Current State of Sensors and Sensing Systems Utilized in Beer Analysis
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Study Selection
3.2. Sensors to Detect Toxins
3.2.1. Carbon Nanotubes
3.2.2. Metallic Nanoparticles
3.2.3. Upconverting Nanoparticles
3.3. Detection of Ethanol and Sugars
3.4. Amines and Peptides
3.5. Polyphenols
3.6. Organic Acids
3.7. Hydrogen Peroxide
3.8. Metals Ions
3.9. Gibberellin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Definition |
ADH | Alcohol Dehydrogenase |
AF | Aflatoxin |
AgNPs | Silver Nanoparticles |
AOX | Alcohol Oxidase |
ATP | Adenosine Triphosphate |
AuNPs | Gold Nanoparticles |
AuNUs | Gold Nanourchins |
BDD | Boron-Doped Diamond |
BiF | Bismuth Film |
BMIMPF6 | 1-butyl-3-methylimidazolium hexafluorophosphate |
BRET | Bioluminescence Resonance Energy Transfer |
cDNA | Complimentary DNA |
CGE | Coated Graphite Electrode |
CMOS | Complementary Metal Oxide Semiconductor |
COF | Covalent Organic Framework |
CPE | Carbon Paste Electrode |
CS | Core/Shell |
Cy3 | Cyanine 3 |
DAO | Diamine Oxidase |
DLDH | D-Lactic Acid Dehydrogenase |
DMF | N,N-dimethylformamide |
DNA | Deoxyribonucleic Acid |
DP | Diaphorase |
EC50 | Half Maximal Effective Concentration |
EDM | Eukaryotic Double Mediator |
E-nose | Electronic Nose |
E-tongue | Electronic Tongue |
Exo | Exonuclease |
FAM | Carboxyfluorescein |
FIA | Flow Injection Analysis |
FN | Fumonisin |
FRET | Fluorescence Resonance Energy Transfer |
GA3 | Gibberellin A3 |
GC | Gas Chromatography |
GCE | Glassy Carbon Electrode |
GQDs | Graphene Quantum Dots |
H2O2 | Hydrogen Peroxide |
IMERs | Integrated Immobilized Enzyme Microreactors |
KMS | Potassium Metabisulphite |
LOD | Limit of Detection |
LRET | Luminescence Resonance Energy Transfer |
MEMS | Micro Electromechanical Systems |
MIP | Molecularly Imprinted Polymer |
MIP-ECL | Molecularly Imprinted Electrochemical Luminescence |
MOF | Metal-Organic Framework |
MoS2 | Molybdenum Disulfide |
MWCNT | Multi-Walled Carbon Nanotube |
NADH | Nicotinamide Adenine Dinucleotide |
NPs | Nanoparticles |
OT | Ochratoxin |
OTA | Ochratoxin A |
OTB | Ochratoxin B |
OTC | Ochratoxin C |
PDTPA | Poly Diethylenetriaminepentaacetic Acid |
PEI | Polyethyleneimine |
PET | Photoinduced Electron Transfer |
PLNR | Persistent Luminescence Nanorod |
PME | Polymeric Membrane Electrode |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PtNPs | Platinum Nanoparticles |
PVA | Polyvinyl Alcohol |
PVC | Polyvinyl Chloride |
Q-DNA | DNA Single Strand |
SELEX | Systematic Evolution of Ligands by Exponential Enrichment |
SERS | Surface-Enhanced Raman Spectroscopy |
SPCE | Screen-Printed Carbon Electrodes |
SPE | Screen-Printed Electrode |
SWCNT | Single-Walled Carbon Nanotube |
SWV | Square Wave Voltammetry |
T2 | T-2 Toxin |
TAMRA | Tetramethyl-6-carboxyrhodamine |
TPE | Tetraphenylethene |
TTF | Tetrathiafulvalene |
UCL | Upconversion Luminescence |
UCNPs | Upconverting Nanoparticles |
ZEN | Zearalenone |
ZIF-8 | Zeolitic Imidazolate Framework-8 |
References
- Baigts-Allende, D.K.; Pérez-Alva, A.; Ramírez-Rodrigues, M.A.; Palacios, A.; Ramírez-Rodrigues, M.M. A Comparative Study of Polyphenolic and Amino Acid Profiles of Commercial Fruit Beers. J. Food Compost. Anal. 2021, 100, 103921. [Google Scholar] [CrossRef]
- Hughes, S.S.; Nielsen, M.M.K.; Jonsbo, R.V.; Nielsen, C.U.; Lauritsen, F.R.; Prabhala, B.K. BeerMIMS: Exploring the Use of Membrane-Inlet Mass Spectrometry (MIMS) Coupled to KNIME for the Characterization of Danish Beers. Eur. J. Mass Spectrom. 2021, 27, 266–271. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Kamleh, M.A.; Hernández-Cassou, S.; Saurina, J.; Checa, A. Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry Based Metabolomics as a Strategy for Beer Characterization. J. Inst. Brew. 2016, 122, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ràfols, C.; Saurina, J. Liquid Chromatographic Fingerprints and Profiles of Polyphenolic Compounds Applied to the Chemometric Characterization and Classification of Beers. Anal. Methods 2015, 7, 8733–8739. [Google Scholar] [CrossRef]
- Mignani, A.G.; Ciaccheri, L.; Mencaglia, A.A.; Ottevaere, H.; Báca, E.E.S.; Thienpont, H. Optical Measurements and Pattern-Recognition Techniques for Identifying the Characteristics of Beer and Distinguishing Belgian Beers. Sens. Actuators B Chem. 2013, 179, 140–149. [Google Scholar] [CrossRef]
- Wang, L.; Hong, K.; Agbaka, J.I.; Song, Y.; Lv, C.; Ma, C. Characterization of Bitter-Tasting and Antioxidant Activity of Dry-Hopped Beers. J. Sci. Food Agric. 2022, 102, 4843–4853. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Breda, C.; Barros, A.I. Characterization and Discrimination of Commercial Portuguese Beers Based on Phenolic Composition and Antioxidant Capacity. Foods 2021, 10, 1144. [Google Scholar] [CrossRef]
- Rodrigues, J.E.; Gil, A.M. NMR Methods for Beer Characterization and Quality Control. Magn. Reson. Chem. 2011, 49 (Suppl. S1), S37–S45. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Y.; Mao, Y.; Peng, R.; Chen, J.; Soteyome, T.; Bai, C.; Chen, L.; Liang, Y.; Su, J.; et al. Spoilage Lactic Acid Bacteria in the Brewing Industry. J. Microbiol. Biotechnol. 2020, 30, 955–961. [Google Scholar] [CrossRef]
- Mastanjević, K.; Lukinac, J.; Jukić, M.; Šarkanj, B.; Krstanović, V.; Mastanjević, K. Multi-(myco)toxins in Malting and Brewing By-Products. Toxins 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Ren, J.; Wang, J.; Wang, E. Single-Walled Carbon Nanotubes Based Quenching of Free FAM-Aptamer for Selective Determination of Ochratoxin A. Talanta 2011, 85, 2517–2521. [Google Scholar] [CrossRef]
- Wu, H.; Liu, R.; Kang, X.; Liang, C.; Lv, L.; Guo, Z. Fluorometric Aptamer Assay for Ochratoxin A Based on the Use of Single Walled Carbon Nanohorns and Exonuclease III-Aided Amplification. Mikrochim. Acta 2017, 185, 27. [Google Scholar] [CrossRef]
- Pacheco, J.G.; Castro, M.; Machado, S.; Barroso, M.F.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly Imprinted Electrochemical Sensor for Ochratoxin A Detection in Food Samples. Sens. Actuators B Chem. 2015, 215, 107–112. [Google Scholar] [CrossRef]
- Huang, H.; Wang, D.; Zhou, Y.; Wu, D.; Liao, X.; Xiong, W.; Du, J.; Hong, Y. Multiwalled Carbon Nanotubes Modified Two Dimensional MXene with High Antifouling Property for Sensitive Detection of Ochratoxin A. Nanotechnology 2021, 32, 455501. [Google Scholar] [CrossRef]
- Ma, L.; Bai, L.; Zhao, M.; Zhou, J.; Chen, Y.; Mu, Z. An Electrochemical Aptasensor for Highly Sensitive Detection of Zearalenone Based on PEI-MoS2-MWCNTs Nanocomposite for Signal Enhancement. Anal. Chim. Acta 2019, 1060, 71–78. [Google Scholar] [CrossRef]
- Yin, N.; Yuan, S.; Zhang, M.; Wang, J.; Li, Y.; Peng, Y.; Bai, J.; Ning, B.; Liang, J.; Gao, Z. An Aptamer-Based Fluorometric Zearalenone Assay Using a Lighting-up Silver Nanocluster Probe and Catalyzed by a Hairpin Assembly. Mikrochim. Acta 2019, 186, 765. [Google Scholar] [CrossRef]
- Liu, R.; Huang, Y.; Ma, Y.; Jia, S.; Gao, M.; Li, J.; Zhang, H.; Xu, D.; Wu, M.; Chen, Y.; et al. Design and Synthesis of Target-Responsive Aptamer-Cross-Linked Hydrogel for Visual Quantitative Detection of Ochratoxin A. ACS Appl. Mater. Interfaces 2015, 7, 6982–6990. [Google Scholar] [CrossRef]
- Li, T.; Zeng, W.; Long, H.; Wang, Z. Nanosheet-Assembled Hierarchical SnO2 Nanostructures for Efficient Gas-Sensing Applications. Sens. Actuators B Chem. 2016, 231, 120–128. [Google Scholar] [CrossRef]
- Hao, L.; Wang, W.; Shen, X.; Wang, S.; Li, Q.; An, F.; Wu, S. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A. J. Agric. Food Chem. 2020, 68, 369–375. [Google Scholar] [CrossRef]
- Dai, S.; Wu, S.; Duan, N.; Wang, Z. A Luminescence Resonance Energy Transfer Based Aptasensor for the Mycotoxin Ochratoxin A Using Upconversion Nanoparticles and Gold Nanorods. Mikrochim. Acta 2016, 183, 1909–1916. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Sitdikov, R.; Evtugyn, V.; Stoikov, I.; Antipin, I.; Hianik, T. Electrochemical Aptasensor for the Determination of Ochratoxin A at the Au Electrode Modified with Ag Nanoparticles Decorated with Macrocyclic Ligand. Electroanalysis 2013, 25, 1847–1854. [Google Scholar] [CrossRef]
- Jiang, Y.-Y.; Zhao, X.; Chen, L.-J.; Yang, C.; Yin, X.-B.; Yan, X.-P. Persistent Luminescence Nanorod Based Luminescence Resonance Energy Transfer Aptasensor for Autofluorescence-Free Detection of Mycotoxin. Talanta 2020, 218, 121101. [Google Scholar] [CrossRef]
- Wang, C.; Tan, R.; Chen, D. Fluorescence Method for Quickly Detecting Ochratoxin A in Flour and Beer Using Nitrogen Doped Carbon Dots and Silver Nanoparticles. Talanta 2018, 182, 363–370. [Google Scholar] [CrossRef]
- Afzali, D.; Fathirad, F.; Ghaseminezhad, S. Determination of Trace Amounts of Ochratoxin A in Different Food Samples Based on Gold Nanoparticles Modified Carbon Paste Electrode. J. Food Sci. Technol. 2016, 53, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Sun, Y.; Huo, B.; Mao, Z.; Wang, X.; Li, S.; Lu, R.; Li, S.; Liang, J.; Gao, Z. Development of Fe3O4@Au Nanoparticles Coupled to Au@Ag Core-Shell Nanoparticles for the Sensitive Detection of Zearalenone. Anal. Chim. Acta 2021, 1180, 338888. [Google Scholar] [CrossRef]
- Ma, X.; Shao, B.; Wang, Z. Gold@silver Nanodumbbell Based Inter-Nanogap Aptasensor for the Surface Enhanced Raman Spectroscopy Determination of Ochratoxin A. Anal. Chim. Acta 2021, 1188, 339189. [Google Scholar] [CrossRef]
- Yu, X.; Lin, Y.; Wang, X.; Xu, L.; Wang, Z.; Fu, F. Exonuclease-Assisted Multicolor Aptasensor for Visual Detection of Ochratoxin A Based on G-Quadruplex-Hemin DNAzyme-Mediated Etching of Gold Nanorod. Mikrochim. Acta 2018, 185, 259. [Google Scholar] [CrossRef]
- Wang, L.; Jin, H.; Wei, M.; Ren, W.; Zhang, Y.; Jiang, L.; Wei, T.; He, B. A DNAzyme-Assisted Triple-Amplified Electrochemical Aptasensor for Ultra-Sensitive Detection of T-2 Toxin. Sens. Actuators B Chem. 2021, 328, 129063. [Google Scholar] [CrossRef]
- Molinero-Fernández, Á.; Jodra, A.; Moreno-Guzmán, M.; López, M.Á.; Escarpa, A. Magnetic Reduced Graphene Oxide/nickel/platinum Nanoparticles Micromotors for Mycotoxin Analysis. Chemistry 2018, 24, 7172–7176. [Google Scholar] [CrossRef]
- Wei, M.; Xin, L.; Feng, S.; Liu, Y. Simultaneous Electrochemical Determination of Ochratoxin A and Fumonisin B1 with an Aptasensor Based on the Use of a Y-Shaped DNA Structure on Gold Nanorods. Microchim. Acta 2020, 187, 102. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Jiang, X.; Zhou, B. Electrochemical Determination of Aflatoxin B1 (AFB1) Using a Copper-Based Metal-Organic Framework (Cu-MOF) and Gold Nanoparticles (AuNPs) with Exonuclease III (Exo III) Assisted Recycling by Differential Pulse Voltammetry (DPV). Anal. Lett. 2019, 52, 2439–2453. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, X.; Chen, D.; Tong, Q.-X. Carbon Dots/α-Fe2O3-Fe3O4 Nanocomposite: Efficient Synthesis and Application as a Novel Electrochemical Aptasensor for the Ultrasensitive Determination of Aflatoxin B1. Food Chem. 2022, 373, 131415. [Google Scholar] [CrossRef]
- Yan, X.; Jiang, M.; Jian, Y.; Luo, J.; Xue, X.; Chen, X.; Zheng, X.; Ai, F. Simultaneous Aptasensor Assay of Ochratoxin A and Adenosine Triphosphate in Beer Based on Fe3O4 and SiO2 Nanoparticle as Carriers. Anal. Methods 2020, 12, 2253–2259. [Google Scholar] [CrossRef]
- Dai, S.; Wu, S.; Duan, N.; Chen, J.; Zheng, Z.; Wang, Z. An Ultrasensitive Aptasensor for Ochratoxin A Using Hexagonal Core/shell Upconversion Nanoparticles as Luminophores. Biosens. Bioelectron. 2017, 91, 538–544. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Duan, N.; Wang, W.; Yu, Q.; Wang, Z. A Test Strip for Ochratoxin A Based on the Use of Aptamer-Modified Fluorescence Upconversion Nanoparticles. Mikrochim. Acta 2018, 185, 497. [Google Scholar] [CrossRef]
- Jodra, A.; López, M.Á.; Escarpa, A. Disposable and Reliable Electrochemical Magnetoimmunosensor for Fumonisins Simplified Determination in Maize-Based Foodstuffs. Biosens. Bioelectron. 2015, 64, 633–638. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Li, J.; Huo, B.; Huang, H.; Bai, J.; Peng, Y.; Li, S.; Han, D.; Ren, S.; et al. A Fluorescence Aptasensor for the Sensitive Detection of T-2 Toxin Based on FRET by Adjusting the Surface Electric Potentials of UCNPs and MIL-101. Anal. Chim. Acta 2021, 1160, 338450. [Google Scholar] [CrossRef]
- Dai, S.; Wu, S.; Duan, N.; Wang, Z. A near-Infrared Magnetic Aptasensor for Ochratoxin A Based on near-Infrared Upconversion Nanoparticles and Magnetic Nanoparticles. Talanta 2016, 158, 246–253. [Google Scholar] [CrossRef]
- Goud, K.Y.; Yugender Goud, K.; Sunil Kumar, V.; Hayat, A.; Vengatajalabathy Gobi, K.; Song, H.; Kim, K.-H.; Marty, J.L. A Highly Sensitive Electrochemical Immunosensor for Zearalenone Using Screen-Printed Disposable Electrodes. J. Electroanal. Chem. 2019, 832, 336–342. [Google Scholar] [CrossRef]
- Lin, X.; Li, C.; He, C.; Zhou, Y.; Wang, Z.; Duan, N.; Wu, S. Upconversion Nanoparticles Assembled with Gold Nanourchins as Luminescence and Surface-Enhanced Raman Scattering Dual-Mode Aptasensors for Detection of Ochratoxin A. ACS Appl. Nano Mater. 2021, 4, 8231–8240. [Google Scholar] [CrossRef]
- Goud, K.Y.; Catanante, G.; Hayat, A.; Satyanarayana, M.; Gobi, K.V.; Marty, J.L. Disposable and Portable Electrochemical Aptasensor for Label Free Detection of Aflatoxin B1 in Alcoholic Beverages. Sens. Actuators B Chem. 2016, 235, 466–473. [Google Scholar] [CrossRef]
- Hayat, A.; Sassolas, A.; Marty, J.-L.; Radi, A.-E. Highly Sensitive Ochratoxin A Impedimetric Aptasensor Based on the Immobilization of Azido-Aptamer onto Electrografted Binary Film via Click Chemistry. Talanta 2013, 103, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Lomillo, M.A.; Asunción Alonso-Lomillo, M.; Domínguez-Renedo, O.; del Torno-de Román, L.; Julia Arcos-Martínez, M. Horseradish Peroxidase-Screen Printed Biosensors for Determination of Ochratoxin A. Anal. Chim. Acta 2011, 688, 49–53. [Google Scholar] [CrossRef]
- Rhouati, A.; Hayat, A.; Hernandez, D.B.; Meraihi, Z.; Munoz, R.; Marty, J.-L. Development of an Automated Flow-Based Electrochemical Aptasensor for on-Line Detection of Ochratoxin A. Sens. Actuators B Chem. 2013, 176, 1160–1166. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Ferreira-Gonçalves, L.; Arcos-Martínez, M.J. Sensitive Enzyme-Biosensor Based on Screen-Printed Electrodes for Ochratoxin A. Biosens. Bioelectron. 2010, 25, 1333–1337. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Duan, N.; Wu, S.; Xia, Y.; Ma, X.; Zhu, C.; Jiang, Y.; Wang, Z. Screening and Identification of DNA Aptamers against T-2 Toxin Assisted by Graphene Oxide. J. Agric. Food Chem. 2014, 62, 10368–10374. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Li, J.; Huo, B.; Qin, Y.; Zhang, J.; Chen, M.; Peng, Y.; Bai, J.; Li, S.; et al. A Fluorescence Aptasensor Based on Controlled Zirconium–based MOFs for the Highly Sensitive Detection of T–2 Toxin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 259, 119893. [Google Scholar] [CrossRef]
- Goud, K.Y.; Sharma, A.; Hayat, A.; Catanante, G.; Gobi, K.V.; Gurban, A.M.; Marty, J.L. Tetramethyl-6-Carboxyrhodamine Quenching-Based Aptasensing Platform for Aflatoxin B1: Analytical Performance Comparison of Two Aptamers. Anal. Biochem. 2016, 508, 19–24. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Zhao, Q. A Signal-on Electrochemical Aptasensor for Rapid Detection of Aflatoxin B1 Based on Competition with Complementary DNA. Biosens. Bioelectron. 2019, 144, 111641. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Baeumner, A.J.; Feller, K.-H. Rapid and Sensitive Inhibition-Based Assay for the Electrochemical Detection of Ochratoxin A and Aflatoxin M1 in Red Wine and Milk. Electrochim. Acta 2017, 243, 82–89. [Google Scholar] [CrossRef]
- de Cesare, G.; Nascetti, A.; Scipinotti, R.; Fanelli, C.; Ricelli, A.; Caputo, D. Optoelectronic System for Mycotoxin Detection in Food Quality Control. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1195–1202. [Google Scholar] [CrossRef]
- Bueno Hernández, D.; Mishra, R.K.; Muñoz, R.; Marty, J.L. Low Cost Optical Device for Detection of Fluorescence from Ochratoxin A Using a CMOS Sensor. Sens. Actuators B Chem. 2017, 246, 606–614. [Google Scholar] [CrossRef]
- Novo, P.; Moulas, G.; França Prazeres, D.M.; Chu, V.; Conde, J.P. Detection of Ochratoxin A in Wine and Beer by Chemiluminescence-Based ELISA in Microfluidics with Integrated Photodiodes. Sens. Actuators B Chem. 2013, 176, 232–240. [Google Scholar] [CrossRef]
- Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Huang, J.-D.; Chiu, C.-C. Amperometric Ethanol Biosensor Based on Poly(vinyl Alcohol)-Multiwalled Carbon Nanotube-Alcohol Dehydrogenase Biocomposite. Biosens. Bioelectron. 2007, 22, 3051–3056. [Google Scholar] [CrossRef]
- Manso, J.; Mena, M.L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Alcohol Dehydrogenase Amperometric Biosensor Based on a Colloidal Gold–carbon Nanotubes Composite Electrode. Electrochim. Acta 2008, 53, 4007–4012. [Google Scholar] [CrossRef]
- Lee, C.-A.; Tsai, Y.-C. Preparation of Multiwalled Carbon Nanotube-Chitosan-Alcohol Dehydrogenase Nanobiocomposite for Amperometric Detection of Ethanol. Sens. Actuators B Chem. 2009, 138, 518–523. [Google Scholar] [CrossRef]
- Adhikari, B.-R.; Schraft, H.; Chen, A. A High-Performance Enzyme Entrapment Platform Facilitated by a Cationic Polymer for the Efficient Electrochemical Sensing of Ethanol. Analyst 2017, 142, 2595–2602. [Google Scholar] [CrossRef]
- Wang, S.; Yao, Z.; Yang, T.; Zhang, Q.; Gao, F. Editors’ Choice—An Enzymatic Electrode Integrated with Alcohol Dehydrogenase and Chloranil in Liquid-Crystalline Cubic Phases on Carbon Nanotubes for Sensitive Amperometric Detection of NADH and Ethanol. J. Electrochem. Soc. 2019, 166, G116–G121. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Zhao, F.; Zeng, B. Direct Electrochemistry of Glucose Oxidase Entrapped in Nano Gold Particles-Ionic Liquid-N,N-Dimethylformamide Composite Film on Glassy Carbon Electrode and Glucose Sensing. Anal. Chim. Acta 2007, 587, 33–40. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Wang, X.; Li, C. One-Step Construction of an Electrode Modified with Electrodeposited Au/SiO2 Nanoparticles, and Its Application to the Determination of NADH and Ethanol. Mikrochim. Acta 2010, 171, 399–405. [Google Scholar] [CrossRef]
- Scarano, S.; Pascale, E.; Palladino, P.; Fratini, E.; Minunni, M. Determination of Fermentable Sugars in Beer Wort by Gold Nanoparticles@polydopamine: A Layer-by-Layer Approach for Localized Surface Plasmon Resonance Measurements at Fixed Wavelength. Talanta 2018, 183, 24–32. [Google Scholar] [CrossRef]
- Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A Paper-Based Nanomodified Electrochemical Biosensor for Ethanol Detection in Beers. Anal. Chim. Acta 2017, 960, 123–130. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Li, C. Sensitive Determination of Dihydronicotinamide Adenine Dinucleotide and Ethanol with a Nano-Porous Carbon Electrode. J. Serb. Chem. Soc. 2011, 76, 113–123. [Google Scholar] [CrossRef]
- Jashari, G.; Švancara, I.; Sýs, M. Determination of Ethanol in Alcoholic Drinks: Flow Injection Analysis with Amperometric Detection versus Portable Raman Spectrometer. Electroanalysis 2020, 32, 1949–1956. [Google Scholar] [CrossRef]
- Venkatesan, R.; Cindrella, L. Semiconductive poly[N1,N4-bis (thiophen-2-Ylmethylene)benzene-1,4-Diamine]-Nickel Oxide Nanocomposite Based Ethanol Sensor. J. Appl. Polym. Sci. 2018, 135, 45918. [Google Scholar] [CrossRef]
- Zuliani, I.; Fattori, A.; Svigelj, R.; Dossi, N.; Grazioli, C.; Bontempelli, G.; Toniolo, R. Amperometric Detection of Ethanol Vapors by Screen Printed Electrodes Modified by Paper Crowns Soaked with Room Temperature Ionic Liquids. Electroanalysis 2022. [Google Scholar] [CrossRef]
- Bucur, B.; Radu, G.L.; Toader, C.N. Analysis of Methanol–ethanol Mixtures from Falsified Beverages Using a Dual Biosensors Amperometric System Based on Alcohol Dehydrogenase and Alcohol Oxidase. Eur. Food Res. Technol. 2008, 226, 1335–1342. [Google Scholar] [CrossRef]
- Tomassetti, M.; Angeloni, R.; Merola, G.; Castrucci, M.; Campanella, L. Catalytic Fuel Cell Used as an Analytical Tool for Methanol and Ethanol Determination. Application to Ethanol Determination in Alcoholic Beverages. Electrochim. Acta 2016, 191, 1001–1009. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Serban, A.I.; Negulescu, G.P. Ethanol Determination by an Amperometric Bienzyme Sensor Based on a Clark-Type Transducer. J. Electroanal. Chem. 2012, 671, 85–91. [Google Scholar] [CrossRef]
- Nakamura, H.; Tanaka, R.; Suzuki, K.; Yataka, M.; Mogi, Y. A Direct Determination Method for Ethanol Concentrations in Alcoholic Beverages Employing a Eukaryote Double-Mediator System. Food Chem. 2009, 117, 509–513. [Google Scholar] [CrossRef]
- Wen, G.M.; Shuang, S.M.; Dong, C.; Choi, M.M.F. An Ethanol Biosensor Based on a Bacterial Cell-Immobilized Eggshell Membrane. Chin. Chem. Lett. 2012, 23, 481–483. [Google Scholar] [CrossRef]
- Curbani, L.; Gelinski, J.M.L.N.; Borges, E.M. Determination of Ethanol in Beers Using a Flatbed Scanner and Automated Digital Image Analysis. Food Anal. Methods 2020, 13, 249–259. [Google Scholar] [CrossRef]
- Farina, D.; Zinellu, M.; Fanari, M.; Porcu, M.C.; Scognamillo, S.; Puggioni, G.M.G.; Rocchitta, G.; Serra, P.A.; Pretti, L. Development of a Biosensor Telemetry System for Monitoring Fermentation in Craft Breweries. Food Chem. 2017, 218, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Zór, K.; Gáspár, S.; Hashimoto, M.; Suzuki, H.; Csöregi, E. High Temporal Resolution Monitoring of Fermentations Using an on-Line Amperometric Flow-through Microdetector. Electroanalysis 2007, 19, 43–48. [Google Scholar] [CrossRef]
- Hoche, S.; Krause, D.; Hussein, M.A.; Becker, T. Ultrasound-Based, in-Line Monitoring of Anaerobe Yeast Fermentation: Model, Sensor Design and Process Application. Int. J. Food Sci. Technol. 2016, 51, 710–719. [Google Scholar] [CrossRef]
- Magdalena Pisoschi, A. Improvement of Alcohol Dehydrogenase and Horseradish Peroxidase Loadings in Ethanol Determination by a Bienzyme Sensor. Lett. Org. Chem. 2013, 10, 611–616. [Google Scholar] [CrossRef]
- Odaci, D.; Telefoncu, A.; Timur, S. Maltose Biosensing Based on Co-Immobilization of Alpha-Glucosidase and Pyranose Oxidase. Bioelectrochemistry 2010, 79, 108–113. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Feng, B.; Chen, H.; You, L.; Pei, H. Monitoring Glucose in Fermented Beer by an Electrochemical Sensor Based on Graphene Oxide Decorated by Silver Nanoparticles. Int. J. Electrochem. Sci. 2021, 16, 210812. [Google Scholar] [CrossRef]
- Kornii, A.; Saska, V.; Lisnyak, V.V.; Tananaiko, O. Carbon Nanostructured Screen-printed Electrodes Modified with CuO/Glucose Oxidase/Maltase/SiO2 Composite Film for Maltose Determination. Electroanalysis 2020, 32, 1468–1479. [Google Scholar] [CrossRef]
- Dacres, H.; Michie, M.; Anderson, A.; Trowell, S.C. Advantages of Substituting Bioluminescence for Fluorescence in a Resonance Energy Transfer-Based Periplasmic Binding Protein Biosensor. Biosens. Bioelectron. 2013, 41, 459–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, N.C.H.; Gel, M.; Zhu, Y.; Dacres, H.; Anderson, A.; Trowell, S.C. Real-Time, Continuous Detection of Maltose Using Bioluminescence Resonance Energy Transfer (BRET) on a Microfluidic System. Biosens. Bioelectron. 2014, 62, 177–181. [Google Scholar] [CrossRef]
- Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Koller, H.; Perkins, L.B. Brewing and the Chemical Composition of Amine-Containing Compounds in Beer: A Review. Foods 2022, 11, 257. [Google Scholar] [CrossRef]
- Zotou, A.; Loukou, Z. 100—Methods for Determining Biogenic Amines in Beer. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 1031–1041. ISBN 9780123738912. [Google Scholar]
- Stojanović, Z.S.; Mehmeti, E.; Kalcher, K.; Guzsvány, V.; Stanković, D.M. SWCNT-Modified Carbon Paste Electrode as an Electrochemical Sensor for Histamine Determination in Alcoholic Beverages. Food Anal. Methods 2016, 9, 2701–2710. [Google Scholar] [CrossRef]
- Shumeiko, V.; Paltiel, Y.; Bisker, G.; Hayouka, Z.; Shoseyov, O. A Nanoscale Paper-Based near-Infrared Optical Nose (NIRON). Biosens. Bioelectron. 2021, 172, 112763. [Google Scholar] [CrossRef]
- Li, S.; Zhong, T.; Long, Q.; Huang, C.; Chen, L.; Lu, D.; Li, X.; Zhang, Z.; Shen, G.; Hou, X. A Gold Nanoparticles-Based Molecularly Imprinted Electrochemical Sensor for Histamine Specific-Recognition and Determination. Microchem. J. 2021, 171, 106844. [Google Scholar] [CrossRef]
- Batra, B.; Lata, S.; Devi, R.; Yadav, S.; Pundir, C.S. Fabrication of an Amperometric Tyramine Biosensor Based on Immobilization of Tyramine Oxidase on AgNPs/l-Cys-Modified Au Electrode. J. Solid State Electrochem. 2012, 16, 3869–3876. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, L.; Li, R.; Qu, Z.; Zou, X.; Jia, S. Electrochemical Non-Enzymatic Biosensor for Tyramine Detection in Food Based on Silver-Substituted ZnO Nano-Flower Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2021, 16, 210234. [Google Scholar] [CrossRef]
- Li, F.; Wu, F.; Luan, X.; Yuan, Y.; Zhang, L.; Xu, G.; Niu, W. Highly Enantioselective Electrochemical Sensing Based on Helicoid Au Nanoparticles with Intrinsic Chirality. Sens. Actuators B Chem. 2022, 362, 131757. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, X.; Zhao, T.; Mao, Y.; Fang, G.; Wang, S. A Core-Shell Molecularly Imprinted Optical Sensor Based on the Upconversion Nanoparticles Decorated with Zinc-Based Metal-Organic Framework for Selective and Rapid Detection of Octopamine. Sens. Actuators B Chem. 2021, 326, 128838. [Google Scholar] [CrossRef]
- Ramon-Marquez, T.; Medina-Castillo, A.L.; Fernandez-Gutierrez, A.; Fernandez-Sanchez, J.F. Novel Optical Sensing Film Based on a Functional Nonwoven Nanofibre Mat for an Easy, Fast and Highly Selective and Sensitive Detection of Tryptamine in Beer. Biosens. Bioelectron. 2016, 79, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Di Fusco, M.; Federico, R.; Boffi, A.; Macone, A.; Favero, G.; Mazzei, F. Characterization and Application of a Diamine Oxidase from Lathyrus Sativus as Component of an Electrochemical Biosensor for the Determination of Biogenic Amines in Wine and Beer. Anal. Bioanal. Chem. 2011, 401, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gong, Y.; Fan, Z. Cysteine Detection Using a High-Fluorescence Sensor Based on a Nitrogen-Doped Graphene Quantum dot–mercury(II) System. J. Lumin. 2016, 175, 129–134. [Google Scholar] [CrossRef]
- Aron, P.M.; Shellhammer, T.H. A Discussion of Polyphenols in Beer Physical and Flavour Stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zheng, J.; He, Y.; Sheng, Q. A Sandwich-Type Phenolic Biosensor Based on Tyrosinase Embedding into Single-Wall Carbon Nanotubes and Polyaniline Nanocomposites. Sens. Actuators B Chem. 2013, 186, 417–422. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, K.; Li, Y.; Li, K.; Ye, B. Study on the Electrochemical Properties of Maltol at a Carbon Paste Electrode and Its Analytical Application. Anal. Methods 2012, 4, 3206–3211. [Google Scholar] [CrossRef]
- Cerrato-Alvarez, M.; Bernalte, E.; Bernalte-García, M.J.; Pinilla-Gil, E. Fast and Direct Amperometric Analysis of Polyphenols in Beers Using Tyrosinase-Modified Screen-Printed Gold Nanoparticles Biosensors. Talanta 2019, 193, 93–99. [Google Scholar] [CrossRef]
- Pang, Y.-H.; Wang, Y.-Y.; Shen, X.-F.; Qiao, J.-Y. Covalent Organic Framework Modified Carbon Cloth for Ratiometric Electrochemical Sensing of Bisphenol A and S. Mikrochim. Acta 2022, 189, 189. [Google Scholar] [CrossRef]
- Yang, H.; He, L.; Pan, S.; Liu, H.; Hu, X. Nitrogen-Doped Fluorescent Carbon Dots for Highly Sensitive and Selective Detection of Tannic Acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 210, 111–119. [Google Scholar] [CrossRef] [PubMed]
- de Paula, N.T.; Milani, R.; Lavorante, A.; Paim, A.P. Use of Carbon Dots Synthesized from Citrate as a Fluorescent Probe for Quercetin Determination in Tea and Beer Samples. J. Braz. Chem. Soc. 2019, 30, 2355–2366. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, J.; Liu, Y.; Wang, Y.; Xiao, Y.; Zhang, Y. One-Step Synthesis of N, S-Doped Carbon Dots with Orange Emission and Their Application in Tetracycline Antibiotics, Quercetin Sensing, and Cell Imaging. Microchim. Acta 2021, 188. [Google Scholar] [CrossRef] [PubMed]
- ElKaoutit, M.; Naranjo-Rodriguez, I.; Temsamani, K.R.; de la Vega, M.D.; de Cisneros, J.L.H.-H. Dual Laccase-Tyrosinase Based Sonogel-Carbon Biosensor for Monitoring Polyphenols in Beers. J. Agric. Food Chem. 2007, 55, 8011–8018. [Google Scholar] [CrossRef]
- ElKaoutit, M.; Naranjo-Rodriguez, I.; Temsamani, K.R.; Hernández-Artiga, M.P.; Bellido-Milla, D.; de Cisneros, J.L.H.H. A Comparison of Three Amperometric Phenoloxidase-Sonogel-Carbon Based Biosensors for Determination of Polyphenols in Beers. Food Chem. 2008, 110, 1019–1024. [Google Scholar] [CrossRef]
- Martinez-Periñan, E.; Hernández-Artiga, M.P.; Palacios-Santander, J.M.; ElKaoutit, M.; Naranjo-Rodriguez, I.; Bellido-Milla, D. Estimation of Beer Stability by Sulphur Dioxide and Polyphenol Determination. Evaluation of a Laccase-Sonogel-Carbon Biosensor. Food Chem. 2011, 127, 234–239. [Google Scholar] [CrossRef]
- Molina-García, L.; Ruiz-Medina, A.; Fernández-de Córdova, M.L. A Novel Multicommuted Fluorimetric Optosensor for Determination of Resveratrol in Beer. Talanta 2011, 83, 850–856. [Google Scholar] [CrossRef]
- El Kaoutit, M.; Naranjo-Rodriguez, I.; Temsamani, K.R.; Hidalgo-Hidalgo de Cisneros, J.L. The Sonogel–Carbon Materials as Basis for Development of Enzyme Biosensors for Phenols and Polyphenols Monitoring: A Detailed Comparative Study of Three Immobilization Matrixes. Biosens. Bioelectron. 2007, 22, 2958–2966. [Google Scholar] [CrossRef]
- Montanari, L.; Perretti, G.; Natella, F.; Guidi, A.; Fantozzi, P. Organic and Phenolic Acids in Beer. LWT-Food Sci. Technol. 1999, 32, 535–539. [Google Scholar] [CrossRef]
- Pai, T.V.; Sawant, S.Y.; Ghatak, A.A.; Chaturvedi, P.A.; Gupte, A.M.; Desai, N.S. Characterization of Indian Beers: Chemical Composition and Antioxidant Potential. J. Food Sci. Technol. 2015, 52, 1414–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, H.E.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. A Review of the Analytical Methods Used for Beer Ingredient and Finished Product Analysis and Quality Control. Anal. Chim. Acta 2019, 1085, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Fàbregas, E. Amperometric Bienzymatic Biosensor for L-Lactate Analysis in Wine and Beer Samples. Analyst 2012, 137, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Paz Zanini, V.I.; Tulli, F.; Martino, D.M.; López de Mishima, B.; Borsarelli, C.D. Improvement of the Amperometric Response to L-Lactate by Using a Cationic Bioinspired Thymine Polycation in a Bioelectrode with Immobilized Lactate Oxidase. Sens. Actuators B Chem. 2013, 181, 251–258. [Google Scholar] [CrossRef]
- Batra, B.; Narwal, V.; Pundir, C.S. An Amperometric Lactate Biosensor Based on Lactate Dehydrogenase Immobilized onto Graphene Oxide Nanoparticles-Modified Pencil Graphite Electrode. Eng. Life Sci. 2016, 16, 786–794. [Google Scholar] [CrossRef]
- Vargas, E.; Ruiz, M.A.; Campuzano, S.; González de Rivera, G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. Implementation of a New Integrated D-Lactic Acid Biosensor in a Semiautomatic FIA System for the Simultaneous Determination of Lactic Acid Enantiomers. Application to the Analysis of Beer Samples. Talanta 2016, 152, 147–154. [Google Scholar] [CrossRef]
- Lowinsohn, D.; Bertotti, M. A Biosensor Based on Immobilization of Lactate Oxidase in a PB-CTAB Film for FIA Determination of Lactate in Beer Samples. J. Braz. Chem. Soc. 2008, 19, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Chen, A. Voltammetric Detection of the α-Dicarbonyl Compound: Methylglyoxal as a Flavoring Agent in Wine and Beer. Anal. Chim. Acta 2012, 751, 66–70. [Google Scholar] [CrossRef]
- Wang, C.; Lv, Y.; Hu, X.; Chen, Z.; Li, J.; Zhang, M. A “two-Step” Assay Based on Electro-Activation for Rapid Determination of Methylglyoxal in Honey and Beer. Anal. Chim. Acta 2022, 1203, 339688. [Google Scholar] [CrossRef]
- Li, X.; Yin, Z.; Cui, X.; Yang, L. Capillary Electrophoresis-integrated Immobilized Enzyme Microreactor with Graphene Oxide as Support: Immobilization of Negatively Charged L-lactate Dehydrogenase via Hydrophobic Interactions. Electrophoresis 2020, 41, 175–182. [Google Scholar] [CrossRef]
- Wooldridge, H.B. The Use of Hydrogen Peroxide in the Brewery. J. Inst. Brew. 1916, 22, 436–448. [Google Scholar] [CrossRef]
- Bleoanca, I.; Silva, A.R.C.; Pimentel, C.; Rodrigues-Pousada, C.; de Andrade Menezes, R. Relationship between Ethanol and Oxidative Stress in Laboratory and Brewing Yeast Strains. J. Biosci. Bioeng. 2013, 116, 697–705. [Google Scholar] [CrossRef]
- Wang, C.; Huang, S.; Luo, L.; Zhou, Y.; Lu, X.; Zhang, G.; Ye, H.; Gu, J.; Cao, F. Ultrathin Two-Dimension Metal-Organic Framework Nanosheets/multi-Walled Carbon Nanotube Composite Films for the Electrochemical Detection of H2O2. J. Electroanal. Chem. 2019, 835, 178–185. [Google Scholar] [CrossRef]
- Wang, N.; Hei, Y.; Liu, J.; Sun, M.; Sha, T.; Hassan, M.; Bo, X.; Guo, Y.; Zhou, M. Low-Cost and Environment-Friendly Synthesis of Carbon Nanorods Assembled Hierarchical Meso-Macroporous Carbons Networks Aerogels from Natural Apples for the Electrochemical Determination of Ascorbic Acid and Hydrogen Peroxide. Anal. Chim. Acta 2019, 1047, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Pan, H.; Liu, C.; Su, C.; Liu, W.; Wang, K.; Jiang, J. Ultrathin Phthalocyanine-Conjugated Polymer Nanosheet-Based Electrochemical Platform for Accurately Detecting H2O2 in Real Time. ACS Appl. Mater. Interfaces 2019, 11, 11466–11473. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Hou, M.; Li, X.; Wu, X.; Ge, J. Immobilization on Metal–Organic Framework Engenders High Sensitivity for Enzymatic Electrochemical Detection. ACS Appl. Mater. Interfaces 2017, 9, 13831–13836. [Google Scholar] [CrossRef]
- Rattan, S.; Zhou, C.; Chiang, C.; Mahalingam, S.; Brehm, E.; Flaws, J.A. Exposure to Endocrine Disruptors during Adulthood: Consequences for Female Fertility. J. Endocrinol. 2017, 233, R109–R129. [Google Scholar] [CrossRef] [Green Version]
- Rahm, J.V.; Malkusch, S.; Endesfelder, U.; Dietz, M.S.; Heilemann, M. Diffusion State Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in Live Cells. Front. Comput. Sci. 2021, 3, 757653. [Google Scholar] [CrossRef]
- Izah, S.C.; Inyang, I.R.; Angaye, T.C.N.; Okowa, I.P. A Review of Heavy Metal Concentration and Potential Health Implications of Beverages Consumed in Nigeria. Toxics 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Loganathan, C.; Narayanamoorthi, E.; John, S.A. Leaching of AuNPs from the Surface of GO: Sensitive Turn on Fluorescence Detection of Toxic Preservative. Food Chem. 2020, 309, 125751. [Google Scholar] [CrossRef] [PubMed]
- Bezerra Martins, A.; Lobato, A.; Tasić, N.; Perez-Sanz, F.J.; Vidinha, P.; Paixão, T.R.L.C.; Moreira Gonçalves, L. Laser-Pyrolyzed Electrochemical Paper-Based Analytical Sensor for Sulphite Analysis. Electrochem. Commun. 2019, 107, 106541. [Google Scholar] [CrossRef]
- Ramos, R.M.; Brandão, P.F.; Gonçalves, L.M.; Vyskočil, V.; Rodrigues, J.A. Electrochemical Sensing of Total Sulphites in Beer Using Non-Modified Screen-Printed Carbon Electrodes. J. Inst. Brew. 2017, 123, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Li, Y.; Zhang, J.; Yun, W.; Xiong, Z.; Yang, L. Simultaneous and Ultra-Sensitive Detection of Cu2+ and Mg2+ in Wine and Beer Based on Dual DNA Tweezers and Entropy-Driven Three-Dimensional DNA Nanomachine. Food Chem. 2021, 358, 129835. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Mutz, Y.S.; Stefano, J.S.; Conte-Junior, C.A.; de Ferreira, R.Q. A Simple and Reliable Electroanalytical Method Employing a Disposable Commercial Electrode for Simultaneous Determination of lead(II) and mercury(II) in Beer. J. Food Compost. Anal. 2022, 110, 104564. [Google Scholar] [CrossRef]
- Bandi, K.R.; Singh, A.K.; Kamaluddin; Jain, A.K.; Gupta, V.K. Electroanalytical Studies on cobalt(II) Ion-Selective Sensor of Polymeric Membrane Electrode and Coated Graphite Electrode Based on N2O2 Salen Ligands. Electroanalysis 2011, 23, 2839–2850. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, A.K.; Khayat, M.A.; Bhargava, S.K.; Raisoni, J.R. Electroanalytical Studies on cobalt(II) Selective Potentiometric Sensor Based on Bridge Modified Calixarene in Poly(vinyl Chloride). Electrochim. Acta 2008, 53, 5409–5414. [Google Scholar] [CrossRef]
- Eren, H.; Uzun, H.; Andac, M.; Bilir, S. Potentiometric Monitoring of Cobalt in Beer Sample by Solid Contact Ion Selective Electrode. J. Food Drug Anal. 2014, 22, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, F.; Luo, X.; Kong, X.; Sun, Z.; You, J. A FRET-Based Ratiometric Fluorescent Probe for Sulfide Detection in Actual Samples and Imaging in Daphnia Magna. Talanta 2020, 209, 120517. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, X.; Zeng, F.; Yu, C.; Wu, S. A Novel Ratiometric Fluorescent Probe through Aggregation-Induced Emission and Analyte-Induced Excimer Dissociation. Sens. Actuators B Chem. 2014, 203, 504–510. [Google Scholar] [CrossRef]
- Xie, H.; Zeng, F.; Yu, C.; Wu, S. A Polylysine-Based Fluorescent Probe for Sulfite Anion Detection in Aqueous Media via Analyte-Induced Charge Generation and Complexation. Polym. Chem. 2013, 4, 5416–5424. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Yang, S.; Tian, H.; Sun, B.; Liu, Y. A Reaction-Based Novel Fluorescent Probe for Detection of Hydrogen Sulfide and Its Application in Wine. J. Food Sci. 2018, 83, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Yang, S.; Tian, H.; Liu, Y.; Sun, B. Highly Selective and Rapidly Responsive Fluorescent Probe for Hydrogen Sulfide Detection in Wine. Food Chem. 2018, 257, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.-M.; Lee, C.-Y.; Liao, M.-H.; Lin, C.-H. Fabrication and Testing of High-Performance Detection Sensor for Capillary Electrophoresis Microchips. Biomed. Microdevices 2008, 10, 73–80. [Google Scholar] [CrossRef]
- Broncová, G.; Shishkanova, T.V.; Dendisová, M.; Člupek, M.; Kubáč, D.; Matějka, P. Poly(4-Amino-2,1,3-Benzothiadiazole) Films: Preparation, Characterization and Applications. Chem. Pap. 2017, 71, 359–366. [Google Scholar] [CrossRef]
- Ciosek, P.; Wróblewski, W. Performance of Selective and Partially Selective Sensors in the Recognition of Beverages. Talanta 2007, 71, 738–746. [Google Scholar] [CrossRef]
- Sun, W.; Liu, C.; Duan, H.; Niu, C.; Wang, J.; Zheng, F.; Li, Y.; Li, Q. Isomerization of Gibberellic Acid During the Brewing Process. J. Food Sci. 2019, 84, 1353–1361. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Gautam, S.; Landi, M.; Kandhol, N.; Araniti, F.; Ramakrishnan, M.; Satish, L.; Singh, V.P.; Sharma, P.; et al. Heavy Metal Induced Regulation of Plant Biology: Recent Insights. Physiol. Plant. 2022, 174, e13688. [Google Scholar] [CrossRef]
- Xie, H.-Z.; Yang, B.; Li, J.-P. A Molecularly Imprinted Electrochemical Luminescence Sensor for Detection of Gibberellin Based on Energy Transfer. Chin. J. Anal. Chem. 2020, 48, 1633–1641. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Wei, X.-P.; Wei, Y.-X.; Li, J.-P.; Zeng, Y. Determination of Trace Gibberellin A3 by Magnetic Self-Assembly Molecularly Imprinted Electrochemical Sensor. Chin. J. Anal. Chem. 2014, 42, 1580–1585. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Wei, X.; Tao, H.; Pan, H. Molecularly Imprinted Electrochemical Luminescence Sensor Based on Signal Amplification for Selective Determination of Trace Gibberellin A3. Anal. Chem. 2012, 84, 9951–9955. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Li, J.-P. A Molecular-Imprinted Sensor for Trace Detection of Gibberellin Based on Ferrocenecarboxylic Acid Multiply Marked Dendrimer. Chin. J. Anal. Chem. 2014, 42, 315–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benadouda, K.; Sajid, S.; Chaudhri, S.F.; Tazally, K.J.; Nielsen, M.M.K.; Prabhala, B.K. Current State of Sensors and Sensing Systems Utilized in Beer Analysis. Beverages 2023, 9, 5. https://doi.org/10.3390/beverages9010005
Benadouda K, Sajid S, Chaudhri SF, Tazally KJ, Nielsen MMK, Prabhala BK. Current State of Sensors and Sensing Systems Utilized in Beer Analysis. Beverages. 2023; 9(1):5. https://doi.org/10.3390/beverages9010005
Chicago/Turabian StyleBenadouda, Khalfa, Salvia Sajid, Suleman Farooq Chaudhri, Khadiaz Jahangir Tazally, Marcus M. K. Nielsen, and Bala Krishna Prabhala. 2023. "Current State of Sensors and Sensing Systems Utilized in Beer Analysis" Beverages 9, no. 1: 5. https://doi.org/10.3390/beverages9010005
APA StyleBenadouda, K., Sajid, S., Chaudhri, S. F., Tazally, K. J., Nielsen, M. M. K., & Prabhala, B. K. (2023). Current State of Sensors and Sensing Systems Utilized in Beer Analysis. Beverages, 9(1), 5. https://doi.org/10.3390/beverages9010005