Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Lyophilisation of Grape Seeds and Skins
2.3. Accelerated Solvent Extraction of Phenols from Ground Seeds and Skins
2.3.1. Assessment of the Effect of Extraction Solvent Order for Extraction of Phenols from Grape Seeds
2.3.2. Assessment of the Number of Extraction Cycles for Extraction of Phenols from Grape Seeds
2.3.3. Assessment of Static Time Duration for Extraction of Phenols from Grape Seeds
2.3.4. Assessment of the Optimal Number of Extraction Cycles and Static Time Durations for Extraction of Phenols from Seeds and Skins
2.4. Extraction of Phenols from Seeds and Skins by Mechanical Shaking (Extraction by Maceration)
2.5. Spectrophotometric Evaluation of Total Phenolic Index in Seed and Skin Extracts
2.6. Statistical Analysis
3. Results and Discussion
3.1. Lyophilisation of Grape Skins and Seeds
3.2. Assessment of the Effect of Extraction Solvent Order
3.3. Assessment of the Number of Extraction Cycles and Static Time Duration
3.4. Yield of Extracted Phenols from Grape Skins and Seeds with Manual Solid-Liquid Extraction and Accelerated Solvent Extraction under Different Extraction Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vermerris, W.; Nicholson, R. Phenolic Compounds and Their Effects on Human Health. In Phenolic Compound Biochemistry; Springer Netherlands: Dordrecht, The Netherlands, 2006; pp. 235–255. ISBN 978-1-4020-5163-0. [Google Scholar]
- Saltveit, M.E. Synthesis and Metabolism of Phenolic Compounds. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 115–124. ISBN 978-1-119-15804-2. [Google Scholar]
- Li, L.; Sun, B. Grape and Wine Polymeric Polyphenols: Their Importance in Enology. Crit. Rev. Food Sci. Nutr. 2019, 59, 563–579. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Cheryan, M.; Salunkhe, D.K. Tannin Analysis of Food Products. Crit. Rev. Food Sci. Nutr. 1986, 24, 401–449. [Google Scholar] [CrossRef]
- Chira, K.; Schmauch, G.; Saucier, C.; Fabre, S.; Teissedre, P.-L. Grape Variety Effect on Proanthocyanidin Composition and Sensory Perception of Skin and Seed Tannin Extracts from Bordeaux Wine Grapes (Cabernet Sauvignon and Merlot) for Two Consecutive Vintages (2006 and 2007). J. Agric. Food Chem. 2009, 57, 545–553. [Google Scholar] [CrossRef]
- Sivilotti, P.; Falchi, R.; Vanderweide, J.; Sabbatini, P.; Bubola, M.; Vanzo, A.; Lisjak, K.; Peterlunger, E.; Herrera, J.C. Yield Reduction through Cluster or Selective Berry Thinning Similarly Modulates Anthocyanins and Proanthocyanidins Composition in Refosco Dal Peduncolo Rosso (Vitis vinifera L.) Grapes. Sci. Hortic. 2020, 264, 109166. [Google Scholar] [CrossRef]
- Lorrain, B.; Chira, K.; Teissedre, P.-L. Phenolic Composition of Merlot and Cabernet-Sauvignon Grapes from Bordeaux Vineyard for the 2009-Vintage: Comparison to 2006, 2007 and 2008 Vintages. Food Chem. 2011, 126, 1991–1999. [Google Scholar] [CrossRef]
- Calderan, A.; Sivilotti, P.; Braidotti, R.; Mihelčič, A.; Lisjak, K.; Vanzo, A. Managing Moderate Water Deficit Increased Anthocyanin Concentration and Proanthocyanidin Galloylation in “Refošk” Grapes in Northeast Italy. Agric. Water Manag. 2021, 246, 106684. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Jiang, J.; Duan, W.; Fan, P.; Li, S.; Wang, L. Flavan-3-Ols in Vitis Seeds: Their Extraction and Analysis by HPLC-ESI-MS/MS. Food Res. Int. 2021, 139, 109911. [Google Scholar] [CrossRef]
- Downey, M.O.; Hanlin, R.L. Comparison of Ethanol and Acetone Mixtures for Extraction of Condensed Tannin from Grape Skin. S. Afr. J. Enol. Vitic. 2010, 31. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Y.; Toledo, R.T. Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Bindon, K.A.; Madani, S.H.; Pendleton, P.; Smith, P.A.; Kennedy, J.A. Factors Affecting Skin Tannin Extractability in Ripening Grapes. J. Agric. Food Chem. 2014, 62, 1130–1141. [Google Scholar] [CrossRef]
- Ćurko, N.; Kovačević Ganić, K.; Gracin, L.; Đapić, M.; Jourdes, M.; Teissedre, P.L. Characterization of Seed and Skin Polyphenolic Extracts of Two Red Grape Cultivars Grown in Croatia and Their Sensory Perception in a Wine Model Medium. Food Chem. 2014, 145, 15–22. [Google Scholar] [CrossRef]
- Ma, W.; Waffo-Téguo, P.; Jourdes, M.; Li, H.; Teissedre, P.-L. First Evidence of Epicatechin Vanillate in Grape Seed and Red Wine. Food Chem. 2018, 259, 304–310. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.-L. Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). J. Agric. Food Chem. 2012, 60, 11850–11858. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Bindon, K.A.; Bacic, A.; Kennedy, J.A. Tissue-Specific and Developmental Modifications of Grape Cell Walls Influence the Adsorption of Proanthocyanidins. J. Agric. Food Chem. 2012, 60, 9249–9260. [Google Scholar] [CrossRef]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.-L. Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Sólyom, K.; Solá, R.; Cocero, M.J.; Mato, R.B. Thermal Degradation of Grape Marc Polyphenols. Food Chem. 2014, 159, 361–366. [Google Scholar] [CrossRef]
- Dionex. Dionex ASE 350 Accelerated Solvent Extractor Operator’s Manual; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2011. [Google Scholar]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal Stability, Antioxidant Activity, and Photo-Oxidation of Natural Polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Fiehn, O. Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks. Comp. Funct. Genom. 2001, 2, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized Liquid Extraction in the Analysis of Food and Biological Samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lisjak, K.; Lelova, Z.; Žigon, U.; Bolta, Š.V.; Teissedre, P.-L.; Vanzo, A. Effect of Extraction Time on Content, Composition and Sensory Perception of Proanthocyanidins in Wine-like Medium and during Industrial Fermentation of Cabernet Sauvignon. J. Sci. Food Agric. 2020, 100, 1887–1896. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre-Tudo, J.L. Wessel du Toit The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. In Frontiers and New Trends in the Science of Fermented Food and Beverages; Solís-Oviedo, R.L., de la Cruz Pech-Canul, Á., Eds.; IntechOpen: Rijeka, Croatia, 2018; p. 3. ISBN 978-1-78985-496-1. [Google Scholar]
- Chris Somers, T.; Evans, M.E. Spectral Evaluation of Young Red Wines: Anthocyanin Equilibria, Total Phenolics, Free and Molecular SO2, “Chemical Age”. J. Sci. Food Agric. 1977, 28, 279–287. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Chira, K.; Lorrain, B.; Ky, I.; Teissedre, P.-L. Tannin Composition of Cabernet-Sauvignon and Merlot Grapes from the Bordeaux Area for Different Vintages (2006 to 2009) and Comparison to Tannin Profile of Five 2009 Vintage Mediterranean Grapes Varieties. Molecules 2011, 16, 1519–1532. [Google Scholar] [CrossRef] [Green Version]
- Chira, K.; Zeng, L.; Le Floch, A.; Péchamat, L.; Jourdes, M.; Teissedre, P.-L. Compositional and Sensory Characterization of Grape Proanthocyanidins and Oak Wood Ellagitannin. Tetrahedron 2015, 71, 2999–3006. [Google Scholar] [CrossRef]
- Mattivi, F.; Vrhovsek, U.; Masuero, D.; Trainotti, D. Differences in the Amount and Structure of Extractable Skin and Seed Tannins amongst Red Grape Varieties. Aust. J. Grape Wine Res. 2009, 15, 27–35. [Google Scholar] [CrossRef]
- Dionex. Methods Optimization in Accelerated Solvent Extraction (ASE); Technical Note 208; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2004. [Google Scholar]
- Álvarez-Casas, M.; García-Jares, C.; Llompart, M.; Lores, M. Effect of Experimental Parameters in the Pressurized Solvent Extraction of Polyphenolic Compounds from White Grape Marc. Food Chem. 2014, 157, 524–532. [Google Scholar] [CrossRef]
Variety | Extracted Phenolic Compounds; Tissue | Extraction Solvent | Tissue Solvent Ratio (w/v) | Type and Duration of Extraction and Temperature | Ref. |
---|---|---|---|---|---|
Cabernet Sauvignon, Merlot, Refošk | PCAs, flavan-3-ols; lyophilised, cryo-milled seeds and skins | 80% AC 60% MeOH | 1:9 1:9 | Manual: shaking for 4 h in AC and then for 2.5–3 h in MeOH at room temperature | [5,6,7,8] |
Cabernet Sauvignon, Merlot | Flavan-3-ols; cryo-milled seeds | 80% MeOH | 1:30 | Manual: 20 min sonification, extraction for 12 h in darkness at 25 °C | [9] |
Shiraz | PCAs; vortexed skins | 70% AC | 1:10 | Manual: 20 min sonification at room temperature | [10] |
Muscadine | PCAs; milled seeds | 50–75% AC | 1:10 | Manual: 15 min sonification, shaking for 30 min at room temperature | [11] |
Cabernet Sauvignon | PCAs; skins | 70% AC 0.01% TFA | 1:15 | Manual: shaking in darkness for 42 h at 25 °C | [12] |
Red varieties | PCAs, flavan-3-ols; lyophilised, cryo-milled seeds and skins | 80% AC 60% MeOH | 1:9 1:9 | ASE: 5 min preheat, AC: 8 EC, 4 min ST MeOH: 3 EC, 4 min ST at 25 °C or 40 °C | [13,14,15] |
Extraction Cycles | Solvent | TPI | Solvent | TPI |
---|---|---|---|---|
1 | AC | 3512 ± 111 | AC | 3304 ± 261 |
2 | AC | 551 ±141 | MeOH | 267 ± 14 |
3 | AC | 142 ± 23 | AC | 132 ± 40 |
4 | AC | 70 ± 23 | MeOH | 84 ± 24 |
5 | AC | 60 ± 55 | AC | 66 ± 1 |
6 | MeOH | 89 ± 44 | MEOH | 44 ± 12 |
7 | MeOH | 49 ± 46 | AC | 36 ± 7 |
8 | MeOH | 11 ± 32 | MeOH | 19 ± 11 |
9 | MeOH | nd | AC | 23 ± 16 |
10 | MeOH | nd | MeOH | 17 ± 16 |
Total TPI | 4489 ns | 4011 ns |
Extraction Conditions | Extraction Type (Extraction Time, Solvent Volume) | Seeds TPI | Skins TPI |
---|---|---|---|
AC *: 4h shaking, 15 min centrifuge MEOH **: 3h shaking, 15 min centrifuge | Manual extraction (450 min, 20 mL) | 2723 ±116 | 426 ± 28 |
AC: 8 EC, 4 min ST, 1 min flushing MeOH: 4 EC, 4 min ST, 1 min flushing | ASE (50 min, 24 mL) | 2680 ± 149 | 426 ± 24 |
AC: 8 EC, 10 min ST, 1 min flushing AC: 8 EC, 1 min ST, 1 min flushing MeOH: 4 EC, 20 min ST, 1 min flushing MeOH: 1 EC, 20 min ST, 1 min flushing | ASE (192 min, 48 mL) | 2648 ± 135 | 479 ± 31 |
AC: 8 EC, 10 min ST, 1 min flushing MeOH: 4 EC, 20 min ST, 1 min flushing AC: 1 EC, 1 min ST, 1 min flushing MeOH: 1 EC,1 min ST, 1 min flushing | ASE (166 min, 48 mL) | 2613 ± 170 | 449 ± 72 |
AC: 8 EC, 10 min ST, 1 min flushing MeOH: 4 EC, 20 min ST, 1 min flushing | ASE (162 min, 24 mL) | 2743 ± 122 | 423 ± 11 |
AC: 8 EC, 1 min ST, 1 min flushing MeOH: 1 EC, 20 min ST, 1 min flushing | ASE (30 min, 24 mL) | 2218 ± 167 | 478 ± 10 |
Significance | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihelčič, A.; Lisjak, K.; Vanzo, A. Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds. Beverages 2023, 9, 4. https://doi.org/10.3390/beverages9010004
Mihelčič A, Lisjak K, Vanzo A. Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds. Beverages. 2023; 9(1):4. https://doi.org/10.3390/beverages9010004
Chicago/Turabian StyleMihelčič, Alenka, Klemen Lisjak, and Andreja Vanzo. 2023. "Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds" Beverages 9, no. 1: 4. https://doi.org/10.3390/beverages9010004
APA StyleMihelčič, A., Lisjak, K., & Vanzo, A. (2023). Accelerated Solvent Extraction of Phenols from Lyophilised Ground Grape Skins and Seeds. Beverages, 9(1), 4. https://doi.org/10.3390/beverages9010004