A Complementary Dataset of Scalp EEG Recordings Featuring Participants with Alzheimer’s Disease, Frontotemporal Dementia, and Healthy Controls, Obtained from Photostimulation EEG
Abstract
:1. Summary
2. Data Description
2.1. EEG Recordings
2.2. Participants
2.3. Dataset Structure
3. Methods
3.1. Recordings
3.2. Preprocessing
3.3. Classification Benchmark
3.3.1. Feature Extraction
3.3.2. Classification
4. User Notes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Participant Information
Participant ID | Gender | Age | Group | MMSE | Highest Photo-Stimulation Freq. |
---|---|---|---|---|---|
sub-001 | F | 57 | A | 16 | 20 Hz |
sub-002 | F | 78 | A | 22 | 20 Hz |
sub-003 | M | 70 | A | 14 | 20 Hz |
sub-004 | F | 67 | A | 20 | 20 Hz |
sub-005 | M | 70 | A | 22 | 20 Hz |
sub-006 | F | 61 | A | 14 | 20 Hz |
sub-007 | F | 79 | A | 20 | 20 Hz |
sub-008 | M | 62 | A | 16 | 20 Hz |
sub-009 | F | 77 | A | 23 | 20 Hz |
sub-010 | M | 69 | A | 20 | 20 Hz |
sub-011 | M | 71 | A | 22 | 20 Hz |
sub-012 | M | 63 | A | 18 | 20 Hz |
sub-013 | F | 64 | A | 20 | 20 Hz |
sub-014 | M | 77 | A | 14 | 20 Hz |
sub-015 | M | 61 | A | 18 | 20 Hz |
sub-016 | F | 68 | A | 14 | 20 Hz |
sub-017 | F | 61 | A | 6 | 20 Hz |
sub-018 | F | 73 | A | 23 | 20 Hz |
sub-019 | F | 62 | A | 14 | 25 Hz |
sub-020 | M | 71 | A | 4 | 25 Hz |
sub-021 | M | 79 | A | 22 | 20 Hz |
sub-022 | F | 68 | A | 20 | 20 Hz |
sub-023 | M | 60 | A | 16 | 20 Hz |
sub-024 | F | 69 | A | 20 | 20 Hz |
sub-025 | F | 79 | A | 20 | 20 Hz |
sub-026 | F | 61 | A | 18 | 20 Hz |
sub-027 | F | 67 | A | 16 | 20 Hz |
sub-028 | M | 49 | A | 20 | 20 Hz |
sub-029 | F | 53 | A | 16 | 20 Hz |
sub-030 | F | 56 | A | 20 | 20 Hz |
sub-031 | F | 67 | A | 22 | 20 Hz |
sub-032 | F | 59 | A | 20 | 20 Hz |
sub-033 | F | 72 | A | 20 | 20 Hz |
sub-034 | F | 75 | A | 18 | 20 Hz |
sub-035 | F | 57 | A | 22 | 20 Hz |
sub-036 | F | 58 | A | 9 | 20 Hz |
sub-037 | M | 57 | C | 30 | 20 Hz |
sub-038 | M | 62 | C | 30 | 20 Hz |
sub-039 | M | 70 | C | 30 | 20 Hz |
sub-040 | M | 61 | C | 30 | 20 Hz |
sub-041 | F | 77 | C | 30 | 25 Hz |
sub-042 | M | 74 | C | 30 | 20 Hz |
sub-043 | M | 72 | C | 30 | 20 Hz |
sub-044 | F | 64 | C | 30 | 20 Hz |
sub-045 | F | 70 | C | 30 | 5 Hz |
sub-046 | M | 63 | C | 30 | 5 Hz |
sub-047 | F | 70 | C | 30 | 20 Hz |
sub-048 | M | 65 | C | 30 | 30 Hz |
sub-049 | F | 62 | C | 30 | 20 Hz |
sub-050 | M | 68 | C | 30 | 20 Hz |
sub-051 | F | 75 | C | 30 | 20Hz |
sub-052 | F | 73 | C | 30 | 30 Hz |
sub-053 | M | 70 | C | 30 | 20 Hz |
sub-054 | M | 78 | C | 30 | 20 Hz |
sub-055 | M | 67 | C | 30 | 20 Hz |
sub-056 | F | 64 | C | 30 | 20 Hz |
sub-057 | M | 64 | C | 30 | 20 Hz |
sub-058 | M | 62 | C | 30 | 20 Hz |
sub-059 | M | 77 | C | 30 | 20 Hz |
sub-060 | F | 71 | C | 30 | 20 Hz |
sub-061 | F | 63 | C | 30 | 20 Hz |
sub-062 | M | 67 | C | 30 | 20 Hz |
sub-063 | M | 66 | C | 30 | 20 Hz |
sub-064 | M | 66 | C | 30 | 20 Hz |
sub-065 | F | 71 | C | 30 | 20 Hz |
sub-066 | M | 73 | F | 20 | 20 Hz |
sub-067 | M | 66 | F | 24 | 20 Hz |
sub-068 | M | 78 | F | 25 | 20 Hz |
sub-069 | M | 70 | F | 22 | 20 Hz |
sub-070 | F | 67 | F | 22 | 20 Hz |
sub-071 | M | 62 | F | 20 | 20 Hz |
sub-072 | M | 65 | F | 18 | 20 Hz |
sub-073 | F | 57 | F | 22 | 20 Hz |
sub-074 | F | 53 | F | 20 | 20 Hz |
sub-075 | F | 71 | F | 22 | 20 Hz |
sub-076 | M | 44 | F | 24 | 20 Hz |
sub-077 | M | 61 | F | 22 | 20 Hz |
sub-078 | M | 62 | F | 22 | 20 Hz |
sub-079 | F | 60 | F | 18 | 20 Hz |
sub-080 | F | 71 | F | 20 | 20 Hz |
sub-081 | F | 61 | F | 18 | 20 Hz |
sub-082 | M | 63 | F | 27 | 20 Hz |
sub-083 | F | 68 | F | 20 | 20 Hz |
sub-084 | F | 71 | F | 24 | 20 Hz |
sub-085 | M | 64 | F | 26 | 20 Hz |
sub-086 | M | 49 | F | 26 | 20 Hz |
sub-087 | M | 73 | F | 24 | 20 Hz |
sub-088 | M | 55 | F | 24 | 20 Hz |
References
- Levy, M.L.; Miller, B.L.; Cummings, J.L.; Fairbanks, L.A.; Craig, A. Alzheimer Disease and Frontotemporal Dementias: Behavioral Distinctions. Arch. Neurol. 1996, 53, 687–690. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dementia Fact Sheet; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 9 April 2025).
- Centers for Disease Control and Prevention. About Dementia; CDC: Atlanta, GA, USA, 2024. Available online: https://www.cdc.gov/alzheimers-dementia/index.html (accessed on 9 April 2025).
- Zuin, M.; Brombo, G.; Polastri, M.; Romagnoli, T.; Cervellati, C.; Zuliani, G. Variability in Alzheimer’s disease mortality from European vital statistics, 2012–2020. Int. J. Geriatr. Psychiatry 2024, 39, e6068. [Google Scholar] [CrossRef]
- Perry, R.; Hodges, J. Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer’s disease. Neurology 2000, 54, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Frontotemporal Dementias. Bryn Mawr Communications. Available online: https://fyra.io (accessed on 9 April 2025).
- Nishida, K.; Yoshimura, M.; Isotani, T.; Yoshida, T.; Kitaura, Y.; Saito, A.; Mii, H.; Kato, M.; Takekita, Y.; Suwa, A.; et al. Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clin. Neurophysiol. 2011, 122, 1718–1725. [Google Scholar] [CrossRef]
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef] [PubMed]
- Musa, G.; Slachevsky, A.; Muñoz-Neira, C.; Méndez-Orellana, C.; Villagra, R.; González-Billault, C.; Ibáñez, A.; Hornberger, M.; Lillo, P. Alzheimer’s Disease or Behavioral Variant Frontotemporal Dementia? Review of Key Points Toward an Accurate Clinical and Neuropsychological Diagnosis. J. Alzheimer’s Dis. 2020, 73, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Davatzikos, C.; Resnick, S.M.; Wu, X.; Parmpi, P.; Clark, C.M. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 2008, 41, 1220–1227. [Google Scholar] [CrossRef]
- Pandey, N.; Yang, Z.; Cieza, B.; Reyes-Dumeyer, D.; Kang, M.S.; Montesinos, R.; Soto-Añari, M.; Custodio, N.; Honig, L.S.; Tosto, G. Plasma phospho-tau217 as a predictive biomarker for Alzheimer’s disease in a large south American cohort. Alzheimer’s Res. Ther. 2025, 17, 1. [Google Scholar] [CrossRef]
- Jiang, A. Challenges in Early Diagnosis and Treatment of Alzheimer’s Disease. Highlights Sci. Eng. Technol. 2023, 74, 713–718. [Google Scholar] [CrossRef]
- Babiloni, C.; Arakaki, X.; Azami, H.; Bennys, K.; Blinowska, K.; Bonanni, L.; Bujan, A.; Carrillo, M.C.; Cichocki, A.; de Frutos-Lucas, J.; et al. Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: Recommendations of an expert panel. Alzheimer’s Dement. 2021, 17, 1528–1553. [Google Scholar] [CrossRef]
- Miltiadous, A.; Gionanidis, E.; Tzimourta, K.D.; Giannakeas, N.; Tzallas, A.T. DICE-Net: A Novel Convolution-Transformer Architecture for Alzheimer Detection in EEG Signals. IEEE Access 2023, 11, 71840–71858. [Google Scholar] [CrossRef]
- Jalilianhasanpour, R.; Beheshtian, E.; Sherbaf, G.; Sahraian, S.; Sair, H.I. Functional Connectivity in Neurodegenerative Disorders: Alzheimer’s Disease and Frontotemporal Dementia. Top. Magn. Reson. Imaging 2019, 28, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Miltiadous, A.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Grigoriadis, N.; Tsalikakis, D.G.; Angelidis, P.; Tsipouras, M.G.; Glavas, E.; Giannakeas, N.; et al. A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG. Data 2023, 8, 95. [Google Scholar] [CrossRef]
- Miltiadous, A.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Grigoriadis, N.; Tsalikakis, D.G.; Angelidis, P.; Tsipouras, M.G.; Glavas, E.; Giannakeas, N.; et al. A dataset of EEG recordings from: Alzheimer’s disease, Frontotemporal dementia and Healthy subjects. OpenNeuro 2024. [Google Scholar] [CrossRef]
- Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.; Glatard, T.; Halchenko, Y.O.; et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 2016, 3, 160044. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ntetska, A.; Miltiadous, A.; Tzallas, A.T.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Tsalikakis, D.G.; Sakkas, K.; Oikonomou, E.D.; Giannakeas, N.; et al. A complementary dataset of open-eyes EEG recordings in a photo-stimulation setting from: Alzheimer’s disease, Frontotemporal dementia and Healthy subjects. OpenNeuro 2025. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Chang, C.Y.; Hsu, S.H.; Pion-Tonachini, L.; Jung, T.P. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef]
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 2007, 34, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2019, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: A Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 2015, 8, 014008. [Google Scholar] [CrossRef]
Model | Accuracy | Precision | Recall | F1 Score | Specificity |
---|---|---|---|---|---|
LightGBM | 0.604 | 0.579 | 0.599 | 0.589 | 0.608 |
SVM | 0.625 | 0.576 | 0.796 | 0.668 | 0.472 |
MLP | 0.604 | 0.580 | 0.599 | 0.589 | 0.609 |
PCA + kNN (k = 19) | 0.603 | 0.580 | 0.588 | 0.584 | 0.616 |
Model | Accuracy | Precision | Recall | F1 Score | Specificity |
---|---|---|---|---|---|
LightGBM | 0.710 | 0.605 | 0.680 | 0.673 | 0.833 |
SVM | 0.702 | 0.584 | 0.735 | 0.709 | 0.794 |
MLP | 0.650 | 0.580 | 0.721 | 0.669 | 0.735 |
PCA + kNN (k = 14) | 0.685 | 0.571 | 0.651 | 0.624 | 0.721 |
Combined Datasets | Accuracy | Precision | Recall | F1 Score | Specificity |
---|---|---|---|---|---|
AD/CN SVM | 0.687 | 0.669 | 0.803 | 0.730 | 0.557 |
FTD/CN LightGBM | 0.764 | 0.632 | 0.776 | 0.722 | 0.841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntetska, A.; Miltiadous, A.; Tsipouras, M.G.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Tsalikakis, D.G.; Sakkas, K.; Oikonomou, E.D.; Grigoriadis, N.; et al. A Complementary Dataset of Scalp EEG Recordings Featuring Participants with Alzheimer’s Disease, Frontotemporal Dementia, and Healthy Controls, Obtained from Photostimulation EEG. Data 2025, 10, 64. https://doi.org/10.3390/data10050064
Ntetska A, Miltiadous A, Tsipouras MG, Tzimourta KD, Afrantou T, Ioannidis P, Tsalikakis DG, Sakkas K, Oikonomou ED, Grigoriadis N, et al. A Complementary Dataset of Scalp EEG Recordings Featuring Participants with Alzheimer’s Disease, Frontotemporal Dementia, and Healthy Controls, Obtained from Photostimulation EEG. Data. 2025; 10(5):64. https://doi.org/10.3390/data10050064
Chicago/Turabian StyleNtetska, Aimilia, Andreas Miltiadous, Markos G. Tsipouras, Katerina D. Tzimourta, Theodora Afrantou, Panagiotis Ioannidis, Dimitrios G. Tsalikakis, Konstantinos Sakkas, Emmanouil D. Oikonomou, Nikolaos Grigoriadis, and et al. 2025. "A Complementary Dataset of Scalp EEG Recordings Featuring Participants with Alzheimer’s Disease, Frontotemporal Dementia, and Healthy Controls, Obtained from Photostimulation EEG" Data 10, no. 5: 64. https://doi.org/10.3390/data10050064
APA StyleNtetska, A., Miltiadous, A., Tsipouras, M. G., Tzimourta, K. D., Afrantou, T., Ioannidis, P., Tsalikakis, D. G., Sakkas, K., Oikonomou, E. D., Grigoriadis, N., Angelidis, P., Giannakeas, N., & Tzallas, A. T. (2025). A Complementary Dataset of Scalp EEG Recordings Featuring Participants with Alzheimer’s Disease, Frontotemporal Dementia, and Healthy Controls, Obtained from Photostimulation EEG. Data, 10(5), 64. https://doi.org/10.3390/data10050064