Scholar] [CrossRef]
- Metz, J.; Metz, J.H.M. Maternal influence on defecation and urination in the newborn calf. Appl. Anim. Behav. Sci. 1986, 16, 325–333. [Google Scholar] [CrossRef]
- Kent, J.P.; Kelly, E.P. The effect of cow-calf separation on the maternal behaviour of the Cow (Bos taurus). Appl. Anim. Behav. Sci. 1987, 17, 370. [Google Scholar] [CrossRef]
- Le Neindre, P.; D’Hour, P. Effects of a postpartum separation on maternal responses in primiparous and multiparous cows. Anim. Behav. 1989, 8, 75–118. [Google Scholar] [CrossRef]
- Pinheiro Machado Filho, L.C. A Study of Placentophagia in Cows and Its Effect on Maternal Behaviour; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 1997. [Google Scholar]
- Hurnik, J.; Burton, J. The effect of amniotic fluid ingestion on the nociception of cows. Physiol. Behav. 1997, 62, 1339–1344. [Google Scholar]
- Hurnik, J.; King, G. Timing of the attraction towards the placenta and amniotic fluid by the parturient cow. Appl. Anim. Behav. Sci. 1997, 53, 183–192. [Google Scholar]
- Lévy, F.; Keller, M.; Poindron, P. Olfactory regulation of maternal behavior in mammals. Horm. Behav. 2004, 46, 284–302. [Google Scholar] [CrossRef]
- Hudson, S.J.; Mullord, M. Investigations of maternal bonding in dairy cattle. Appl. Anim. Ethol. 1977, 3, 271–276. [Google Scholar] [CrossRef]
- Kour, H.; Patison, K.P.; Corbet, N.J.; Swain, D.L. Recording cattle maternal behaviour using proximity loggers and tri-axial accelerometers. Appl. Anim. Behav. Sci. 2021, 240, 105349. [Google Scholar] [CrossRef]
- Vitale, A.; Tenucci, M.; Papini, M.; Lovari, S. Social behaviour of the calves of semi-wild Maremma cattle, Bos primigenius taurus. Appl. Anim. Behav. Sci. 1986, 16, 217–231. [Google Scholar] [CrossRef]
- Swain, D.L.; Bishop-Hurley, G.J. Using contact logging devices to explore animal affiliations: Quantifying cow–calf interactions. Appl. Anim. Behav. Sci. 2007, 102, 1–11. [Google Scholar] [CrossRef]
- Sato, S.; Wood-Gush, D.; Wetherill, G. Observations on creche behaviour in suckler calves. Behav. Process. 1987, 15, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Finger, A.; Patison, K.P.; Heath, B.M.; Swain, D.L. Changes in the group associations of free-ranging beef cows at calving. Anim. Prod. Sci. 2014, 54, 270–276. [Google Scholar] [CrossRef]
- Kour, H. Exploring the Maternal Behaviour of North Australian Beef Cattle Using Precision Livestock Management Technologies. Ph.D. Thesis, Central Queensland University, Rockhampton, Australia, 2018. [Google Scholar]
- Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O’Neill, C.J. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 2009, 9, 3586–3603. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.J.; Bishop-Hurley, G.; Williams, P.J.; Reid, D.J.; Swain, D.L. Using UHF proximity loggers to quantify male–female interactions: A scoping study of estrous activity in cattle. Anim. Reprod. Sci. 2014, 151, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broster, J.; Rathbone, D.; Robertson, S.; King, B.; Friend, M. Ewe movement and ewe-lamb contact levels in shelter are greater at higher stocking rates. Anim. Prod. Sci. 2012, 52, 502–506. [Google Scholar] [CrossRef]
- Sandelin, B.; Brown, A., Jr.; Johnson, Z.; Hornsby, J.; Baublits, R.; Kutz, B. Postpartum maternal behavior score in six breed groups of beef cattle over twenty-five years. Prof. Anim. Sci. 2005, 21, 13–16. [Google Scholar] [CrossRef] [Green Version]
- O’connor, C.; Jay, N.; Nicol, A.; Beatson, P. Ewe Maternal Behaviour Score and Lamb Survival. Proc. N. Z. Soc. Anim. Prod. 1985, 45, 159–162. [Google Scholar]
- Ceballos, M.C.; Góis, K.C.R.; Sant’Anna, A.C.; Wemelsfelder, F.; da Costa, M.P. Reliability of qualitative behavior assessment (QBA) versus methods with predefined behavioral categories to evaluate maternal protective behavior in dairy cows. Appl. Anim. Behav. Sci. 2021, 236, 105263. [Google Scholar] [CrossRef]
- Dwyer, C. Behavioural development in the neonatal lamb: Effect of maternal and birth-related factors. Theriogenology 2003, 59, 1027–1050. [Google Scholar] [CrossRef]
- Hoppe, S.; Brandt, H.R.; Erhardt, G.; Gauly, M. Maternal protective behaviour of German Angus and Simmental beef cattle after parturition and its relation to production traits. Appl. Anim. Behav. Sci. 2008, 114, 297–306. [Google Scholar] [CrossRef]
- Souza-Conde AL, E.; Andrea, M.V.; Conde L, M.; Delgado-Mendez, J.; Souza, F.C.; Paranhos da Costa JR, M.; de Bittencourt dos SC, T.C.; de Oliveira N, K. Maternal-calf relationships and their influence on calves up to 120 days. Rev. MVZ Córdoba 2015, 20, 4436–4446. [Google Scholar] [CrossRef] [Green Version]
- Le Neindre, P.; Murphy, P.; Boissy, A.; Purvis, I.; Lindsay, D.; Orgeur, P.; Bouix, J.; Bibé, B. Genetics of Maternal Ability in Cattle and Sheep. In Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, 11–16 January 1998; pp. 23–30. [Google Scholar]
- Das, S.; Redbo, I.; Wiktorsson, H. Behaviour of Zebu and crossbed cows in restricted suckling groups. Appl. Anim. Behav. Sci. 2001, 72, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J.F.; Zipp, K.A.; Kälber, T.; Passillé, A.M.D.; Knierim, U.; Barth, K.; Mejdell, C.M. Is rearing calves with the dam a feasible option for dairy farms?—Current and future research. Appl. Anim. Behav. Sci. 2016, 181, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meagher, R.K.; Beaver, A.; Weary, D.M.; von Keyserlingk, M.A. Invited review: A systematic review of the effects of prolonged cow–calf contact on behavior, welfare, and productivity. J. Dairy Sci. 2019, 102, 5765–5783. [Google Scholar] [CrossRef]
- Beaver, A.; Meagher, R.K.; von Keyserlingk, M.A.G.; Weary, D.M. Invited review: A systematic review of the effects of early separation on dairy cow and calf health. J. Dairy Sci. 2019, 102, 5784–5810. [Google Scholar] [CrossRef]
- Le Neindre, P. Influence of cattle rearing conditions and breed on social relationships of mother and young. Appl. Anim. Behav. Sci. 1989, 23, 117–127. [Google Scholar] [CrossRef]
- Jensen, M.B.; Munksgaard, L.; Mogensen, L.; Krohn, C.C. Effects of housing in different social environments on open-field and social responses of female dairy calves. Acta Agric. Scand. Sect. A—Anim. Sci. 1999, 49, 113–120. [Google Scholar] [CrossRef]
- Stěhulová, I.; Lidfors, L.; Spinka, M. Response of dairy cows and calves to the early separation: Effect of calves’ age and visual/auditory contact after separation. Appl. Anim. Behav. Sci. 2008, 110, 144–165. [Google Scholar] [CrossRef]
- Msanga, Y.; Bryant, M. Effect of restricted suckling of calves on the productivity of crossbred dairy cattle. Trop. Anim. Health Prod. 2003, 35, 69–78. [Google Scholar] [CrossRef]
- Mukasa-Mugerwa, E.; Tegegne, A.; Franceschini, R. Influence of suckling and continuous cow-calf association on the resumption of post-partum ovarian function in Bos indicus cows monitored by plasma progesterone profiles. Reprod. Nutr. Dev. 1991, 31, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, C.; Orihuela, A.; Fröberg, S.; Lidfors, L. Effect of restricted suckling on physiological and behavioural stress parameters in dual-purpose cattle in the tropics. Livest. Sci. 2006, 99, 21–27. [Google Scholar] [CrossRef]
- Rutherford, W.; Parish, J.; Smith, T.; Vann, R.; Strickland, B. Effects of maternal behavior of crossbred beef cows at calving on adjusted 205-day calf weaning weights. J. Anim. Sci. 2018, 96, 106. [Google Scholar] [CrossRef]
- Hogan, L.A.; McGowan, M.R.; Johnston, S.D.; Lisle, A.T.; Schooley, K. Suckling Behaviour of Beef Calves during the First Five Days Postpartum. Ruminants 2022, 2, 321–340. [Google Scholar] [CrossRef]
- Smith, V.; Reed, R.; Erwin, E. Relation of physiological age to intestinal permeability in the bovine. J. Dairy Sci. 1964, 47, 923–924. [Google Scholar] [CrossRef]
- Stilwell, G.; Carvalho, R.C. Clinical outcome of calves with failure of passive transfer as diagnosed by a commercially available IgG quick test kit. Can. Vet. J. 2011, 52, 524–526. [Google Scholar]
- Vogels, Z.; Chuck, G.; Morton, J. Failure of transfer of passive immunity and agammaglobulinaemia in calves in south-west V ictorian dairy herds: Prevalence and risk factors. Aust. Vet. J. 2013, 91, 150–158. [Google Scholar] [CrossRef]
- Gamsjäger, L.; Elsohaby, I.; Pearson, J.M.; Levy, M.; Pajor, E.A.; Windeyer, M.C. Evaluation of 3 refractometers to determine transfer of passive immunity in neonatal beef calves. J. Vet. Intern. Med. 2021, 35, 632–643. [Google Scholar] [CrossRef]
- Homerosky, E.R. Assessment and Impacts of Newborn Beef Calf Vigour. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2016. [Google Scholar] [CrossRef]
- Raboisson, D.; Trillat, P.; Cahuzac, C. Failure of Passive Immune Transfer in Calves: A Meta-Analysis on the Consequences and Assessment of the Economic Impact. PLoS ONE 2016, 11, e0150452. [Google Scholar] [CrossRef] [Green Version]
- Ventorp, M.; Michanek, P. The importance of udder and teat conformation for teat seeking by the newborn calf. J. Dairy Sci. 1992, 75, 262–268. [Google Scholar] [CrossRef]
- Homerosky, E.R.; Timsit, E.; Pajor, E.A.; Kastelic, J.P.; Windeyer, M.C. Predictors and impacts of colostrum consumption by 4 h after birth in newborn beef calves. Vet. J. 2017, 228, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Illmann, G.; Špinka, M. Maternal behaviour of dairy heifers and sucking of their newborn calves in group housing. Appl. Anim. Behav. Sci. 1993, 36, 91–98. [Google Scholar] [CrossRef]
- Edwards, S.A. The behaviour of dairy cows and their newborn calves in individual or group housing. Appl. Anim. Ethol. 1983, 10, 191–198. [Google Scholar] [CrossRef]
- Jensen, M.B.; Rørvang, M.V. The degree of visual cover and location of birth fluids affect dairy cows’ choice of calving site. J. Dairy Sci. 2018, 101, 9483–9492. [Google Scholar] [CrossRef] [Green Version]
- da Costa, M.J.R.P.; Albuquerque, L.G.; Eler, J.P.; de Vasconcelos Silva, J.A.I. Suckling behaviour of Nelore, Gir and Caracu calves and their crosses. Appl. Anim. Behav. Sci. 2006, 101, 276–287. [Google Scholar] [CrossRef]
- Whalin, L.; Weary, D.M.; von Keyserlingk, M.A.G. Understanding Behavioural Development of Calves in Natural Settings to Inform Calf Management. Animals 2021, 11, 2446. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G. What Makes a Good Mother?: Components and Comparative Aspects of Maternal Behaviour in Ungulates. Proc. Aust. Soc. Anim.Prod. 1988, 25–41. [Google Scholar]
- Stěhulová, I.; Špinka, M.; Šárová, R.; Máchová, L.; Kněz, R.; Firla, P. Maternal behaviour in beef cows is individually consistent and sensitive to cow body condition, calf sex and weight. Appl. Anim. Behav. Sci. 2013, 144, 89–97. [Google Scholar] [CrossRef]
- Hirata, M.; Nakagawa, M.; Funakoshi, H.; Iwamoto, T.; Otozu, W.; Kiyota, D.; Kuroki, S.; Fukuyama, K. Mother–young distance in Japanese Black cattle at pasture. J. Ethol. 2003, 21, 161–168. [Google Scholar] [CrossRef]
- Day, M.; Imakawa, K.; Clutter, A.; Wolfe, P.; Zalesky, D.; Nielsen, M.; Kinder, J. Suckling behavior of calves with dams varying in milk production. J. Anim. Sci. 1987, 65, 1207–1212. [Google Scholar] [CrossRef]
- Dwyer, C.; Lawrence, A. Variability in the expression of maternal behaviour in primiparous sheep: Effects of genotype and litter size. Appl. Anim. Behav. Sci. 1998, 58, 311–330. [Google Scholar] [CrossRef]
- Fleming, A.S.; Kraemer, G.W. Molecular and Genetic Bases of Mammalian Maternal Behavior. Gend. Genome 2019, 3, 2470289719827306. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.; Zagoory-Sharon, O.; Weisman, O.; Schneiderman, I.; Gordon, I.; Maoz, R.; Shalev, I.; Ebstein, R.P. Sensitive Parenting Is Associated with Plasma Oxytocin and Polymorphisms in the OXTR and CD38 Genes. Biol. Psychiatry 2012, 72, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P. mRNA expression of prolactin receptor in sheep pituitary and its effect on maternal behavior. Genet Mol. Res. 2015, 14, 8650–8657. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.M.; Dingwall, W.S.; Lawrence, A.B. Physiological Correlates of Maternal–Offspring Behaviour in Sheep: A Factor Analysis. Physiol. Behav. 1999, 67, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Flörcke, C.; Engle, T.E.; Grandin, T.; Deesing, M.J. Individual differences in calf defence patterns in Red Angus beef cows. Appl. Anim. Behav. Sci. 2012, 139, 203–208. [Google Scholar] [CrossRef]
- Schatz, T.J. Understanding and Improving Heifer Fertility in Northern Australia. Master’s Thesis, Charles Darwin University, Darwin, Australia, 2011. [Google Scholar]
- Bunter, K.L.; Johnston, D.J.; Wolcott, M.L.; Fordyce, G. Factors associated with calf mortality in tropically adapted beef breeds managed in extensive Australian production systems. Anim. Prod. Sci. 2013, 54, 25–36. [Google Scholar] [CrossRef]
- Vandenheede, M.; Nicks, B.; Désiron, A.; Canart, B. Mother–young relationships in Belgian Blue cattle after a Caesarean section: Characterisation and effects of parity. Appl. Anim. Behav. Sci. 2001, 72, 281–292. [Google Scholar] [CrossRef]
- Williams, G.; Gazal, O.; Leshin, L.; Stanko, R.; Anderson, L. Physiological regulation of maternal behavior in heifers: Roles of genital stimulation, intracerebral oxytocin release, and ovarian steroids. Biol. Reprod. 2001, 65, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Keverne, B.; Kendrick, K. Maternal behaviour in sheep and its neuroendocrine regulation. Acta Pædiatrica 1994, 83, 47–56. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Johansson, B.; Lupoli, B.; Svennersten-Sjaunja, K. Oxytocin facilitates behavioural, metabolic and physiological adaptations during lactation. Appl. Anim. Behav. Sci. 2001, 72, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Bridges, R.S. Neuroendocrine regulation of maternal behavior. Front. Neuroendocrinol. 2015, 36, 178–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lévy, F. Annales d’endocrinologie. In Neuroendocrine Control of Maternal Behavior in Non-Human and Human Mammals; Elsevier: Amsterdam, The Netherlands, 2016; pp. 114–125. [Google Scholar]
- Shenavai, S.; Preissing, S.; Hoffmann, B.; Dilly, M.; Pfarrer, C.; Özalp, G.R.; Caliskan, C.; Seyrek-Intas, K.; Schuler, G. Investigations into the mechanisms controlling parturition in cattle. Reproduction 2012, 144, 279–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senger, P.L. Pathways to Pregnancy and Parturition, 2nd ed.; Current Conceptions, Inc: Pullman, WA, USA, 2004. [Google Scholar]
- Poindron, P.; Lévy, F.; Krehbiel, D. Genital, olfactory, and endocrine interactions in the development of maternal behaviour in the parturient ewe. Psychoneuroendocrinology 1988, 13, 99–125. [Google Scholar] [CrossRef]
- Lévy, F.; Kendrick, K.; Keverne, E.; Piketty, V.; Poindron, P. Intracerebral oxytocin is important for the onset of maternal behavior in inexperienced ewes delivered under peridural anesthesia. Behav. Neurosci. 1992, 106, 427. [Google Scholar] [CrossRef]
- Fahrbach, S.E.; Morrell, J.I.; Pfaff, D.W. Possible role for endogenous oxytocin in estrogen-facilitated maternal behavior in rats. Neuroendocrinology 1985, 40, 526–532. [Google Scholar] [CrossRef]
- Pedersen, C.A.; Caldwell, J.D.; Walker, C.; Ayers, G.; Mason, G.A. Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 1994, 108, 1163–1171. [Google Scholar] [CrossRef]
- Robinson, K.J.; Twiss, S.D.; Hazon, N.; Pomeroy, P.P. Maternal oxytocin is linked to close mother-infant proximity in grey seals (Halichoerus grypus). PLoS ONE 2015, 10, e0144577. [Google Scholar] [CrossRef] [Green Version]
- Valros, A.; Rundgren, M.; Špinka, M.; Saloniemi, H.; Hultén, F.; Uvnäs-Moberg, K.; Tománek, M.; Krejcí, P.; Algers, B. Oxytocin, prolactin and somatostatin in lactating sows: Associations with mobilisation of body resources and maternal behaviour. Livest. Prod. Sci. 2004, 85, 3–13. [Google Scholar] [CrossRef]
- Maestripieri, D.; Hoffman, C.L.; Anderson, G.M.; Carter, C.S.; Higley, J.D. Mother–infant interactions in free-ranging rhesus macaques: Relationships between physiological and behavioral variables. Physiol. Behav. 2009, 96, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, K.M. Oxytocin, motherhood and bonding. Exp Physiol 2000, 85, 111s–124s. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, K.; Keverne, E. Importance of progesterone and estrogen priming for the induction of maternal behavior by vaginocervical stimulation in sheep: Effects of maternal experience. Physiol. Behav. 1991, 49, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Broad, K.; Kendrick, K.; Sirinathsinghji, D.; Keverne, E. Changes in oxytocin immunoreactivity and mRNA expression in the sheep brain during pregnancy, parturition and lactation and in response to oestrogen and progesterone. J. Neuroendocrinol. 1993, 5, 435–444. [Google Scholar] [CrossRef]
- Champagne, F.A.; Chretien, P.; Stevenson, C.W.; Zhang, T.Y.; Gratton, A.; Meaney, M.J. Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J. Neurosci. 2004, 24, 4113–4123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolzenberg, D.S.; McKenna, J.B.; Keough, S.; Hancock, R.; Numan, M.J.; Numan, M. Dopamine D1 receptor stimulation of the nucleus accumbens or the medial preoptic area promotes the onset of maternal behavior in pregnancy-terminated rats. Behav. Neurosci. 2007, 121, 907–919. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.M.; Lonstein, J.S. Dopamine d1 and d2 receptor antagonism in the preoptic area produces different effects on maternal behavior in lactating rats. Behav. Neurosci. 2005, 119, 1072–1083. [Google Scholar] [CrossRef]
- Pereira, M.; Ferreira, A. Demanding pups improve maternal behavioral impairments in sensitized and haloperidol-treated lactating female rats. Behav. Brain Res. 2006, 175, 139–148. [Google Scholar] [CrossRef]
- Byrnes, E.M.; Rigero, B.A.; Bridges, R.S. Dopamine antagonists during parturition disrupt maternal care and the retention of maternal behavior in rats. Pharmacol. Biochem. Behav. 2002, 73, 869–875. [Google Scholar] [CrossRef]
- Garza-Brenner, E.; Sifuentes Rincon, A.; Randel, R.; Paredes-Sánchez, F.; Parra-Bracamonte, M.; Vera, W.; Rodríguez-Almeida, F.; Segura-Cabrera, A. Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows. J. Appl. Genet. 2016, 58, 1–9. [Google Scholar] [CrossRef]
- Levy, F.; Guevara-Guzman, R.; Hinton, M.; Kendrick, K.; Keverne, E. Effects of parturition and maternal experience on noradrenaline and acetylcholine release in the olfactory bulb of sheep. Behav. Neurosci. 1993, 107, 662. [Google Scholar] [CrossRef]
- Bridges, R.; Clifton, D.; Sawyer, C. Postpartum luteinizing hormone release and maternal behavior in the rat after late-gestational depletion of hypothalamic norepinephrine. Neuroendocrinology 1982, 34, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Alenina, N.; Kikic, D.; Todiras, M.; Mosienko, V.; Qadri, F.; Plehm, R.; Boyé, P.; Vilianovitch, L.; Sohr, R.; Tenner, K. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA 2009, 106, 10332–10337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, V.; Young, J.; Chanson, P.; Binart, N. New insights in prolactin: Pathological implications. Nat. Rev. Endocrinol. 2015, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Goffin, V.; Binart, N.; Touraine, P.; Kelly, P.A. Prolactin: The new biology of an old hormone. Annu. Rev. Physiol. 2002, 64, 47–67. [Google Scholar] [CrossRef]
- Horseman, N.D.; Gregerson, K.A. Prolactin actions. J. Mol. Endocrinol. 2014, 52, R95–R106. [Google Scholar] [CrossRef] [Green Version]
- Senger, P.L. Pathways to Pregnancy and Parturition; 1615 NE Eastgate Blvd.; Current Conceptions, Inc.: Pullman, WA, USA, 1997. [Google Scholar]
- Larsen, C.M.; Grattan, D. Prolactin, neurogenesis, and maternal behaviors. Brain Behav. Immun. 2012, 26, 201–209. [Google Scholar] [CrossRef]
- Akers, R.M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. J. Dairy Sci. 2006, 89, 1222–1234. [Google Scholar] [CrossRef]
- Sairenji, T.J.; Ikezawa, J.; Kaneko, R.; Masuda, S.; Uchida, K.; Takanashi, Y.; Masuda, H.; Sairenji, T.; Amano, I.; Takatsuru, Y. Maternal prolactin during late pregnancy is important in generating nurturing behavior in the offspring. Proc. Natl. Acad. Sci. USA 2017, 114, 13042–13047. [Google Scholar] [CrossRef] [Green Version]
- Bridges, R.S.; DiBiase, R.; Loundes, D.D.; Doherty, P.C. Prolactin stimulation of maternal behavior in female rats. Science 1985, 227, 782–784. [Google Scholar] [CrossRef]
- González-Mariscal, G.; Melo, A.; Parlow, A.; Beyer, C.; Rosenblatt, J. Pharmacological evidence that prolactin acts from late gestation to promote maternal behaviour in rabbits. J. Neuroendocrinol. 2000, 12, 983–992. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Curran, G.H.; Siegel, H.I. Evidence for the involvement of prolactin in the maternal behavior of the hamster. Physiol. Behav. 1994, 55, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Houwing, H.; Hurnik, J.; Lewis, N. Behavior of periparturient dairy cows and their calves. Can. J. Anim. Sci. 1990, 70, 355–362. [Google Scholar] [CrossRef]
- Zhang, H.; Su, Q.; Yao, D.; Wang, S.; Dang, S.; Ding, D.; Zhu, Z.; Shao, S.; Li, H. Prolactin, a potential mediator of reduced social interactive behavior in newborn infants following maternal perinatal depressive symptoms. J. Affect. Disord. 2017, 215, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.S.; Aoki, M.; Ladyman, S.R.; Phillipps, H.R.; Wyatt, A.; Boehm, U.; Grattan, D.R. Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc. Natl. Acad. Sci. USA 2017, 114, 10779–10784. [Google Scholar] [CrossRef] [Green Version]
- Larsen, C.M.; Grattan, D.R. Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 2010, 151, 3805–3814. [Google Scholar] [CrossRef] [Green Version]
- Bridges, R.S.; Robertson, M.C.; Shiu, R.P.C.; Friesen, H.G.; Stuer, A.M.; Mann, P.E. Endocrine Communication between Conceptus and Mother: Placental Lactogen Stimulation of Maternal Behavior. Neuroendocrinology 1996, 64, 57–64. [Google Scholar] [CrossRef]
- Masuda, S.; Ee, O.K.; Sairenji, T.J.; Sato, S.; Yajima, H.; Amano, I.; Koibuchi, N.; Shimokawa, N. Maternal prolactin levels during late pregnancy and nurturing behavior of offspring in mice. Dev. Psychobiol. 2022, 64, e22264. [Google Scholar] [CrossRef]
- Alexander, G. Maternal Behaviour in the Merino ewe. Proc. Aust. Soc. Anim.Prod. 1960, 3, 105–114. [Google Scholar]
- Meyer, L.R.; Powell, J.G.; Kutz, B.R.; Looper, M.L.; Rosenkrans, C.F., Jr. Prolactin, a Candidate Gene for Productivity Traits in Angus-Based Cattle. J. Anim. Sci. 2017, 95, 1. [Google Scholar] [CrossRef] [Green Version]
- Ollier, S.; Zhao, X.; Lacasse, P. Effect of prolactin-release inhibition on milk production and mammary gland involution at drying-off in cows. J. Dairy Sci. 2013, 96, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Lacasse, P.; Zhao, X.; Vanacker, N.; Boutinaud, M. Review: Inhibition of prolactin as a management tool in dairy husbandry. animal 2019, 13, s35–s41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrão, J.; Marnet, P. Effect of calf suckling on oxytocin, prolactin, growth hormone and milk yield in crossbred Gir Holstein cows during milking. Reprod. Nutr. Dev. 2002, 42, 373–380. [Google Scholar] [CrossRef]
- Wheeler, M.; Anderson, G.; Munro, C.; Stabenfeldt, G. Prolactin response in beef cows and heifers suckling one or two calves. Reproduction 1982, 64, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Lucas, B.K.; Ormandy, C.J.; Binart, N.; Bridges, R.S.; Kelly, P.A. Null Mutation of the Prolactin Receptor Gene Produces a Defect in Maternal Behavior. Endocrinology 1998, 139, 4102–4107. [Google Scholar] [CrossRef] [PubMed]
- Ward, I.D.; Zucchi, F.C.R.; Robbins, J.C.; Falkenberg, E.A.; Olson, D.M.; Benzies, K.; Metz, G.A. Transgenerational programming of maternal behaviour by prenatal stress. BMC Pregnancy Childbirth 2013, 13, S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champagne, F.A.; Meaney, M.J. Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol Psychiatry 2006, 59, 1227–1235. [Google Scholar] [CrossRef]
- Claxton, G. Updated maternal ability EBV will benefit sheep farmers. Farmers Wkly. 2015, 6 May (1009). Available online: https://www.fwi.co.uk/livestock/livestock-breeding/updated-maternal-ability-ebv-will-benefit-sheep-farmers (accessed on 20 December 2022).
- Ahlberg, C. Genetic Analysis of Maternal Behavior and Its Effect on Lamb Survival. Honour’s Thesis, Swdeish University of Agricultural Sciences, Uppsala, Sweden, 2016. [Google Scholar]
- Brown, D.J.; Fogarty, N.M.; Iker, C.L.; Ferguson, D.M.; Blache, D.; Gaunt, G.M. Genetic evaluation of maternal behaviour and temperament in Australian sheep. Anim. Prod. Sci. 2016, 56, 767–774. [Google Scholar] [CrossRef]
- Gardiner, D.; Rutley, D. EBV Restriction for Optimal Beef Production. In Proceedings of the Australian Association of Animal Breeding and Genetics, Adelaide, Australia, 3–5 July 1995; pp. 439–442. [Google Scholar]
- Pérez-Torres, L.; Orihuela, A.; Corro, M.; Rubio, I.; Cohen, A.; Galina, C.S. Maternal protective behavior of zebu type cattle (Bos indicus) and its association with temperament1. J. Anim. Sci. 2014, 92, 4694–4700. [Google Scholar] [CrossRef] [Green Version]
- Petherick, J.C. Animal welfare issues associated with extensive livestock production: The northern Australian beef cattle industry. Appl. Anim. Behav. Sci. 2005, 92, 211–234. [Google Scholar] [CrossRef]
- Rankine, G.; Donaldson, L. Animal Behaviour and Calf Mortalities in a North Queensland Breeding Herd. In Proceedings of the Australian Society of Animal Production; Australian Society of Animal Production: Armidale, Australia, 1968; pp. 138–143. [Google Scholar]
- Donaldson, L. Some observations on the fertility of beef cattle in north Queensland. Aust. Vet. J. 1962, 38, 447–454. [Google Scholar] [CrossRef]
- Fordyce, G.; McCosker, K.D.; Barnes, T.S.; Perkins, N.R.; O’Rourke, P.K.; McGowan, M.R. Reproductive performance of northern Australia beef herds. 6. Risk factors associated with reproductive losses between confirmed pregnancy and weaning. Anim. Prod. Sci. 2022. [Google Scholar] [CrossRef]
- Wenker, M.L.; Bokkers, E.A.M.; Lecorps, B.; Keyserlingk, v.M.A.G.; Reenen, v.C.G.; Verwer, C.M.; Weary, D.M. Effect of cow-calf contact on cow motivation to reunite with their calf. Sci. Rep. 2020, 10, 14233. [Google Scholar] [CrossRef] [PubMed]
- Orihuela, A.; Mota-Rojas, D.; Strappini, A.; Serrapica, F.; Braghieri, A.; Mora-Medina, P.; Napolitano, F. Neurophysiological Mechanisms of Cow–Calf Bonding in Buffalo and Other Farm Animals. Animals 2021, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Lawrence, A. Relationship between maternal defensive aggression, fear of handling and other maternal care traits in beef cows. Livest. Sci. 2007, 106, 182–188. [Google Scholar] [CrossRef]
- Boyland, N.; James, R.; Mlynski, D.; Madden, J.; Croft, D. Spatial proximity loggers for recording animal social networks: Consequences of inter-logger variation in performance. Behav. Ecol. Sociobiol. 2013, 67, 1877–1890. [Google Scholar] [CrossRef]
- Drewe, J.A.; Weber, N.; Carter, S.P.; Bearhop, S.; Harrison, X.A.; Dall, S.R.; McDonald, R.A.; Delahay, R.J. Performance of proximity loggers in recording intra-and inter-species interactions: A laboratory and field-based validation study. PLoS ONE 2012, 7, e39068. [Google Scholar] [CrossRef] [Green Version]
- Cooke, S.J.; Hinch, S.G.; Wikelski, M.; Andrews, R.D.; Kuchel, L.J.; Wolcott, T.G.; Butler, P.J. Biotelemetry: A mechanistic approach to ecology. Trends Ecol. Evol. 2004, 19, 334–343. [Google Scholar] [CrossRef]
- Broster, J.; Dehaan, R.L.; Swain, D.L.; Friend, M.A. Ewe and lamb contact at lambing is influenced by both shelter type and birth number. Animal 2010, 4, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Triguero-Ocaña, R.; Vicente, J.; Acevedo, P. Performance of proximity loggers under controlled field conditions: An assessment from a wildlife ecological and epidemiological perspective. Anim. Biotelemetry 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Matte, J.; Girard, C.; Seoane, J.; Brisson, G. Absorption of colostral immunoglobulin G in the newborn dairy calf. J. Dairy Sci. 1982, 65, 1765–1770. [Google Scholar] [CrossRef]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med./Am. Coll. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Phillips, C. Cattle Behaviour and Welfare; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fielden, E.D.; McFarlane, D. Infertility in range cattle. N. Z. Vet. J. 1965, 13, 47. [Google Scholar] [CrossRef]
Measurement/Technique | Reference | Species/Breed |
---|---|---|
Observational Study | [13] | Bos indicus |
Proximity logger contact data | [38] | Belmont Red, Brahman |
Proximity logger contact data; accelerometers | [43] | Belmont Red, Brahman |
Proximity logger contact data | [40] | Bos indicus |
Proximity loggers, GPS collars | [44] | Bos indicus |
Proximity loggers and Observational | [21] | Brahman/Droughtmaster × |
Proximity loggers | [45] | Brahman/Droughtmaster ×/Belmont Red |
Proximity loggers | [46] | Merino Ewes |
Observational Maternal Behavior score | [47] | Beef cattle various breeds |
Observational Maternal Behavior Score | [48] | Sheep various breeds |
Observational study | [2] | Beef (Simmental), Dairy (German Black Pied) |
Observational study | [49] | Dairy cows |
Observational study | [50] | Sheep (Scottish Blackface and Suffolk) |
Observational study | [25] | Beef cattle |
Observational study | [39] | Wild Maremma beef cattle |
Observational study | [51] | Angus and Simmental cattle |
Observational study | [52] | Nelore and Guzerat cattle |
Observational study | [53] | Friesian (Dairy), Saler (Beef) |
Video recording & Observational | [54] | Bos indicus, Bos indicus × Bos taurus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevard, R.P.; Pant, S.D.; Broster, J.C.; Norman, S.T.; Stephen, C.P. Maternal Behavior in Beef Cattle: The Physiology, Assessment and Future Directions—A Review. Vet. Sci. 2023, 10, 10. https://doi.org/10.3390/vetsci10010010
Nevard RP, Pant SD, Broster JC, Norman ST, Stephen CP. Maternal Behavior in Beef Cattle: The Physiology, Assessment and Future Directions—A Review. Veterinary Sciences. 2023; 10(1):10. https://doi.org/10.3390/vetsci10010010
Chicago/Turabian StyleNevard, Rory P., Sameer D. Pant, John C. Broster, Scott T. Norman, and Cyril P. Stephen. 2023. "Maternal Behavior in Beef Cattle: The Physiology, Assessment and Future Directions—A Review" Veterinary Sciences 10, no. 1: 10. https://doi.org/10.3390/vetsci10010010