Genetic Comparisons of Body Weight, Average Daily Gain, and Breast Circumference between Slow-Growing Thai Native Chickens (Pradu Hang dum) Raised On-Site Farm and On-Station
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Sites
2.2. Animal Management
2.3. Animal Feeding
2.4. Data Collection
2.5. Genetic Analysis
3. Results
3.1. Growth Performance
3.2. Estimated Heritability
3.3. Phenotypic and Genetic Correlation
3.4. Estimated Breeding Value and Selection Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mujyambere, V.; Adomako, K.; Olympio, S.O.; Ntawubizi, M.; Nyinawamwiza, L.; Mahoro, J.; Conroy, A. Local chickens in East African region: Their production and potential. Poult. Sci. 2022, 101, 101547. [Google Scholar] [CrossRef]
- Boonkum, W.; Duangjinda, M.; Kananit, S.; Chankitisakul, V.; Kenchaiwong, W. Genetic effect and growth curve parameter estimation under heat stress in slow-growing Thai native chickens. Vet. Sci. 2021, 8, 297. [Google Scholar] [CrossRef]
- Ariza, A.G.; Arbulu, A.A.; González, F.J.N.; Baena, S.N.; Bermejo, J.V.D.; Vallejo, M.E.C. The study of growth and performance in local chicken breeds and varieties: A review of methods and scientific transference. Animals 2021, 11, 2492. [Google Scholar] [CrossRef]
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2016, 2604685. [Google Scholar] [CrossRef] [Green Version]
- Manyelo, T.G.; Selaledi, L.; Hassan, Z.M.; Mabelebele, M. Local chicken breeds of Africa: Their description, uses and conservation methods. Animals 2020, 10, 2257. [Google Scholar] [CrossRef]
- Pal, S.; Prakash, B.; Kumar, A.; Singh, Y. Review on backyard poultry farming: Resource utilization for better livelihood of the rural population. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 2361–2371. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Chaiwang, N.; Kreuzer, M. Thai native chicken meat: An option to meet the demands for specific meat quality by certain groups of consumers; a review. Anim. Prod. Sci. 2016, 57, 1582–1587. [Google Scholar] [CrossRef]
- Teltathum, T.; Mekchay, S. Relationships between Pectoralis muscle proteomes and shear force in Thai indigenous chicken meat. Agric. Nat. Resour. 2010, 44, 53–60. [Google Scholar]
- Promket, D.; Ruangwittayanusorn, K. The comparatives of growth and carcass performance of the Thai native chicken between economic selection (Chee kku12) and natural selection (chee n). Vet. Integr. Sci. 2021, 19, 247–257. [Google Scholar] [CrossRef]
- Lengkidworraphiphat, P.; Wongpoomchai, R.; Bunmee, T.; Chariyakornkul, A.; Chaiwang, N.; Jaturasitha, S. Taste-active and nutritional components of Thai native chicken meat: A perspective of consumer satisfaction. Food. Sci. Anim. Resour. 2021, 41, 237–246. [Google Scholar] [CrossRef]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substances. Animals 2021, 11, 902. [Google Scholar] [CrossRef]
- Singh, M.; Lim, A.J.; Muir, W.I.; Groves, P.J. Comparison of performance and carcass composition of a novel slow-growing crossbred broiler with fast-growing broiler for chicken meat in Australia. Poult. Sci. 2021, 100, 100966. [Google Scholar] [CrossRef]
- Molee, A.; Kuadsantia, P.; Kaewnakian, P. Gene effects on body weight, carcass yield, and meat quality of Thai indigenous chicken. J. Poult. Sci. 2018, 55, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Tongsiri, S.; Jeyaruban, G.; Hermesch, S.; van der Werf, J.; Li, L.; Chormai, T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australas. J. Anim. Sci. 2019, 32, 930–938. [Google Scholar] [CrossRef]
- Kim, K.G.; Choi, E.S.; Kwon, J.H.; Sohn, S.H. The effect of early chick weight on market-weight in Korean native chickens. Korean J. Poult. Sci. 2017, 44, 259–265. [Google Scholar] [CrossRef] [Green Version]
- de Jong, I.C.; Blaauw, X.E.; van der Eijk, J.A.; da Silva, C.S.; van Krimpen, M.M.; Molenaar, R.; van den Brand, H. Providing environmental enrichments affects activity and performance, but not leg health in fast-and slower-growing broiler chickens. Appl. Anim. Behav. Sci. 2021, 241, 105375. [Google Scholar] [CrossRef]
- Petkov, E.; Ignatova, M.; Popova, T.; Ivanova, S. Quality of eggs and hatching traits in two slow-growing dual-purpose chicken lines reared conventionally or on pasture. Iranian J. Appl. Anim. Sci. 2020, 10, 141–148. [Google Scholar]
- Duangjinda, M.; Tunim, S.; Duangdaen, C.; Boonkum, W. Hsp70 genotypes and heat tolerance of commercial and native chickens reared in hot and humid conditions. Braz. J. Poult. Sci. 2017, 19, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Tenzin, J.; Chankitisakul, V.; Boonkum, W. Association of polymorphisms of physiological candidate genes with phenotype and estimated breeding values of reproductive and growth traits in Thai indigenous chickens. Genet. Mol. Res. 2020, 19, gmr18504. [Google Scholar] [CrossRef]
- Promwatee, N.; Loapaiboon, B.; Vongpralub, T.; Phasuk, Y.; Kunhareang, S.; Boonkum, W.; Duangjinda, M. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genet. Mol. Res. 2013, 12, 4332–4341. [Google Scholar] [CrossRef] [PubMed]
- Mookprom, S.; Boonkum, W.; Kunhareang, S.; Siripanya, S.; Duangjinda, M. Genetic evaluation of egg production curve in Thai native chickens by random regression and spline models. Poult. Sci. 2017, 96, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Mookprom, S.; Duangjinda, M.; Puangdee, S.; Kenchaiwong, W.; Boonkum, W. Estimation of additive genetic, dominance, and mate sire variances for fertility traits in Thai native (Pradu Hang Dam) chickens. Trop. Anim. Health Prod. 2021, 53, 81. [Google Scholar] [CrossRef] [PubMed]
- Lwelamira, J. Genotype-environmental (G x E) interaction for body weights for Kuchi chicken ecotype of Tanzania reared on-station and on-farm. Int. J. Poult. Sci. 2012, 11, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Guni, F.S.; Mbaga, S.H.; Katule, A.M. Performance evaluation of Kuroiler and Sasso chicken breeds reared under on-farm and on-station management conditions in Tanzania. Eur. J. Sci. Food. Agric. 2021, 3, 53–59. [Google Scholar] [CrossRef]
- Cahyadi, M.; Park, H.-B.; Seo, D.-W.; Jin, S.; Choi, N.; Heo, K.-N.; Kang, B.-S.; Jo, C.; Lee, J.-H. Genetic parameters for growth-related traits in Korean native chicken. Korean J. Poult. Sci. 2015, 42, 285–289. [Google Scholar] [CrossRef] [Green Version]
- El-Attrouny, M.M.; Iraqi, M.M.; Mohamed, S. A-H. The estimation of genetic parameters for body weight, body dimension, and carcass traits in four Egyptian chickens strains. J. World’s Poult. Res. 2021, 11, 230–240. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs. Available online: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf (accessed on 9 August 2019).
- Norris, D.; Ngambi, J.W. Genetic parameter estimates for body weight in local Venda chickens. Trop. Anim. Health Prod. 2006, 38, 605–609. [Google Scholar] [CrossRef]
- Kassa, B.; Tadesse, Y.; Esatu, W.; Dessiez, T. On-farm comparative evaluation of production performance of tropically adapted exotic chicken breeds in western Amhara, Ethiopia. J. Appl. Poult. Res. 2021, 30, 100194. [Google Scholar] [CrossRef]
- Alemu, T. Management practices, constraints, opportunities and marketing systems of village chicken production in central Ethiopia. Food. Sci. Qual. Manag. 2020, 98, 36–44. [Google Scholar]
- Lwelamira, J.; Kifaro, G.C.; Gwakisa, P.S. On station and on-farm evaluation of two Tanzania chicken ecotypes for body weights at different ages and for egg production. Afr. J. Agric. Res. 2008, 3, 843–851. [Google Scholar]
- Magwisha, H.B.; Kassuku, A.A.; Kyvsgaard, N.C.; Permin, A. A comparison of the prevalence and burdens of helminth infections in growers and adult free-range chickens. Trop. Anim. Health Prod. 2002, 34, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.R. Environmental control for layers. World’s Poult. Sci. 2004, 60, 163–175. [Google Scholar] [CrossRef]
- Scheideler, S.E. Effect of various light sources on broiler performance and efficiency of production under commercial conditions. Poult. Sci. 1990, 69, 1030–1033. [Google Scholar] [CrossRef]
- Alloui, N.; Alloui, M.N.; Bennoune, O.; Bouhentala, S. Effect of ventilation and atmospheric ammonia on the health and performance of broiler chickens in summer. J. World’s Poult. Res. 2013, 3, 54–56. [Google Scholar]
- Beker, A.; Vanhooser, S.L.; Swatzlander, J.H.; Teeter, R.G. Atmospheric ammonia concentration effects on broiler growth and performance. J. Appl. Poult. Res. 2004, 13, 5–9. [Google Scholar] [CrossRef]
- Mtileni, B.J.; Nephawe, K.A.; Nesamvuni, A.E.; Benyi, K. The influence of stocking density on body weight, egg weight, and feed intake of adult broiler breeder hens. Poultry Sci. 2007, 86, 1615–1619. [Google Scholar] [CrossRef]
- Škrbić, Z.; Pavlovski, Z.; Lukić, M.; Perić, L.; Milošević, N. The effect of stocking density on certain broiler welfare parameter. Biotechnol. Anim. Husband. 2009, 25, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Abudabos, A.M.; Samara, E.M.; Hussein, E.O.S.; Al-Ghadi, M.Q.; Al-Atiyat, R.M. Impacts of stocking density on the performance and welfare of broiler chickens. Ital. J. Anim. Sci. 2013, 12, e11. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Lee, M.H.; Song, Y.H.; Lee, J.I.; Ohh, S.J. Effect of dietary energy levels and bedding materials on performance, meat quality and foot pad score of male and female slow-growing Korean meat-type chicken (Hanhyop 3). Korean J. Poult. Sci. 2018, 4, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Phasouk, A.; Sakkatat, P.; Kruekum, P.; Fongmul, S. The situation of farmers rearing native chickens in Muang La, Udomxay province, Laos PDR. RCMRJ 2021, 22, 20–34. [Google Scholar]
- Nebiyu, Y.; Berhan, T.; Kelay, B. Characterization of village chicken production performance under scavenging system in Halaba district of southern Ethiopia. Ethiop. Vet. J. 2013, 17, 69–80. [Google Scholar]
- Niknafs, S.; Nejati-Javaremi, A.; Mehrabani-Yeganeh, H.; Fatemi, S.A. Estimation of genetic parameters for body weight and egg production traits in Mazandaran native chicken. Trop. Anim. Health Prod. 2012, 44, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Comparative study of phenotypes and genetics related to the growth performance of crossbred Thai indigenous (KKU1 vs. KKU2) chickens under hot and humid conditions. Vet. Sci. 2022, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic evaluation of body weights and egg production traits using a multi-trait animal model and selection index in Thai native synthetic chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef] [PubMed]
- Dana, N.; Van der Waaij, E.H.; van Arendonk, J.A.M. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Trop. Anim. Health Prod. 2011, 43, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Manjula, P.; Park, H.B.; Seo, D.; Choi, N.; Jin, S.; Ahn, S.J.; Heo, K.N.; Kang, B.S.; Lee, J.H. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian-Australas. J. Anim. Sci. 2018, 31, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Cassell, B.G. Using Heritability for Genetic Improvement; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2009; pp. 1–4. [Google Scholar]
- Falconer, D.S. Selection in different environments: Effects on environmental sensitivity (reaction norm) and on mean performance. Genet. Res. 1990, 56, 57–70. [Google Scholar] [CrossRef]
- Okeno, T.O.; Kahi, A.K.; Peters, K.J. Evaluation of breeding objectives for purebred and crossbred selection schemes for adoption in indigenous chicken breeding programmes. Br. Poult. Sci. 2013, 54, 62–75. [Google Scholar] [CrossRef]
- Hayes, B.J.; Goddard, M.E. Technical note: Prediction of breeding values using marker-derived relationship matrices. J. Anim. Sci. 2008, 86, 2089–2092. [Google Scholar] [CrossRef] [Green Version]
- Pszczola, M.; Strabel, T.; Mulder, H.A.; Calus, M.P.L. Reliability of direct genomic values for animals with different relationships within and to the reference population. J. Diary Sci. 2012, 95, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Chakravarty, A.K. Genetics and Breeding for Disease Resistance of Livestock; Chatlotte Cockle: Oxford, UK, 2020; pp. 245–258. [Google Scholar]
- Hayes, B.J.; Visscher, P.M.; Goddard, M.E. Increased accuracy of artificial selection by using the realized relationship matrix. Genet. Res. 2009, 91, 47–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, L.L.L.; Rajaravindra, K.S.; Rajkumar, U.; Reedy, B.L.N.; Paswan, C.; Haunshi, S.; Chatterjee, R.N. Genetic analysis of growth and egg production traits in synthetic colored broiler female line using animal model. Trop. Anim. Health Prod. 2020, 52, 3153–3163. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, U.; Prince, L.L.L.; Rajaravindra, K.S.; Haunshi, S.; Niranjan, M.; Chatterjee, R.N. Analysis of (co) variance components and estimation of breeding value of growth and production traits in Dahlem Red chicken using pedigree relationship in an animal model. PLoS ONE 2021, 16, e0247779. [Google Scholar] [CrossRef]
- Ullengala, R.; Prince, L.L.L.; Haunshi, S.; Paswan, D.; Chatterjee, R. Estimation of breeding value, genetic parameters and maternal effects of economic traits in rural male parent line chicken using pedigree relationships in an animal model. J. Anim. Breed. Genet. 2020, 138, 418–431. [Google Scholar] [CrossRef] [PubMed]
Research Sites | Traits | Parameters | ||
---|---|---|---|---|
On-site farm | BW0 | 5.26 | 5.28 | 0.499 ± 0.001 |
BW4 | 632.21 | 729.15 | 0.464 ± 0.002 | |
BW8 | 3055.07 | 4691.28 | 0.394 ± 0.005 | |
BW12 | 4199.35 | 13,560.11 | 0.236 ± 0.007 | |
BW16 | 8541.00 | 26,410.00 | 0.244 ± 0.007 | |
ADG0–4 | 0.81 | 2.12 | 0.276 ± 0.002 | |
ADG4–8 | 1.01 | 2.56 | 0.283 ± 0.003 | |
ADG8–12 | 1.60 | 4.10 | 0.281 ± 0.009 | |
ADG12–16 | 1.95 | 5.17 | 0.274 ± 0.015 | |
BrC8 | 0.30 | 0.82 | 0.268 ± 0.013 | |
BrC12 | 0.42 | 1.25 | 0.251 ± 0.021 | |
BrC16 | 0.46 | 1.79 | 0.204 ± 0.004 | |
On-station | BW0 | 3.21 | 3.22 | 0.499 ± 0.001 |
BW4 | 746.00 | 757.20 | 0.496 ± 0.001 | |
BW8 | 3143.15 | 4474.13 | 0.413 ± 0.001 | |
BW12 | 5422.22 | 11,675.41 | 0.317 ± 0.002 | |
BW16 | 9245.42 | 22,480.20 | 0.291 ± 0.005 | |
ADG0–4 | 0.85 | 2.00 | 0.298 ± 0.033 | |
ADG4–8 | 1.18 | 2.59 | 0.313 ± 0.046 | |
ADG8–12 | 1.85 | 4.09 | 0.311 ± 0.008 | |
ADG12–16 | 2.30 | 5.22 | 0.306 ± 0.021 | |
BrC8 | 0.40 | 0.95 | 0.296 ± 0.021 | |
BrC12 | 0.55 | 1.12 | 0.291 ± 0.016 | |
BrC16 | 0.64 | 1.66 | 0.278 ± 0.011 |
Traits | BW0 | BW4 | BW8 | BW12 | BW16 | ADG0–4 | ADG4–8 | ADG8–12 | ADG12–16 | BrC8 | BrC12 | BrC16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BW0 | - | 0.12 | 0.10 | 0.11 | 0.12 | 0.15 | 0.13 | 0.11 | 0.11 | 0.13 | 0.09 | 0.06 |
BW4 | 0.09 | - | 0.76 * | 0.57 * | 0.48 | 0.80 * | 0.78 * | 0.60 * | 0.49 * | 0.52 * | 0.47 * | 0.34 |
BW8 | 0.13 | 0.65 * | - | 0.84 * | 0.76 * | 0.75 * | 0.89 * | 0.84 * | 0.79 * | 0.79 * | 0.68 * | 0.56 * |
BW12 | 0.10 | 0.49 * | 0.74 * | - | 0.87 * | 0.59 * | 0.86 * | 0.88 * | 0.88 * | 0.57 * | 0.78 * | 0.74 * |
BW16 | 0.13 | 0.43 | 0.63 * | 0.73 * | - | 0.50 | 0.77 * | 0.86 * | 0.90 * | 0.54 * | 0.66 * | 0.83 * |
ADG0–4 | 0.06 | 0.70 * | 0.66 * | 0.50 * | 0.44 | - | 0.74 * | 0.60 * | 0.52 * | 0.55 * | 0.48 * | 0.45 * |
ADG4–8 | 0.12 | 0.66 * | 0.80 * | 0.76 * | 0.65 * | 0.63 * | - | 0.82 * | 0.74 * | 0.80 * | 0.70 * | 0.67 * |
ADG8–12 | 0.10 | 0.52 * | 0.78 * | 0.80 * | 0.68 * | 0.50 * | 0.74 * | - | 0.79 * | 0.628 * | 0.79 * | 0.75 * |
ADG12–16 | 0.10 | 0.46 | 0.61 * | 0.62 * | 0.81 * | 0.44 * | 0.60 * | 0.64 * | - | 0.56 * | 0.68 * | 0.84 * |
BrC8 | 0.07 | 0.47 * | 0.65 * | 0.56 * | 0.46 * | 0.50 * | 0.69 * | 0.59 * | 0.46 * | - | 0.59 * | 0.55 * |
BrC12 | 0.03 | 0.41 * | 0.59 * | 0.64 * | 0.45 * | 0.45 * | 0.61 * | 0.66 * | 0.46 * | 0.49 * | - | 0.60 * |
BrC16 | 0.02 | 0.36 | 0.47 * | 0.45 * | 0.69 * | 0.40 * | 0.50 * | 0.48 * | 0.72 * | 0.39 * | 0.41 * | - |
Traits | BW0 | BW4 | BW8 | BW12 | BW16 | ADG0–4 | ADG4–8 | ADG8–12 | ADG12–16 | BrC8 | BrC12 | BrC16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BW0 | - | 0.09 | 0.13 | 0.09 | 0.12 | 0.04 | 0.10 | 0.06 | 0.05 | 0.10 | 0.07 | 0.02 |
BW4 | 0.20 | - | 0.65 * | 0.49 * | 0.44 | 0.79 * | 0.64 * | 0.48 * | 0.38 | 0.35 * | 0.32 | 0.29 |
BW8 | 0.16 | 0.74 * | - | 0.73 * | 0.63 * | 0.65 * | 0.89 * | 0.76 * | 0.54 * | 0.60 * | 0.54 * | 0.38 * |
BW12 | 0.11 | 0.53 * | 0.77 * | - | 0.62 * | 0.50 * | 0.74 * | 0.96 * | 0.58 * | 0.65 * | 0.62 * | 0.35 * |
BW16 | 0.12 | 0.46 | 0.69 * | 0.81 * | - | 0.42 | 0.60 * | 0.62 * | 0.97 * | 0.45 * | 0.48 * | 0.57 * |
ADG0–4 | 0.15 | 0.90 * | 0.77 * | 0.52 * | 0.42 | - | 0.65 * | 0.50 * | 0.46 * | 0.57 * | 0.42 * | 0.40 * |
ADG4–8 | 0.12 | 0.75 * | 0.94 * | 0.74 * | 0.64 * | 0.74 * | - | 0.74 * | 0.61 * | 0.66 * | 0.59 * | 0.50 * |
ADG8–12 | 0.06 | 0.50 * | 0.77 * | 0.97 * | 0.75 * | 0.60 * | 0.79 * | - | 0.59 * | 0.74 * | 0.66 * | 0.47 * |
ADG12–16 | 0.07 | 0.40 | 0.70 * | 0.85 * | 0.98 * | 0.58 * | 0.72 * | 0.75 * | - | 0.58 * | 0.45 * | 0.68 * |
BrC8 | 0.08 | 0.43 * | 0.67 * | 0.72 * | 0.45 * | 0.64 * | 0.68 * | 0.80 * | 0.65 * | - | 0.40 * | 0.35 * |
BrC12 | 0.04 | 0.30 * | 0.50 * | 0.60 * | 0.44 * | 0.50 * | 0.67 * | 0.72 * | 0.60 * | 0.42 * | - | 0.48 * |
BrC16 | 0.04 | 0.21 | 0.38 * | 0.43 * | 0.52 * | 0.50 * | 0.62 * | 0.64 * | 0.75 * | 0.44 * | 0.62 * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaikuad, N.; Loengbudnark, W.; Chankitisakul, V.; Boonkum, W. Genetic Comparisons of Body Weight, Average Daily Gain, and Breast Circumference between Slow-Growing Thai Native Chickens (Pradu Hang dum) Raised On-Site Farm and On-Station. Vet. Sci. 2023, 10, 11. https://doi.org/10.3390/vetsci10010011
Chaikuad N, Loengbudnark W, Chankitisakul V, Boonkum W. Genetic Comparisons of Body Weight, Average Daily Gain, and Breast Circumference between Slow-Growing Thai Native Chickens (Pradu Hang dum) Raised On-Site Farm and On-Station. Veterinary Sciences. 2023; 10(1):11. https://doi.org/10.3390/vetsci10010011
Chicago/Turabian StyleChaikuad, Nitiporn, Wipas Loengbudnark, Vibuntita Chankitisakul, and Wuttigrai Boonkum. 2023. "Genetic Comparisons of Body Weight, Average Daily Gain, and Breast Circumference between Slow-Growing Thai Native Chickens (Pradu Hang dum) Raised On-Site Farm and On-Station" Veterinary Sciences 10, no. 1: 11. https://doi.org/10.3390/vetsci10010011
APA StyleChaikuad, N., Loengbudnark, W., Chankitisakul, V., & Boonkum, W. (2023). Genetic Comparisons of Body Weight, Average Daily Gain, and Breast Circumference between Slow-Growing Thai Native Chickens (Pradu Hang dum) Raised On-Site Farm and On-Station. Veterinary Sciences, 10(1), 11. https://doi.org/10.3390/vetsci10010011