The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Results and Discussion
3.1. Study Characteristics
3.2. Assessment Risk of Bias
3.3. The Effects of L-Arg Supplementation Intervention on Physiological, Perceptual Responses and Physical Performance
3.3.1. Effects of L-Arginine on Nitric Oxide Production
3.3.2. The Effects of L-Arginine on Physical Performance and Perceptual Responses to Exercise
3.4. The Effects of L-Citrulline Supplementation on Physiological, Perceptual Responses and Physical Performance
3.4.1. Effects of L-Citrulline on Nitric Oxide Synthesis
3.4.2. Effects of L-Citrulline on Physical Performance and Perceptual Responses
3.5. Effects of Combined L-Arginine and L-Citrulline Supplementation on Physiological, Perceptual Responses and Physical Performance
3.5.1. Effects of Combined L-Arginine and L-Citrulline on Nitric Oxide Synthesis
3.5.2. Effect of Combined L-Arginine and L-Citrulline on Physical Performance and Perceptual Responses
4. Limitations
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hys, K. Identification of the reasons why individual consumers perchase ditary supplements. In Contributions to Management Science, 1st ed.; Sroka, W., Ed.; Springer: Chan, Poland, 2020; pp. 193–209. [Google Scholar]
- Research, G.V. Dietary Supplements Market Worth $272.4 Billion by 2028. 2021. Available online: https://www.grandviewresearch.com/press-release/global-dietary-supplements-market# (accessed on 4 November 2021).
- Binns, C.W.; Lee, M.K.; Lee, A.H. Problems and prospects: Public health regulation of dietary supplements. Annu. Rev. Public Health 2018, 39, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.A.; Bass, S. Injecting safety into supplements-modernizing the dietary supplement Law. N. Engl. J. Med. 2019, 381, 2387–2389. [Google Scholar] [CrossRef] [PubMed]
- Louca, P.; Murray, B.; Klaser, K.; Graham, M.S.; Mazidi, M.; Leeming, E.R.; Thompson, E.; Bowyer, R.; Drew, D.A.; Nguyen, L.H.; et al. Modest effects of dietary supplements during the COVID-19 pandemic: Insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutr. Prev. Health 2021, 4, 149–157. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.; DvoYák, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Maughan, R.J.; Depiesse, F.; Geyer, H. The use of dietary supplements by athletes. J. Sports Sci. 2007, 25, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Baltazar-Martins, G.; Brito de Souza, D.; Aguilar-Navarro, M.; Muñoz-Guerra, J.; Plata, M.d.M.; Del Coso, J. Prevalence and patterns of dietary supplement use in elite Spanish athletes. J. Int. Soc. Sports Nutr. 2019, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Begg, P.M.; Wheatley, V.M. Chapter 17-Fraud in dietary supplements. In Food Fraud; Hellberg, R.S., Everstine, K., Sklare, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 351–360. [Google Scholar]
- Gibson, M.E.; Schultz, J.; Glover, D. To supplement or not. Mo. Med. 2016, 113, 305–309. [Google Scholar]
- Morton, J.P. Supplements for consideration in football. Sports Sci. Exch. 2014, 27, 1–8. [Google Scholar]
- Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of functional beverages on sport performance and recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef]
- Raman, M.; Ambalam, P.; Doble, M. 9-probiotics, prebiotics, and fibers in nutritive and functional beverages. In Nutrients in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 315–367. [Google Scholar]
- Speer, H.; D’Cunha, N.M.; Davies, M.J.; McKune, A.J.; Naumovski, N. The physiological effects of amino acids arginine and citrulline: Is there a basis for development of a beverage to promote endurance performance? A Narrative Review of Orally Administered Supplements. Beverages 2020, 6, 11. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Williams, S.A.; Canale, R.E.; Farney, T.M.; Kabir, M.M. Acute effect of nitric oxide supplement on blood nitrate/nitrite and hemodynamic variables in resistance trained men. J. Strength Cond. Res. 2010, 24, 2587–2592. [Google Scholar] [CrossRef] [PubMed]
- Lorin, J.; Zeller, M.; Guilland, J.C.; Cottin, Y.; Vergely, C.; Rochette, L. Arginine and nitric oxide synthase: Regulatory mechanisms and cardiovascular aspects. Mol. Nutr. Food Res. 2014, 58, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Szefel, J.; Danielak, A.; Kruszewski, W.J. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv. Med. Sci. 2019, 64, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; Silva, S.F.d.; Garnacho-Castañoet, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Dietary nitric oxide precursors and exercise perfomance. Sports Sci. Exch. 2016, 28, 1–6. [Google Scholar]
- Álvares, T.S.; Meirelles, C.M.; Bhambhani, Y.N.; Paschoalin, V.M.; Gomes, P.S. L-arginine as a potential ergogenic aid in healthy subjects. Sports Med. 2011, 41, 233–248. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.G.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Jones, A.M. Acute l-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. J. Appl. Physiol. 2010, 109, 1394–1403. [Google Scholar] [CrossRef]
- Wylie, L.J.; Mohr, M.; Krustrup, P.; Jackman, S.R.; Ermiotadis, G.; Kelly, J.; Black, M.I.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur. J. Appl. Physiol. 2013, 113, 1673–1684. [Google Scholar] [CrossRef]
- Piknova, B.; Park, J.W.; Cassel, K.S.; Gilliard, C.N.; Schechter, A.N. Measuring nitrite and nitrate, metabolites in the nitric oxide pathway, in biological materials using the chemiluminescence method. J. Vis. Exp. 2016, 118, 54879. [Google Scholar] [CrossRef]
- González, M.; Rivas, J.C. L-Arginine/nitric oxide pathway and KCa channels in endothelial cells: A Mini-Review. In Vascular Biology-Selection of Mechanisms and Clinical Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Schaefer, A.; Piquard, F.; Geny, B.; Doutreleau, S.; Lampert, E.; Mettauer, B.; Lonsdorfer, J. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int. J. Sports Med. 2002, 23, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.H.; Wu, C.L.; Chiang, C.W.; Lo, Y.W.; Tseng, H.F.; Chang, C.K. No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. J. Nutr. Biochem. 2009, 20, 462–468. [Google Scholar] [CrossRef]
- Alvares, T.S.; Conte-Junior, C.A.; Silva, J.T.; Paschoalin, V.M. L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutr. Res. 2014, 34, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hiratsu, A.; Tataka, Y.; Namura, S.; Nagayama, C.; Hamada, Y.; Miyashita, M. The effects of acute and chronic oral l-arginine supplementation on exercise-induced ammonia accumulation and exercise performance in healthy young men: A randomised, double-blind, cross-over, placebo-controlled trial. J. Exerc. Sci. Fit. 2022, 20, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Morita, M.; Hayashi, T.; Kamimura, A. The effects on plasma l-arginine levels of combined oral l-citrulline and l-arginine supplementation in healthy males. Biosci. Biotechnol. Biochem. 2017, 81, 372–375. [Google Scholar] [CrossRef]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Bénazeth, S.; Cynober, L. Almost all about citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef]
- Van de Poll, M.C.; Soeters, P.B.; Deutz, N.E.; Fearon, K.C.; Dejong, C.H. Renal metabolism of amino acids: Its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 2004, 79, 185–197. [Google Scholar] [CrossRef]
- Morita, M.; Hayashi, T.; Ochiai, M.; Maeda, M.; Yamaguchi, T.; Ina, K.; Kuzuya, M. Oral supplementation with a combination of l-citrulline and l-arginine rapidly increases plasma l-arginine concentration and enhances NO bioavailability. Biochem. Biophys. Res. Commun. 2014, 454, 53–57. [Google Scholar] [CrossRef]
- Suzuki, I.; Sakuraba, K.; Horiike, T.; Kishi, T.; Yabe, J.; Suzuki, T.; Morita, M.; Nishimura, A.; Suzuki, Y. A combination of oral l-citrulline and l-arginine improved 10-min full-power cycling test performance in male collegiate soccer players: A randomized crossover trial. Eur. J. Appl. Physiol. 2019, 119, 1075–1084. [Google Scholar] [CrossRef]
- Mor, A.; Atan, T.; Agaoglu, S.A.; Ayyildiz, M. Effect of arginine supplementation on footballer’ anaerobic performance and recovery. Prog. Nutr. 2018, 20, 104–112. [Google Scholar]
- Chen, I.F.; Wu, H.J.; Chen, C.Y.; Chou, K.M.; Chang, C.K. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2016, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, U.; Didelija, I.C.; Yuan, Y.; Wang, X.; Marini, J.C. Supplemental citrulline is more efficient than arginine in increasing Systemic arginine availability in mice. J. Nutr. 2017, 147, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Su, Y.-T.; Liu, T.-Y.; Tsai, C.-M.; Chang, C.-H.; Yu, H.-R. L-arginine and l-citrulline supplementation have different programming effect on regulatory T-cells function of infantile rats. Front. Immunol. 2018, 9, 2911. [Google Scholar] [CrossRef]
- Takeda, K.; Machida, M.; Kohara, A.; Omi, N.; Takemasa, T. Effects of citrulline supplementation on fatigue and exercise performance in mice. J. Nutr. Sci. Vitaminol. 2011, 57, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; Ramos-Campo, D.J.; Fernández-Lobato, B.; Rubio-Arias, J.A.; Alacid, F.; Aguayo, E. Biochemical, physiological, and performance response of a functional watermelon juice enriched in l-citrulline during a half-marathon race. Food Nutr. Res. 2017, 61, 1–12. [Google Scholar] [CrossRef]
- Glenn, J.M.; Gray, M.; Jensen, A.; Stone, M.S.; Vincenzo, J.L. Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. Eur. J. Sport Sci. 2016, 16, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guisado, J.; Jakeman, P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res. 2010, 24, 1215–1222. [Google Scholar] [CrossRef]
- Wax, B.; Kavazis, A.N.; Luckett, W. Effects of supplemental citrulline-malate ingestion on blood lactate, cardiovascular dynamics, and resistance exercise performance in trained males. J. Diet. Suppl. 2016, 13, 269–282. [Google Scholar] [CrossRef]
- Wax, B.; Kavazis, A.N.; Weldon, K.; Sperlak, J. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. J. Strength Cond. Res. 2015, 29, 786–792. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Trexler, E.T. Effects of citrulline supplementation on exercise performance in humans: A review of the current literature. J. Strength Cond. Res. 2020, 34, 1480–1495. [Google Scholar] [CrossRef]
- Figueroa, A.; Wong, A.; Jaime, S.J.; Gonzales, J.U. Influence of l-citrulline and watermelon supplementation on vascular function and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 92–98. [Google Scholar] [CrossRef]
- Bendahan, D.; Mattei, J.P.; Ghattas, B.; Confort-Gouny, S.; Le Guern, M.E.; Cozzone, P.J. Citrulline/malate promotes aerobic energy production in human exercising muscle. Br. J. Sports Med. 2002, 36, 282–289. [Google Scholar] [CrossRef]
- Trexler, E.T.; Persky, A.M.; Ryan, E.D.; Schwartz, T.A.; Stoner, L.; Smith-Ryan, A.E. Acute effects of citrulline supplementation on high-intensity strength and power performance: A systematic review and meta-analysis. Sports Med. 2019, 49, 707–718. [Google Scholar] [CrossRef]
- Rhim, H.C.; Kim, S.J.; Park, J.; Jang, K.-M. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 553–561. [Google Scholar] [CrossRef]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of arginine supplementation on athletic performance based on energy metabolism: A systematic review and meta-analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Forbes, S.C.; Harber, V.; Bell, G.J. Oral L-arginine before resistance exercise blunts growth hormone in strength trained males. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 236–244. [Google Scholar] [CrossRef]
- Forbes, S.C.; Harber, V.; Bell, G.J. The acute effects of l-arginine on hormonal and metabolic responses during submaximal exercise in trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 369–377. [Google Scholar] [CrossRef]
- Meirelles, C.M.; Matsuura, C. Acute supplementation of l-arginine affects neither strength performance nor nitric oxide production. J. Sports Med. Phys. Fit. 2016, 58, 216–220. [Google Scholar] [CrossRef]
- Streeter, D.M.; Trautman, K.A.; Bennett, T.W.; McIntosh, L.E.; Grier, J.W.; Stastny, S.N.; Hackney, K.J. Endothelial, cardiovascular, and performance responses to l-Arginine intake and resistance exercise. Int. J. Exerc. Sci. 2019, 12, 701. [Google Scholar] [PubMed]
- Vanhatalo, A.; Bailey, S.; DiMenna, F.; Blackwell, J.; Wallis, G.; Jones, A. No effect of acute l-arginine supplementation on O2 cost or exercise tolerance. Eur. J. Appl. Physiol. 2013, 113, 1805–1819. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, H.U.; Turnagol, H.; Demirel, A.H. Pre-exercise arginine supplementation increases time to exhaustion in elite male wrestlers. Biol. Sport 2014, 31, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Terasawa, N.; Nakada, K. Effect of l-citrulline intake on intermittent short-time high-intensity exercise performance in male collegiate track athletes. J. Sports Med. Phys. Fit. 2019, 8, 147–157. [Google Scholar] [CrossRef]
- Stanelle, S.T.; McLaughlin, K.L.; Crouse, S.F. One week of l-citrulline supplementation improves performance in trained cyclists. J. Strength Cond. Res. 2020, 34, 647–652. [Google Scholar] [CrossRef]
- Suzuki, T.; Morita, M.; Kobayashi, Y.; Kamimura, A. Oral l-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. J. Int. Soc. Sports Nutr. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Bailey, S.J.; Blackwell, J.R.; Lord, T.; Vanhatalo, A.; Winyard, P.G.; Jones, A.M. l-citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J. Appl. Physiol. 2015, 119, 385–395. [Google Scholar] [CrossRef]
- Bailey, S.J.; Blackwell, J.R.; Williams, E.; Vanhatalo, A.; Wylie, L.J.; Winyard, P.G.; Jones, A.M. Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide 2016, 59, 10–20. [Google Scholar] [CrossRef]
- Cutrufello, P.T.; Gadomski, S.J.; Zavorsky, G.S. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J. Sports Sci. 2015, 33, 1459–1466. [Google Scholar] [CrossRef]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2019, 66, 59. [Google Scholar] [CrossRef]
- Alvares, T.S.; Conte-Junior, C.A.; Silva, J.T.; Paschoalin, V.M. Acute l-arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr. Metab. 2012, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.; Hathaway, L.; Mincemoyer, R.; Schenke, W.H.; Kirby, M.; Csako, G.; Waclawiw, M.A.; Panza, J.A.; Cannon, R.O. Effects of oral l-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J. Am. Coll. Cardiol. 2000, 35, 271–276. [Google Scholar] [CrossRef]
- Tang, J.E.; Lysecki, P.J.; Manolakos, J.J.; MacDonald, M.J.; Tarnopolsky, M.A.; Phillips, S.M. Bolus arginine supplementation affects neither muscle blood flow nor muscle protein synthesis in young men at rest or after resistance exercise. J. Nutr. 2011, 141, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Bell, G.J. The acute effects of a low and high dose of oral L-arginine supplementation in young active males at rest. Appl. Physiol. Nutr. Metab. 2011, 36, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Maiorana, A.; O’Driscoll, G.; Taylor, R.; Green, D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003, 33, 1013–1035. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, D.; Brosnan, J.T.; Brosnan, M.E. Catabolism of arginine and ornithine in the perfused rat liver: Effect of dietary protein and of glucagon. Am. J. Physiol. Endocrinol. Metab. 2000, 278, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Chin-Dusting, J.P.; Alexander, C.T.; Arnold, P.J.; Hodgson, W.C.; Lux, A.S.; Jennings, G.L. Effects of in vivo and in vitro l-arginine supplementation on healthy human vessels. J. Cardiovasc. Pharmacol. 1996, 28, 158–166. [Google Scholar] [CrossRef]
- Koifman, B.; Wollman, Y.; Bogomolny, N.; Chernichowsky, T.; Finkelstein, A.; Peer, G.; Scherez, J.; Bium, M.; Laniado, S.; Laina, A.; et al. Improvement of cardiac performance by intravenous infusion of l-arginine in patients with moderate congestive heart failure. J. Am. Coll. Cardiol. 1995, 26, 1251–1256. [Google Scholar] [CrossRef]
- Pahlavani, N.; Entezari, M.H.; Nasiri, M.; Miri, A.; Rezaie, M.; Bagheri-Bidakhavidi, M.; Sadeghi, O. The effect of l-arginine supplementation on body composition and performance in male athletes: A double-blinded randomized clinical trial. Eur. J. Clin. Nutr. 2017, 71, 544–548. [Google Scholar] [CrossRef]
- Burtscher, M.; Brunner, F.; Faulhaber, M.; Hotter, B.; Likar, R. The prolonged intake of L-arginine-L-aspartate reduces blood lactate accumulation and oxygen consumption during submaximal exercise. J. Sports Sci. Med. 2005, 4, 314–322. [Google Scholar]
- Chang, C.K.; Chang Chien, K.M.; Chang, J.H.; Huang, M.H.; Liang, Y.C.; Liu, T.H. Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: A randomized trial. PLoS ONE 2015, 10, e0121866. [Google Scholar] [CrossRef]
- Abel, T.; Knechtle, B.; Perret, C.; Eser, P.; von Arx, P.; Knecht, H. Influence of chronic supplementation of arginine aspartate in endurance athletes on performance and substrate metabolism-a randomized, double-blind, placebo-controlled study. Int. J. Sports Med. 2005, 26, 344–349. [Google Scholar] [CrossRef]
- Kanaley, J.A. Growth hormone, arginine and exercise. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 50–54. [Google Scholar] [CrossRef]
- Manini, T.M.; Yarrow, J.F.; Buford, T.W.; Clark, B.C.; Conover, C.F.; Borst, S.E. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm. IGF Res. 2012, 22, 167–172. [Google Scholar] [CrossRef]
- Ghigo, E.; Arvat, E.; Valente, F.; Nicolosi, M.; Boffano, G.M.; Procopio, M.; Bellone, J.; Maccario, M.; Mazza, E.; Camanni, F. Arginine reinstates the somatotrope responsiveness to intermittent growth hormone-releasing hormone administration in normal adults. Neuroendocrinology 1991, 54, 291–294. [Google Scholar] [CrossRef]
- Zajac, A.; Poprzecki, S.; Zebrowska, A.; Chalimoniuk, M.; Langfort, J. Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J. Strength Cond. Res. 2010, 24, 1082–1090. [Google Scholar] [CrossRef]
- Chromiak, J.A.; Antonio, J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition 2002, 18, 657–761. [Google Scholar] [CrossRef]
- Lambert, M.I.; Hefer, J.A.; Millar, R.P.; Macfarlane, P.W. Failure of commercial oral amino acid supplements to increase serum growth hormone concentrations in male body-builders. Int. J. Sport Nutr. 1993, 3, 298–305. [Google Scholar] [CrossRef]
- Campbell, B.; Roberts, M.; Kerksick, C.; Wilborn, C.; Marcello, B.; Taylor, L.; Nassar, E.; Leutholtz, B.; Bowden, R.; Rasmussen, C.; et al. Pharmacokinetics, safety, and effects on exercise performance of l-arginine alpha-ketoglutarate in trained adult men. Nutrition 2006, 22, 872–881. [Google Scholar] [CrossRef]
- Wax, B.; Kavazis, A.N.; Webb, H.E.; Brown, S.P. Acute l-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men. J. Int. Soc. Sports Nutr. 2012, 9, 17. [Google Scholar] [CrossRef]
- Hurst, H.T.; Sinclair, J.; Beenham, M.S. Influence of absolute versus relative l-arginine dosage on 1 km and 16.1 km time trial performance in trained cyclists. J. Sci. Cycl. 2014, 3, 2–8. [Google Scholar]
- Greer, B.K.; Jones, B.T. Acute arginine supplementation fails to improve muscle endurance or affect blood pressure responses to resistance training. J. Strength Cond. Res. 2011, 25, 1789–1794. [Google Scholar] [CrossRef]
- Kaore, S.N.; Amane, H.S.; Kaore, N.M. Citrulline: Pharmacological perspectives and its role as an emerging biomarker in future. Fundam. Clin. Pharmacol. 2013, 27, 35–50. [Google Scholar] [CrossRef]
- Schwedhelm, E.; Maas, R.; Freese, R.; Jung, D.; Lukacs, Z.; Jambrecina, A.; Spickler, W.; Schulze, F.; Boger, R.H. Pharmacokinetic and pharmacodynamic properties of oral l-citrulline and l-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol. 2008, 65, 51–59. [Google Scholar] [CrossRef]
- Hwang, P.; Morales Marroquín, F.E.; Gann, J.; Andre, T.; McKinley-Barnard, S.; Kim, C.; Morita, M.; Willoughby, D.S. Eight weeks of resistance training in conjunction with glutathione and L-Citrulline supplementation increases lean mass and has no adverse effects on blood clinical safety markers in resistance-trained males. J. Int. Soc. Sports Nutr. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- Figueroa, A.; Trivino, J.A.; Sanchez-Gonzalez, M.A.; Vicil, F. Oral l-citrulline supplementation attenuates blood pressure response to cold pressor test in young men. Am. J. Hypertens. 2010, 23, 12–16. [Google Scholar] [CrossRef]
- Barkhidarian, B.; Khorshidi, M.; Shab-Bidar, S.; Hashemi, B. Effects of l-citrulline supplementation on blood pressure: A systematic review and meta-analysis. Avicenna J. Phytomed. 2019, 9, 10–20. [Google Scholar]
- Morita, M.; Sakurada, M.; Watanabe, F.; Yamasaki, T.; Doi, H.; Ezaki, H.; Morishita, K.; Miyakex, T. Effects of oral l-citrulline supplementation on lipoprotein oxidation and endothelial dysfunction in humans with vasospastic angina. Immunol. Endocr. Metab. Agents Med. Chem. 2013, 13, 214–220. [Google Scholar] [CrossRef]
- Esen, O.; Eser, M.C.; Abdioglu, M.; Benesova, D.; Gabrys, T.; Karayigit, R. Eight days of l-citrulline or l-arginine supplementation did not improve 200-m and 100-m swimming time trials. Int. J. Environ. Res. Public Health 2022, 19, 4462. [Google Scholar] [CrossRef]
- Hickner, R.C.; Tanner, C.J.; Evans, C.A.; Clark, P.D.; Haddock, A.M.Y.; Fortune, C.; Geddis, H.; Waugh, W.; McCammon, M. L-Citrulline Reduces Time to Exhaustion and Insulin Response to a Graded Exercise Test. Med. Sci. Sports Exerc. 2006, 38, 660–666. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, M.A.; Koutnik, A.P.; Ramirez, K.; Wong, A.; Figueroa, A. The effects of short term l-citrulline supplementation on wave reflection responses to cold exposure with concurrent isometric exercise. Am. J. Hypertens. 2013, 26, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Chernykh, O.; Figueroa, A. Chronic l-citrulline supplementation improves cardiac sympathovagal balance in obese postmenopausal women: A preliminary report. Auton. Neurosci. 2016, 198, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, C.-F.; Wu, H.-J.; Tsai, T.-S.; Wu, C.-L.; Chang, C.-K. The Effect of Branched-Chain Amino Acids, Citrulline, and Arginine on High-Intensity Interval Performance in Young Swimmers. Nutrients 2018, 10, 1979. [Google Scholar] [CrossRef]
- Cheng, I.S.; Wang, Y.W.; Chen, I.F.; Hsu, G.S.; Hsueh, C.F.; Chang, C.K. The supplementation of branched-chain amino acids, arginine, and citrulline improves endurance exercise performance in two Consecutive days. J. Sports Sci. Med. 2016, 15, 509–515. [Google Scholar] [PubMed]
- Khalaf, D.; Krüger, M.; Wehland, M.; Infanger, M.; Grimm, D. The effects of oral l-arginine and l-citrulline supplementation on blood pressure. Nutrients 2019, 11, 1679. [Google Scholar] [CrossRef]
- Botchlett, R.; Lawler, J.M.; Wu, G. Chapter 55-l-arginine and l-citrulline in sports nutrition and health. In Nutrition and Enhanced Sports Performance, 2nd ed.; Bagchi, D., Nair, S., Sen, C.K., Eds.; Academic Press: London, UK, 2019; pp. 645–652. [Google Scholar]
- Batista, R.I.M.; Nogueira, R.C.; Ferreira, G.C.; Oliveira-Paula, G.H.; Damacena-Angelis, C.; Pinheiro, L.C.; Tanus-Santos, J.E. Antiseptic mouthwash inhibits antihypertensive and vascular protective effects of l-arginine. Eur. J. Pharmacol. 2021, 907, 1–9. [Google Scholar] [CrossRef]
L-Arginine Only | |||||
References | Exercise Protocol | Participants | Supplement: Duration of Supplementation | Supplement Timing; Wash out Period for Cross-Over | Main Findings |
Forbes et al. [54] | VO2max test on cycle ergometer—graded, incremental exercise to volitional exhaustion | 15 males Trained cyclist Age (28 ± 5 years) | Acute (L-Arg 0.075 g/kg); 1 day | 60 min before exercise protocol; 7 days washout period | ↑ L-Arg, ↔ NOx, ↔ GH ↔ cardio-respiratory parameter measured |
Forbes et al. [53] | Resistance exercise (3 sets of 8 exercises, 10 repetitions at ~75% 1 RM) | 14 males Resistance trained Age (25 ± 4 years) | Acute (L-Arg 0.075 g/kg); 1 day | 60 min before exercise protocol; 7 days washout period | ↑ L-Arg, ↓ GH, ↔ RPE |
Meirelles and Matsuura [55] | Maximal dynamic strength in the bench press and knee extension (one-repetition maximum (1 rM) test) | 12 males Resistance trained Age (27 ± 3 years) | Acute (L-Arg 6 g); 1 day | 60 min before exercise protocol; 7 days washout period | ↔ NOx, ↔ in strength exercises |
Streeter et al. [56] | Five sets of 10 maximal isokinetic extension repetitions of the elbow joint at 90° per second with 30 s of rest in between sets | 15 males and 15 females Physically active Age (20.4 ± 1.8 years) | Acute (L-Arg 3 g); 1 day | 60 min before exercise protocol; 2 days washout period | ↓ in post-exercise elbow extension |
Vanhatalo et al. [57] | Ramp incremental running tests on a motorized treadmill | 18 males Recreationally active Age (22 ± 3 years) | Acute (L-Arg 6 g); 1 day | 95 min before exercise protocol; 10 days washout period | ↔ NOx and O2 cost of exercise or exercise tolerance in healthy subjects |
Yavuz et al. [58] | Maximal incremental exercise on cycle ergometer starting at—60–70 rpm (increase by 30 watts at every 3 min | 9 males Trained wrestlers Age (24.7 ± 3.8 years) | Acute (L-Arg 1.5 g/10 kg); 1 day | 60 min before exercise; 7 days washout period | ↑ time to exhaustion ↔ Lactate |
L-Citrulline Only | |||||
References | Exercise Protocol | Participants | Supplementation; Duration of Supplementation | Supplement Timing; Washout Period for Cross-Over | Main Findings |
Terasawa and Nakada [59] | Wingate test, using cycle ergometer, was adopted as the intermittent short-time high intensity exercise | 9 males Track athletes Age (20.9 ± 1.6 years) | Chronic (L-Cit 3 g/day); 7 days | 60 min before exercise protocol; 7 days washout period | L-Cit group; ↓ RPE, ↔ Lactate, ↑ NOx, ↑ mean power output, ↑ pedalling speed, ↑ VO2 |
Stanelle [60] | Simulated 40-km TT on a cycle ergometer, and supramaximal sprint repeat task (six 1-min sprints at 120% of maximal power) | 10 males Cyclists Age (24 ± 3 years) | Chronic (L-Cit 6 g/day); 7 days | 120 min before exercise protocol; 7 days washout period | ↔ TT time, ↑ average power output, ↑ HR and ↑ RPE |
Suzuki et al. [61] | 4-km cycling time trial on a cycle ergometer | 22 males Mixed athletes age (29 ± 8.4 years) | Chronic (L-Cit 2.4 g/day); 8 days | 60 min before exercise protocol; 3 weeks washout period | ↑ NOx, L-Cit and L-arg, ↓ TT time, ↓ RPE |
Bailey et al. [62] | Cycle ergometer; three “step” exercise tests: two moderate-intensity step tests followed by one severe-intensity exercise bout. Moderate-intensity step tests were completed to assess VO2 economy in the absence of a VO2 kinetics and cycling intensity step tests were completed to assess VO2 presence of a VO2 slow component | 10 males Recreationally active Age (19 ± 1 year) | Chronic (L-Cit 6 g/day or L-Arg-6 g/day); 7 days | 90 min before exercise protocol; 7–10 days washout period | ↑ L-Arg for both L-Arg and L-Cit ↑ Nitrite for L-Arg. ↓ Mean arterial pressure, ↑ tolerance during severe exercise, ↓ lowered the VO2 mean response time, ↑ total amount of work completed in the exercise performance test with L-Cit supple but not with L-Arg |
Bailey et al. [63] | ‘Step’ exercise tests including one moderate-intensity step test followed by one severe-intensity exercise bout | 8 males Recreationally active Age (22 ± 2 years) | Chronic (300 mL/day of a watermelon juice concentrate, which provided ~3.4 g/day L-Cit) | 75 min before exercise protocol; 7–10 days washout period | ↑ L-Arg, ↑ L-Cit, ↑ nitrite, ↑ skeletal muscle oxygenation index during moderate-intensity exercise. ↑ resting blood pressure ↔ time-to-exhaustion during severe-intensity exercise |
Cutrufello et al. [64] | Chest press; maximum number of repetitions at 80% 1 RM for 5 sets with a 30 s rest period between each set. Bruce protocol on treadmill. | 11 males and 11 females Mixed athletes Age (20.6 ± 1.2) | Acute (L-Cit 6 g); 1 day | 60 and 120 min before exercise protocol; 7 days washout period | ↔ number of repetitions, time to exhaustion, VO2max |
L-Arginine and L-Citrulline | |||||
References | Exercise Protocol | Participants | Supplementation; Duration of Supplementation | Supplement Timing; Washout Period for Cross-Over | Main Findings |
Suzuki et al. [35] | PWC75% HRmax, three stages of load (25, 75 and 125 W) for 3 min each (total, 9 min) | 20 males Soccer athletes Age (19.0 ± 0.2 years) | Chronic (L-Arg 1.2 g and L-Cit 1.2 g) per day; 7 days | 60 min before exercise protocol; 2 months washout period | ↑ power output, ↑ L-Cit, ↑ L-Arg, ↑NOx, ↓ RPE |
Author | Cr1 | Cr2 | Cr3 | Cr4 | Cr5 | Cr6 | Cr7 | Cr8 | Cr9 | Cr10 | Cr11 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forbes et al. [54] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Forbes et al. [53] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 8 |
Meirelles and Matsuura [55] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Streeter et al. [56] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 9 |
Vanhatalo et al. [57] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Yavuz et al. [58] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 7 |
Terasawa and Nakada [59] | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Stanelle [60] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Suzuki et al. [61] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Bailey et al. [62] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Bailey et al. [63] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Cutrufello et al. [64] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Suzuki et al. [35] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyawose, S.; Naidoo, R.; Naumovski, N.; McKune, A.J. The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review. Beverages 2022, 8, 48. https://doi.org/10.3390/beverages8030048
Nyawose S, Naidoo R, Naumovski N, McKune AJ. The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review. Beverages. 2022; 8(3):48. https://doi.org/10.3390/beverages8030048
Chicago/Turabian StyleNyawose, Siphamandla, Rowena Naidoo, Nenad Naumovski, and Andrew J. McKune. 2022. "The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review" Beverages 8, no. 3: 48. https://doi.org/10.3390/beverages8030048