Ultrasonication Effects on Quality of Tea-Based Beverages
Abstract
:1. Introduction
2. Tea
3. Tea-Based Beverages
3.1. Instant Tea
3.2. Tea Concentrates
3.3. Ready-to-Drink Tea Beverages
4. Preservation Techniques
4.1. Emerging Technique—Ultrasound
4.1.1. Bio-Active Compound Aspects
Beverage Type | Compounds of Interest | Extraction Conditions | Process | Effects | References |
---|---|---|---|---|---|
Vine tea | Polyphenols | 70 °C, 40 min | Thermostatic water bath | Stronger antioxidant activity | [77] |
Green tea | Volatile compounds | 20 kHz, 100 W, 15–120 min, 20–70 °C | Ultrasound bath and probe | Increased volatile concentrations and polyphenols | [78] |
Branded black tea | Polyphenols and antioxidants | 26–40 kHz, 40 °C, 40% power at 30 min | Ultrasonic probe and ultrasonic bath | Highest total phenolic flavonoids content and DPPH activity | [73] |
Cold-brewed black tea | Total phenolic content and tannin content and antioxidant activity | 69.9% amplitude, 30 min, 40 kHz, and 4 °C | Ultrasonic probe | Fourfold increase in TPC and 1.5-fold increase in antioxidant activity | [76] |
Instant green tea | Tea polyphenols, aroma compounds, catechins, caffeine | 120 W and 49 kHz, 76.2% ethanol, at 15 min, water to tea ratio 1:7 | Ultrasonic probe | Promoted the release of main aroma compounds, dissolution of caffeine and theanine; increased the total extraction rate | [79] |
4.1.2. Microbial Aspects
4.1.3. Industrial Set-Up Aspects
5. Future Perspectives
6. Conclusions
Funding
Conflicts of Interest
References
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R. Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS determination of catechins, flavonols, phenolic acids and alkaloids—A comparison with Camellia sinensis, Rooibos and Hoan Ngoc herbal tea. J. Food Compost. Anal. 2018, 74, 71–81. [Google Scholar] [CrossRef]
- Vinci, G.; D’Ascenzo, F.; Maddaloni, L.; Prencipe, S.A.; Tiradritti, M. The Influence of Green and Black Tea Infusion Parameters on Total Polyphenol Content and Antioxidant Activity by ABTS and DPPH Assays. Beverages 2022, 8, 18. [Google Scholar] [CrossRef]
- Nibir, Y.M.; Sumit, A.F.; Akhand, A.A.; Ahsan, N.; Hossain, M.S. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac. J. Trop. Biomed. 2017, 7, 352–357. [Google Scholar] [CrossRef]
- Somsong, P.; Tiyayon, P.; Srichamnong, W. Antioxidant of green tea and pickle tea product, miang, from northern Thailand. Acta Hortic. 2018, 1210, 241–248. [Google Scholar] [CrossRef]
- McAlpine, M.D.; Ward, W.E. Influence of Steep Time on Polyphenol Content and Antioxidant Capacity of Black, Green, Rooibos, and Herbal Teas. Beverages 2016, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Shi, S.; Wan, X. Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. J. Food Eng. 2006, 74, 557–560. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Mobbs, T.; Barbosa-Canovas, G.V. Ultrasound applications in food processing. In Ultrasound Technologies for Food and Bioprocessing; Feng, H., Barbosa-Canovas, G., Weiss, J., Eds.; Springer: New York, NY, USA, 2011; pp. 65–105. [Google Scholar]
- Barba, F.J. Microalgae and seaweeds for food applications: Challenges and perspectives. Food Res. Int. 2017, 99, 969–970. [Google Scholar] [CrossRef]
- Madhu, B.; Srinivas, M.S.; Srinivas, G.; Jain, S.K. Ultrasonic Technology and Its Applications in Quality Control, Processing and Preservation of Food: A Review. Curr. J. Appl. Sci. Technol. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Flórez, N.; Conde, E.; Domínguez, H. Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biotechnol. 2014, 90, 590–607. [Google Scholar] [CrossRef]
- Horžic, D.; Jambrak, A.R.; Belščak-Cvitanović, A.; Komes, D.; Lelas, V. Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food. Bioproc. Technol. 2012, 5, 2858–2870. [Google Scholar] [CrossRef]
- Both, S.; Chemat, F.; Strube, J. Extraction of polyphenols from black tea—Conventional and ultrasound assisted extraction. Ultrason. Sonochem. 2014, 21, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Hilal, Y. Morphology, manufacturing, types, composition and medicinal properties of Tea (Camellia sinensis). J. Basic Appl. Plant Sci. 2017, 1, 107. [Google Scholar]
- Takemoto, M.; Takemoto, H. Synthesis of Theaflavins and Their Functions. Molecules 2018, 23, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.-T.; Li, D.; Wan, X. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. J. Agric. Food Chem. 2018, 67, 5423–5436. [Google Scholar] [CrossRef]
- Lv, H.-P.; Zhang, Y.-J.; Lin, Z.; Liang, Y.-R. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Bajerska-Jarzębowska, J. Leaves of Camellia sinensis: Ordinary brewing plant or super antioxidant source? Food 2007, 1, 56–64. [Google Scholar]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł. Black Tea samples origin discrimination using analytical investigations of secondary metabolites, antiradical scavenging activity and chemometric approach. Molecules 2018, 23, 513. [Google Scholar] [CrossRef] [Green Version]
- Zhong-Zhen, Z.; Cao, Z.-J.; Chen, H.; Zhao, Z.-Z.; Zhu, L.; Yi, T. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Crit. Rev. Food Sci. Nutr. 2017, 58, 2957–2980. [Google Scholar] [CrossRef]
- Cabrera, C.; Giménez, A.R.; López, M.C. Determination of Tea Components with Antioxidant Activity. J. Agric. Food Chem. 2003, 51, 4427–4435. [Google Scholar] [CrossRef] [Green Version]
- Dias, T.R.; Tomás, G.; Teixeira, N.F.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. White Tea (Camellia sinensis (L.)): Antioxidant properties and beneficial health effects. Int. J. Food Sci. Nutr. Diet. 2013, 2, 19–26. [Google Scholar]
- Vuong, Q. Epidemiological Evidence Linking Tea Consumption to Human Health: A Review. Crit. Rev. Food Sci. Nutr. 2013, 54, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Cleverdon, R.; Elhalaby, Y.; McAlpine, M.D.; Gittings, W.; Ward, W.E. Total Polyphenol Content and Antioxidant Capacity of Tea Bags: Comparison of Black, Green, Red Rooibos, Chamomile and Peppermint over Different Steep Times. Beverages 2018, 4, 15. [Google Scholar] [CrossRef]
- Caffin, N.; D’Arcy, B.; Yao, L.; Rintoul, G. Developing an Index of Quality for Australian Tea. In RIRDC Publication (Issue 04/033). 2004. Available online: https://www.agrifutures.com.au/wp-content/uploads/publications/04-033.pdf (accessed on 15 November 2022).
- Ho, K.; Haufe, T.C.; Ferruzzi, M.G.; Neilson, A.P. Production and Polyphenolic Composition of Tea. Nutr. Today 2018, 53, 268–278. [Google Scholar] [CrossRef]
- United Nations Food and Agriculture Organization. Faostat Online Statistical Service. Available online: http://faostat.fao.org (accessed on 15 November 2022).
- Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. BioMed Res. Int. 2017, 2017, 5615647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.; Bryant, S.; Huntley, A.L. Green tea and green tea catechin extracts: An overview of the clinical evidence. Maturitas 2012, 73, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Ishiyama, K.; Watanabe, A.; Kawano, S.; Miyase, T.; Sano, M. Determination of Theaflavins Including Methylated Theaflavins in Black Tea Leaves by Solid-Phase Extraction and HPLC Analysis. J. Agric. Food Chem. 2007, 55, 7252–7257. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Lee, V.S.Y.; Tzen, J.T.C.; Lee, M. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semi fermentation and drying processes. J. Agric. Food Chem. 2007, 55, 7462–7468. [Google Scholar] [CrossRef]
- Čížková, H.; Voldrich, M.; Mlejnecká, J.; Kvasnicka, F. Authenticity evaluation of tea-based products. Czech. J. Food Sci. 2008, 26, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Beverage Marketing RTD Tea and Coffee in the US; Beverage Marketing Corp. of New York: New York, NY, USA, 2007; pp. 1–228. [Google Scholar]
- Del Rio, D.; Calani, L.; Scazzina, F.; Jechiu, L.; Cordero, C.; Brighenti, F. Bioavailability of catechins from ready-to-drink tea. Nutrition 2010, 26, 528–533. [Google Scholar] [CrossRef]
- Someswararao, C.; Srivastav, P. A novel technology for production of instant tea powder from the existing black tea manufacturing process. Innov. Food Sci. Emerg. Technol. 2012, 16, 143–147. [Google Scholar] [CrossRef]
- Erickson, K.; Erickson, R. Stable Tea Concentrates. USPTO Application 20070009641, 2007, 2 July 2002. [Google Scholar]
- Wansor, G.J.; Murray, D.E.; Gale, R.R. Unsweetened Frozen Tea Beverage Concentrate. U.S. Patent 5523108, 1996, 4 June 1996. [Google Scholar]
- Dubey, K.K.; Janve, M.; Ray, A.; Singhal, R.S. Chapter 4—Ready-to-Drink Tea. In Trends in Non-Alcoholic Beverages; Galanakis, C.M., Ed.; Academic Press: Oxford, UK, 2020; pp. 101–140. [Google Scholar]
- Kale, R.; Deshmukh, R. Ready-to-Drink (RTD) Tea Market; Allied Market Research: Portland, OR, USA, 2020; p. 299. [Google Scholar]
- Available online: www.itoen.com (accessed on 15 November 2022).
- Available online: www.nestea.com (accessed on 15 November 2022).
- Available online: www.goldpeakbeverages.com (accessed on 15 November 2022).
- Available online: www.pureleaf.com (accessed on 15 November 2022).
- Mao, Y.-L.; Wang, J.-Q.; Chen, G.-S.; Granato, D.; Zhang, L.; Fu, Y.-Q.; Gao, Y.; Yin, J.-F.; Luo, L.-X.; Xu, Y.-Q. Effect of chemical composition of black tea infusion on the color of milky tea. Food Res. Int. 2020, 139, 109945. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J. The effect of extrinsic cues on consumer perception: A study using milk tea products. Food Qual. Prefer. 2018, 71, 343–353. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, M. A study on the manufacture of Dahongpao milk tea. J Wuyi Univ. 2014, 33, 28–32. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chong, K.L.; Tan, J.B.L.; Wong, S.K. Antioxidant properties of tropical and temperature herbal teas. J. Food Compos. Anal. 2010, 23, 185–189. [Google Scholar] [CrossRef]
- Kim, J.; Adhikari, K. Current Trends in Kombucha: Marketing Perspectives and the Need for Improved Sensory Research. Beverages 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Granato, D.; Zou, C.; Gao, Y.; Zhu, Y.; Zhang, L.; Yin, J.-F.; Zhou, W.; Xu, Y.-Q. Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes. Trends Food Sci. Technol. 2021, 118, 431–446. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y. Evaluation of antioxidant activity of Dancong tea wine. China Food Additives 2019, 30, 104–110. (In Chinese) [Google Scholar]
- Yuan, H.; Hua, J.; Deng, Y.; Li, J.; Dong, C.; Yang, Y. Effect of different drying technologies during raw tea processing on the quality of green tea beverage. J. Tea Sci. 2017, 37, 631–637. (In Chinese) [Google Scholar]
- Fu, Y.-Q.; Wang, J.-Q.; Chen, J.-X.; Wang, F.; Yin, J.-F.; Zeng, L.; Shi, J.; Xu, Y.-Q. Effect of baking on the flavor stability of green tea beverages. Food Chem. 2020, 331, 127258. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Y.; Zou, C.; Gao, Y.; Wang, F.; Chen, J. Studies on the quality change of tea infusion beverages during sterilization and storage. J. Chin. Inst. Food Sci. Technol. 2018, 18, 202–210. (In Chinese) [Google Scholar]
- Cao, Z.; Pan, H.; Li, S.; Shi, C.; Wang, S.; Wang, F.; Ye, P.; Jia, J.; Ge, C.; Lin, Q.; et al. In Vitro Evaluation of Probiotic Potential of Lactic Acid Bacteria Isolated from Yunnan De’ang Pickled Tea. Probiotics Antimicrob. Proteins 2018, 11, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-Q.; Hu, X.-F.; Zou, C.; Shi, J.; Du, Q.-Z.; Teng, B.-T.; Yin, J.-F. Effect of saccharides on sediment formation in green tea concentrate. LWT 2017, 78, 352–360. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Ji, W.-B.; Yu, P.; Chen, J.-X.; Wang, F.; Yin, J.-F. Effect of extraction methods on the chemical components and taste quality of green tea extract. Food Chem. 2018, 248, 146–154. [Google Scholar] [CrossRef]
- Kumar, C.S.; Subramanian, R.; Rao, L.J. Application of Enzymes in the Production of RTD Black Tea Beverages: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 180–197. [Google Scholar] [CrossRef]
- Yu, C.; Tang, H.; Guo, Y. Hot Tea Consumption and the Risk for Esophageal Cancer. Ann. Intern. Med. 2018, 168, I18. [Google Scholar]
- He, X.-Y.; Liu, J.-F.; Huang, Z.-H. Preparation of Cold Brew Tea by Explosion Puffing Drying at Variable Temperature and Pressure. Dry. Technol. 2011, 29, 888–895. [Google Scholar] [CrossRef]
- Lin, S.-D.; Yang, J.-H.; Hsieh, Y.-J.; Liu, E.-H.; Mau, J.-L. Effect of Different Brewing Methods on Quality of Green Tea. J. Food Process. Preserv. 2013, 38, 1234–1243. [Google Scholar] [CrossRef]
- Cai, X.; Xiao, M.; Zou, X.; Tang, J.; Huang, B.; Xue, H. Extraction and separation of flavonoids from Malus hupehensis using high-speed countercurrent chromatography based on deep eutectic solvent. J. Chromatogr. A 2021, 1641, 461998. [Google Scholar] [CrossRef]
- Song, Y.; Bi, X.; Zhou, M.; Zhou, Z.; Chen, L.; Wang, X.; Ma, Y. Effect of combined treatments of ultrasound and high hydrostatic pressure processing on the physicochemical properties, microbial quality and shelf-life of cold brew tea. Int. J. Food Sci. Technol. 2021, 56, 5977–5988. [Google Scholar] [CrossRef]
- Tadeo, J.L.; Sánchez-Brunete, C.; Albero, B.; García-Valcárcel, A.I. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. J. Chromatogr. A 2010, 1217, 2415–2440. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Wu, J.; Lin, L.; Chau, F.-T. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 2001, 8, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Jeyapriya, S.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef]
- Altemimi, A.; Choudhary, R.; Watson, D.G.; Lightfoot, D.A. Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrason. Sonochem. 2015, 24, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yuan, Q.; Zeng, J.; Cai, Y.; Luan, Q. Effects of temperature and ultrasonic scaler on the infusion process of green tea leaves and catechins stability under ultrasonic vibration. J. Food Meas. Charact. 2021, 15, 3598–3607. [Google Scholar] [CrossRef]
- Miracea, V. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Petitcolas, E.; Maache-Rezzoug, Z.; Chemat, F.; Rezzoug, S.A. Impact of ultrasound on solid–liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments. Ultrason. Sonochem. 2016, 28, 230–239. [Google Scholar] [CrossRef]
- Bakht, A.; Geesi, M.H.; Riadi, Y.; Imran, M.; Ali, I.; Ahsan, M.J.; Ajmal, N. Ultrasound-assisted extraction of some branded tea: Optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi J. Biol. Sci. 2018, 26, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Ashley, K. Chapter 12 Sonication as a Sample Preparation Method for Elemental Analysis. In Sample Preparation for Trace Element Analysis, 1st ed.; Mester, Z., Sturgeon, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 353–369. [Google Scholar]
- Qin, Y.; Yuan, Z.; Yang, F.; Yu, Y. Development of a new type of Anhua black tea and its application: Black tea wine. J. Food Process. Preserv. 2021, 46, e15862. [Google Scholar] [CrossRef]
- Raghunath, S.; Mallikarjunan, K. Optimization of ultrasound-assisted extraction of cold-brewed black tea using response surface methodology. J. Food Process Eng. 2020, 43, e13540. [Google Scholar] [CrossRef]
- Xie, K.; He, X.; Chen, K.; Chen, J.; Sakao, K.; Hou, D.-X. Antioxidant Properties of a Traditional Vine Tea, Ampelopsis grossedentata. Antioxidants 2019, 8, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, T.; Zhengquan, L. Influence of ultrasonic nebulization extraction, infusion temperatures, and matrices on aroma release and perception of green tea. LWT 2019, 115, 108216. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, X.; Fu, Z.; Ye, X. Effect of ultrasonic assisted and microwave assisted technology on bioactive compounds and aroma quality of instant green tea. Preprints 2020, 2020030041. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Peng, Y.; Xu, L.J.; He, C.N.; Liu, Y.Z.; Xiao, P.G. Preliminary exploration of the diversity of the Chinese tea culture. Mod. Chin. Med. 2011, 13, 60–62. [Google Scholar]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. [Google Scholar] [CrossRef]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent advances in scaling-op of non-conventional extraction techniques: Learning from successes and failures. TrAC Trands Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- Ayyildiz, S.S.; Karadeniz, B.; Sagcan, N.; Bahar, B.; Us, A.A.; Alasalvar, C. Optimizing the extraction parameters of epigallocatechin gallate using conventional hot water and ultrasound assisted methods from green tea. Food Bioprod. Process. 2018, 111, 37–44. [Google Scholar] [CrossRef]
Brand Name | Ingredients | Producers/Country | References |
---|---|---|---|
Black milk tea | Sri Lankan black tea, whole milk taste, cane sugar | ITO EN/Tokyo, Japan | [40] |
Matcha milk tea | Japanese matcha, whole milk taste, cane sugar | ITO EN/Tokyo, Japan | [40] |
Tea’s tea (Ice-steeped cold brew tea) | Green tea, jasmine or peppermint leaves, water, ascorbic acid | ITO EN/Tokyo, Japan | [40] |
Cold brew matcha green tea | Purified water, green tea, Matcha, and ascorbic acid | ITO EN/Tokyo, Japan | [40] |
Nestea Instant tea mixes (sweetened and unsweetened) | Black, green, white, and red tea blends and flavors | Nestle/Vevey, Switzerland | [41] |
Gold Peak Tea (sweetened and unsweetened) | Brewed green or black tea, cane sugar | The Coca-Cola Company/Atlanta, GA, USA | [42] |
Pure leaf (sweetened and unsweetened) | Brewed green/black tea, herbal tea, flavor, and sugar | Pepsico-Lipton/New York, NY, USA | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzuner, S. Ultrasonication Effects on Quality of Tea-Based Beverages. Beverages 2023, 9, 1. https://doi.org/10.3390/beverages9010001
Uzuner S. Ultrasonication Effects on Quality of Tea-Based Beverages. Beverages. 2023; 9(1):1. https://doi.org/10.3390/beverages9010001
Chicago/Turabian StyleUzuner, Sibel. 2023. "Ultrasonication Effects on Quality of Tea-Based Beverages" Beverages 9, no. 1: 1. https://doi.org/10.3390/beverages9010001
APA StyleUzuner, S. (2023). Ultrasonication Effects on Quality of Tea-Based Beverages. Beverages, 9(1), 1. https://doi.org/10.3390/beverages9010001