An Approach of the Madeira Wine Chemistry
Abstract
:1. Introduction
2. Volatile Profile of Madeira Wines
2.1. Primary Aroma
2.1.1. Terpenes
2.1.2. C13 Norisoprenoids
2.1.3. Methoxypyrazines
2.1.4. Volatile Thiols
2.2. Pre-Fermentative Aroma
2.3. Fermentative Aroma
2.3.1. Alcohols
2.3.2. Esters
2.3.3. Fatty Acids
2.3.4. Carbonyl Compounds
2.4. Terciary Aroma
2.4.1. Furanic Compounds
2.4.2. Lactones
2.4.3. Volatile Phenols
2.4.4. Acetals
3. Non-Volatile Profile of Madeira Wines
3.1. Polyphenols
3.2. Organic Acids
3.3. Aminoacids and Biogenic Amines
3.4. Metals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Secretaria Regional do Ambiente e Recursos Naturais. Jornal Oficial. Portaria n. 40/2015 Região Autónoma da Madeira. Available online: https://www.ivv.gov.pt/np4/529/?newsId=8410&fileName=Portaria_40_2015_terras_madeirenses.pdf (accessed on 15 December 2019).
- Secretaria Regional do Ambiente e Recursos Naturais. Jornal Oficial. Portaria n. 39/2015 Região Autónoma da Madeira. Available online: https://www.ivv.gov.pt/np4/529/?newsId=8409&fileName=Portaria_39_2015_madeira.pdf (accessed on 15 December 2020).
- BKO, F. A Região Demarcada da Madeira—Características e património vitícola. Available online: https://docplayer.com.br/48548205-A-regiao-demaracada-da-madeira-caracteristicas-e-patrimonio-viticola.html (accessed on 15 December 2019).
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira wine volatile profile. A platform to establish madeira wine aroma descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.; Pereira, J.; Câmara, J.S. Wines: Madeira, Port and Sherry fortified wines—The Sui Generis and notable peculiarities. Major differences and chemical patterns. In Encyclopedia of Food and Health; Academic Press: Oxford, UK, 2016; pp. 534–555. ISBN 9780123849533. [Google Scholar]
- Perestrelo, R.; Albuquerque, F.; Rocha, S.M.; Câmara, J.S. Distinctive characteristics of madeira wine regarding its traditional winemaking and modern analytical methodologies. Adv. Food Nutr. Res. 2011, 63, 207–249. [Google Scholar]
- Perestrelo, R.; Câmara, J.S.; Rocha, S.M. Impact of Winemaking Process in Madeira Wine Composition: From Aging Markers to Ethyl Carbamate (a Contaminant); Nova Science Publishers: New York, NY, USA, 2011; ISBN 9781614706359. [Google Scholar]
- Chen, L.; Capone, D.L.; Jeffery, D.W. Analysis of potent odour-active volatile thiols in foods and beverages with a focus on wine. Molecules 2019, 24, 2472. [Google Scholar] [CrossRef] [Green Version]
- Mihnea, M.; González-SanJosé, M.L.; Ortega-Heras, M.; Pérez-Magariño, S. A comparative study of the volatile content of Mencía wines obtained using different pre-fermentative maceration techniques. LWT-Food Sci. Technol. 2015, 64, 32–41. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Li, J. Aroma compounds in wine. In Grape and Wine Biotechnology; InTech: London, UK, 2016. [Google Scholar]
- Mestres, M.; Busto, O.; Guasch, J.; Guasch, G. Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A 2000, 881, 569–581. [Google Scholar] [CrossRef]
- Lopez, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Pardo-García, A.I.; De La Hoz, K.S.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Effect of vine foliar treatments on the varietal aroma of Monastrell wines. Food Chem. 2014, 163, 258–266. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, G.J.; Wang, X.J.; Kong, C.L.; Liu, J.; Tao, Y.S. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Food Chem. 2019, 284, 155–161. [Google Scholar] [CrossRef]
- Darriet, P.; Thibon, C.; Dubourdieu, D. Aroma and aroma precursors in grape berry. In The Biochemistry of the Grape Berry; Bentham Science Publishers Ltd.: United Arab Emirates, 2012; pp. 111–136. ISBN 9781608055401. [Google Scholar]
- Coelho, E.; Rocha, S.M.; Barros, A.S.; Delgadillo, I.; Coimbra, M.A. Screening of variety- and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Anal. Chim. Acta 2007, 597, 257–264. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Establishment of the varietal profile of Vitis vinifera L. grape varieties from different geographical regions based on HS-SPME/GC-qMS combined with chemometric tools. Microchem. J. 2014, 116, 107–117. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Silva, P.; Câmara, J.S. Unraveling Vitis vinifera L. grape maturity markers based on integration of terpenic pattern and chemometric methods. Microchem. J. 2018, 142, 367–376. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Wedler, H.B.; Pemberton, R.P.; Tantillo, D.J. Carbocations and the complex flavor and bouquet of wine: Mechanistic aspects of terpene biosynthesis in wine grapes. Molecules 2015, 20, 10781–10792. [Google Scholar] [CrossRef] [Green Version]
- Baron, M.; Prusova, B.; Tomaskova, L.; Kumsta, M.; Sochor, J. Terpene content of wine from the aromatic grape variety “Irsai Oliver” (Vitis vinifera L.) depends on maceration time. Open Life Sci. 2017, 12, 42–50. [Google Scholar] [CrossRef]
- Santiago, A.C.; Munoz, R.; Garcia, R.G. Molecular Wine Microbiology; Elsevier Inc.: London, UK, 2011; ISBN 9780123750211. [Google Scholar]
- Ferreira, V.; López, R.; Cacho, J. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, the Chemistry of Wine: Stabilization and Treatments, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; Volume 2, ISBN 9780470010396. [Google Scholar]
- Chisholm, M.G.; Guiher, L.A.; Zaczkiewicz, S.M. Aroma characteristics of aged Vidal blanc wine. Am. J. Enol. Vitic. 1995, 46, 56–62. [Google Scholar]
- Campo, E.; Ferreira, V.; Escudero, A.; Marqués, J.C.; Cacho, J. Quantitative gas chromatography-olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal. Chim. Acta 2006, 563, 180–187. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Development of headspace solid-phase microextraction-gas chromatography–mass spectrometry methodology for analysis of terpenoids in Madeira wines. Anal. Chim. Acta 2006, 555, 191–200. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Classification of Boal, Malvazia, Sercial and Verdelho wines based on terpenoid patterns. Food Chem. 2007, 101, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Coelho, E.; Rocha, S.M.; Delgadillo, I.; Coimbra, M.A. Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv. ‘Baga’ ripening. Anal. Chim. Acta 2006, 563, 204–214. [Google Scholar] [CrossRef]
- Câmara, J.S.; Herbert, P.; Marques, J.C.; Alves, M.A. Varietal flavour compounds of four grape varieties producing Madeira wines. Anal. Chim. Acta 2004, 513, 203–207. [Google Scholar] [CrossRef]
- Alves, R.F.; Nascimento, A.M.D.; Nogueira, J.M.F. Characterization of the aroma profile of Madeira wine by sorptive extraction techniques. Anal. Chim. Acta 2005, 546, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Acree, T.; Arn, H. Flavornet Home Page. Available online: http://www.flavornet.org/ (accessed on 14 February 2019).
- Leffingwell, D.; Leffingwell, J.C. Odor Detection Thresholds of GRAS Flavor Chemicals. Available online: http://www.leffingwell.com (accessed on 25 November 2019).
- Díaz-Maroto, M.C.; Guchu, E.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC–MS and GC–O. Flavour Fragr. J. 2008, 23, 93–98. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Xu, Y.; Qian, M.C. Aroma characterization of Chinese rice wine by gas chromatography–olfactometry, chemical quantitative analysis, and aroma reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the key aroma compounds in Chinese Syrah wine by gas chromatography-olfactometry-mass spectrometry and aroma reconstitution studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef]
- Mathieu, S.; Terrier, N.; Procureur, J.; Bigey, F.; Günata, Z. A carotenoid cleavage dioxygenase from Vitis vinifera L.: Functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J. Exp. Bot. 2005, 56, 2721–2731. [Google Scholar] [CrossRef]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- Pineau, B.; Barbe, J.C.; Van Leeuwen, C.; Dubourdieu, D. Which impact for β-damascenone on red wines aroma? J. Agric. Food Chem. 2007, 55, 4103–4108. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Cacho, J.; Ferreira, V. The chemical characterization of the aroma of dessert and sparkling white wines (Pedro Ximénez, Fino, Sauternes, and Cava) by gas chromatography-olfactometry and chemical quantitative analysis. J. Agric. Food Chem. 2008, 56, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Sacks, G.L.; Gates, M.J.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory threshold of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and concentrations in young Riesling and Non-Riesling wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef]
- Sidhu, D.; Lund, J.; Kotseridis, Y.; Saucier, C. Methoxypyrazine analysis and influence of viticultural and enological procedures on their levels in grapes, musts, and wines. Crit. Rev. Food Sci. Nutr. 2015, 55, 485–502. [Google Scholar] [CrossRef]
- Lei, Y.; Xie, S.; Guan, X.; Song, C.; Zhang, Z.; Meng, J. Methoxypyrazines biosynthesis and metabolism in grape: A review. Food Chem. 2018, 245, 1141–1147. [Google Scholar] [CrossRef]
- Dunlevy, J.D.; Soole, K.L.; Perkins, M.V.; Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Boss, P.K. Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: Grape-derived aroma compounds important to wine flavour. Plant Mol. Biol. 2010, 74, 77–89. [Google Scholar] [CrossRef]
- Sala, C.; Mestres, M.; Martí, M.P.; Busto, O.; Guasch, J. Headspace solid-phase microextraction analysis of 3-alkyl-2-methoxypyrazines in wines. J. Chromatogr. A 2002, 953, 1–6. [Google Scholar] [CrossRef]
- Dubourdieu, D.; Tominaga, T. Polyfunctional thiol compounds. In Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009; pp. 275–293. ISBN 9780387741161. [Google Scholar]
- Pereira, V.; Cacho, J.; Marques, J.C. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem. 2014, 162, 122–134. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.L.; Silva, P.; Câmara, J.S. Impact of storage time and temperature on volatomic signature of Tinta Negra wines by LLME/GC-ITMS. Food Res. Int. 2018, 109, 99–111. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Faria, M.; Sá, F.; Barros, F.; Araújo, I.M. C6-alcohols as varietal markers for assessment of wine origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Mozzon, M.; Savini, S.; Boselli, E.; Thorngate, J.H. The herbaceous character of wines. Ital. J. Food Sci. 2016, 28, 190–207. [Google Scholar]
- Gigot, C.; Ongena, M.; Fauconnier, M.-L.; Wathelet, J.-P.; Du Jardin, P.; Thonart, P. The lipoxygenase metabolic pathway in plants: Potential for industrial production of natural green leaf volatiles. Biotechnol. Agron. Soc. Environ. 2010, 14, 451–460. [Google Scholar]
- Ferrandino, A.; Carlomagno, A.; Baldassarre, S.; Schubert, A. Varietal and pre-fermentative volatiles during ripening of Vitis vinifera cv Nebbiolo berries from three growing areas. Food Chem. 2012, 135, 2340–2349. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Aroma ageing trends in GC/MS profiles of liqueur wines. Anal. Chim. Acta 2010, 659, 93–101. [Google Scholar] [CrossRef]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Madeira wine ageing prediction based on different analytical techniques: UV–vis, GC-MS, HPLC-DAD. Chemom. Intell. Lab. Syst. 2011, 105, 43–55. [Google Scholar] [CrossRef]
- Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Analysis and assessment of Madeira wine ageing over an extended time period through GC-MS and chemometric analysis. Anal. Chim. Acta 2010, 660, 8–21. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Multivariate analysis for the classification and differentiation of Madeira wines according to main grape varieties. Talanta 2006, 68, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Divol, B.; Strehaiano, P.; Lonvaud-Funel, A. Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiol. 2005, 22, 169–178. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.A.; Xu, B.W.; Chen, B.Y.; Zhao, W.Q.; Xue, C.H. Ultrasound as an effective technique to reduce higher alcohols of wines and its influencing mechanism investigation by employing a model wine. Ultrason. Sonochemistry 2020, 61, 104813–104823. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, D.; Peinado, R.A.; Medina, M.; Moreno, J. Higher alcohols concentration and its relation with the biological aging evolution. Eur. Food Res. Technol. 2006, 222, 629–635. [Google Scholar] [CrossRef]
- Pisarnitskii, A.F. Formation of wine aroma: Tones and imperfections caused by minor components (review). Appl. Biochem. Microbiol. 2001, 37, 552–560. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Avizcuri, J.M.; Ballester, J.; Fernández-Zurbano, P.; Ferreira, V.; Peyron, D.; Valentin, D. Sensory-active compounds influencing wine experts’ and consumers’ perception of red wine intrinsic quality. LWT-Food Sci. Technol. 2015, 60, 400–411. [Google Scholar] [CrossRef]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Rodriguez, E.; Câmara, J.S.J.S. Impact of storage time and temperature on furanic derivatives formation in wines using microextraction by packed sorbent tandem with ultrahigh pressure liquid chromatography. LWT-Food Sci. Technol. 2017, 76, 40–47. [Google Scholar] [CrossRef]
- Aznar, M.; Arroyo, T. Analysis of wine volatile profile by purge-and-trap-gas chromatography-mass spectrometry. Application to the analysis of red and white wines from different Spanish regions. J. Chromatogr. A 2007, 1165, 151–157. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Liu, P.-T.; Duan, C.-Q.; Yan, G.-L. Comparing the effects of different unsaturated fatty acids on fermentation performance of Saccharomyces cerevisiae and aroma compounds during red wine fermentation. Molecules 2019, 24, 538. [Google Scholar] [CrossRef] [Green Version]
- König, H.; Unden, G.; Fröhlich, J. Biology of Microorganisms on Grapes, in Must and in Wine; Springer: New York, USA, 2009; ISBN 9783540854623. [Google Scholar]
- Louw, L.; Tredoux, A.G.J.; van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived aroma compounds in varietal young wines from South Africa. South Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Tylewicz, U.; Inchingolo, R.; Rodriguez-Estrada, M.T. Food aroma compounds. In Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques; Elsevier Inc.: London, UK, 2017; pp. 297–334. ISBN 9780128052570. [Google Scholar]
- Jackson, R.S. Chemical constituents of grapes and wine. In Wine Science; Elsevier: London, UK, 2000; pp. 232–280. [Google Scholar]
- Clark, S.; Winter, C.K. Diacetyl in foods: A review of safety and sensory characteristics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 634–643. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Le Menn, N.; van Leeuwen, C.; Picard, M.; Riquier, L.; de Revel, G.; Marchand, S. Effect of vine water and nitrogen status, as well as temperature, on some aroma compounds of aged red Bordeaux wines. J. Agric. Food Chem. 2019, 67, 7098–7109. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Ugliano, M. Norisoprenoids, sesquiterpenes and terpenoids content of Valpolicella wines during aging: Investigating aroma potential in relationship to evolution of tobacco and balsamic aroma in aged wine. Front. Chem. 2018, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Barros, A.S.; Câmara, J.S.; Rocha, S.M. In-depth search focused on furans, lactones, volatile phenols, and acetals as potentialage markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. [Google Scholar] [CrossRef] [Green Version]
- Koussissi, E.; Dourtoglou, V.G.; Ageloussis, G.; Paraskevopoulos, Y.; Dourtoglou, T.; Paterson, A.; Chatzilazarou, A. Influence of toasting of oak chips on red wine maturation from sensory and gas chromatographic headspace analysis. Food Chem. 2009, 114, 1503–1509. [Google Scholar] [CrossRef]
- Câmara, J.S.; Marques, J.C.; Alves, A.; Ferreira, A.C.S. Heterocyclic acetals in Madeira wines. Anal. Bioanal. Chem. 2003, 375, 1221–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, H.O.; Guedes De Pinho, P.; Machado, B.P.; Hogg, T.; Marques, J.C.; Câmara, J.S.; Albuquerque, F.; Silva Ferreira, A.C.; Oliveira, E.; Silva, H.; et al. Impact of forced-aging process on Madeira wine flavor. J. Agric. Food Chem. 2008, 56, 11989–11996. [Google Scholar] [CrossRef]
- Alañón, M.E.; Rubio, H.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Monosaccharide anhydrides, new markers of toasted oak wood used for ageing wines and distillates. Food Chem. 2010, 119, 505–512. [Google Scholar] [CrossRef]
- Ortu, E.; Caboni, P. Levels of 5-hydroxymethylfurfural, furfural, 2-furoic acid in sapa syrup, Marsala wine and bakery products. Int. J. Food Prop. 2017, 20, S2543–S2551. [Google Scholar] [CrossRef] [Green Version]
- Cutzach, I.; Chatonnet, P.; Dubourdieu, D. Study of the formation mechanisms of some volatile compounds during the aging of sweet fortified wines. J. Agric. Food Chem. 1999, 47, 2837–2846. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Albuquerque, F.M.; Ferreira, A.C.; Cacho, J.; Marques, J.C. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 2011, 44, 71–76. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.L.; Câmara, J.S. Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. J. Chromatogr. A 2015, 1381, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Marques, J.C.; Alves, M.A.; Silva Ferreira, A.C. 3-Hydroxy-4,5-dimethyl-2(5H)-furanone levels in fortified Madeira wines: Relationship to sugar content. J. Agric. Food Chem. 2004, 52, 6765–6769. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Baumes, R.; Bayonove, C.; Razungles, A. Volatile compounds involved in the aroma of sweet fortified wines (Vins Doux Naturels) from Grenache Noir. J. Agric. Food Chem. 1998, 46, 3230–3237. [Google Scholar] [CrossRef]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of lactones in wines by headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry. J. Anal. Methods Chem. 2014, 2014, 863019. [Google Scholar] [CrossRef] [Green Version]
- Cerdán, T.G.; Goñi, D.T.; Azpilicueta, C.A. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; González-Huerta, C.; Herrera, P.; González-Sanjosé, M.L. Changes in wine volatile compounds of varietal wines during ageing in wood barrels. Anal. Chim. Acta 2004, 513, 341–350. [Google Scholar] [CrossRef]
- Guchu, E.; Díaz-Maroto, M.C.; Díaz-Maroto, I.J.; Vila-Lameiro, P.; Pérez-Coello, M.S. Influence of the species and geographical location on volatile composition of spanish oak wood (Quercus petraea Liebl. and Quercus robur L.). J. Agric. Food Chem. 2006, 54, 3062–3066. [Google Scholar] [CrossRef]
- Gaspar, J.M.; Freitas, A.I.; Zhao, Q.; Leça, J.M.; Pereira, V.; Marques, J.C. Is sotolon relevant to the aroma of madeira wine blends? Biomolecules 2019, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Bencomo, J.J.; Ortega-Heras, M.; Pérez-Magariño, S.; González-Huerta, C. Volatile compounds of red wines macerated with Spanish, American, and French oak chips. J. Agric. Food Chem. 2009, 57, 6383–6391. [Google Scholar] [CrossRef] [PubMed]
- Suárez, R.; Suárez-Lepe, J.A.; Morata, A.; Calderón, F. The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chem. 2007, 102, 10–21. [Google Scholar] [CrossRef]
- Martorell, N.; Martí, M.P.; Mestres, M.; Busto, O.; Guasch, J. Determination of 4-ethylguaiacol and 4-ethylphenol in red wines using headspace-solid-phase microextraction-gas chromatography. J. Chromatogr. A 2002, 975, 349–354. [Google Scholar] [CrossRef]
- Kheir, J.; Salameh, D.; Strehaiano, P.; Brandam, C.; Lteif, R. Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts. Eur. Food Res. Technol. 2013, 237, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Milheiro, J.; Filipe-Ribeiro, L.; Vilela, A.; Cosme, F.; Nunes, F.M. 4-Ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in red wines: Microbial formation, prevention, remediation and overview of analytical approaches. Crit. Rev. Food Sci. Nutr. 2019, 59, 1367–1391. [Google Scholar] [CrossRef]
- Perez-Prieto, L.J.; De la Hera-Orts, M.L.; López-Roca, J.M.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Oak-matured wines: Influence of the characteristics of the barrel on wine colour and sensory characteristics. J. Sci. Food Agric. 2003, 83, 1445–1450. [Google Scholar] [CrossRef]
- Peterson, A.L.; Gambuti, A.; Waterhouse, A.L. Rapid analysis of heterocyclic acetals in wine by stable isotope dilution gas chromatography-mass spectrometry. Tetrahedron 2015, 71, 3032–3038. [Google Scholar] [CrossRef]
- Da Silva Ferreira, A.C.; Barbe, J.-C.; Bertrand, A. Heterocyclic acetals from glycerol and acetaldehyde in Port wines: Evolution with aging. J. Agric. Food Chem. 2002, 50, 2560–2564. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Campo, E.; Avizcuri, J.M.; Valentin, D.; Fernández-Zurbano, P.; Ferreira, V. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: Wine reconstitution strategies and sensory sorting task. Anal. Chim. Acta 2012, 732, 64–72. [Google Scholar] [CrossRef]
- Breslin, P.A.S. Human gustation and flavor. In Food Flavors and Chemistry: Advances of the New Millennium; Royal Society of Chemistry: London, UK, 2001; pp. 33–64. [Google Scholar]
- Huang, X.Y.; Jiang, Z.T.; Tan, J.; Li, R. Geographical origin traceability of red wines based on chemometric classification via organic acid profiles. J. Food Qual. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niculescu, V.-C.; Paun, N.; Ionete, R.-E. The evolution of polyphenols from grapes to wines. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; InTech: London, UK, 2017; pp. 119–141. [Google Scholar]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.; Mendes, B.; Silva, C.L.; Câmara, J.S. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. J. Chromatogr. A 2012, 1229, 13–23. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. J. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Amor, S.; Châlons, P.; Aires, V.; Delmas, D. Polyphenol extracts from red wine and grapevine: Potential effects on cancers. Diseases 2018, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozo-Bayón, M.; Hernández, M.; Martín-Alvarez, P.; Polo, M. Study of low molecular weight phenolic compounds during the aging of sparkling wines manufactured with red and white grape varieties. J. Agric. Food Chem. 2003, 51, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Silva, C.L.; Castilho, P.C.; Câmara, J.S. An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines. Microchem. J. 2013, 106, 129–138. [Google Scholar] [CrossRef]
- Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Sparascio, F.; Maffia, M. HPLC analysis of phenols in Negroamaro and Primitivo red wines from Salento. Foods 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. A high-throughput UHPLC-QqQ-MS method for polyphenol profiling in rosé wines. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef]
- Flamini, R. Recent applications of mass spectrometry in the study of grape and wine polyphenols. Int. Sch. Res. Not. 2012, 2013, 1–45. [Google Scholar] [CrossRef]
- Bravo, M.N.; Silva, S.; Coelho, A.V.; Vilas Boas, L.; Bronze, M.R. Analysis of phenolic compounds in Muscatel wines produced in Portugal. Anal. Chim. Acta 2006, 563, 84–92. [Google Scholar] [CrossRef]
- Tarola, A.M.; Milano, F.; Giannetti, V. Simultaneous determination of phenolic compounds in red wines by HPLC-UV. J. Anal. Lett. 2007, 40, 2433–2445. [Google Scholar] [CrossRef]
- García-Falcón, M.S.; Pérez-Lamela, C.; Martínez-Carballo, E.; Simal-Gándara, J. Determination of phenolic compounds in wines: Influence of bottle storage of young red wines on their evolution. Food Chem. 2007, 105, 248–259. [Google Scholar] [CrossRef]
- Silva, C.L.; Pereira, J.; Wouter, V.G.; Giró, C.; Câmara, J.S. A fast method using a new hydrophilic-lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines. Talanta 2011, 86, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.L.; Gonçalves, J.L.; Câmara, J.S. A sensitive microextraction by packed sorbent-based methodology combined with ultra-high pressure liquid chromatography as a powerful technique for analysis of biologically active flavonols in wines. Anal. Chim. Acta 2012, 739, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnitskaya, A.; Rocha, S.M.; Legin, A.; Pereira, V.; Marques, J.C. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Anal. Chim. Acta 2010, 662, 82–89. [Google Scholar] [CrossRef]
- Paixão, N.; Perestrelo, R.; Marques, J.C.; Câmara, J.S. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem. 2007, 105, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Paixão, N.; Pereira, V.; Marques, J.C.; Câmara, J.S. Quantification of polyphenols with potential antioxidant properties in wines using reverse phase HPLC. J. Sep. Sci. 2008, 31, 2189–2198. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.; Câmara, J.S. New method for determination of (E)-resveratrol in wine based on microextraction using packed sorbent and ultra-performance liquid chromatography. J. Sep. Sci. 2011, 34, 2376–2384. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Albuquerque, F.; Cacho, J.; Marques, J. Polyphenols, antioxidant potential and color of fortified wines during accelerated ageing: The Madeira wine case study. Molecules 2013, 18, 2997–3017. [Google Scholar] [CrossRef] [Green Version]
- Lena Do Nascimento Silva, F.; Schmidt, E.M.; Messias, C.L.; Eberlin, M.N.; Helena Frankland Sawaya, A.C. Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Anal. Methods 2015, 7, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Regmi, U.; Palma, M.; Barroso, C.G. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Anal. Chim. Acta 2012, 732, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.; Fabjanowicz, M.; Chmiel, T.; Płotka-Wasylka, J. Determination and identification of organic acids in wine samples. Problems and challenges. TrAC-Trends Anal. Chem. 2019, 120, 115630–115644. [Google Scholar] [CrossRef]
- Chidi, B.S.; Mafata, M.; Notshokovu, N.Z.; van Jaarsveld, F. Impact of grape temperature at pressing on organic acids and oenological characteristics of méthode cap classique wines. South Afr. J. Enol. Vitic. 2018, 39, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Castin, A.; Penã, R.M.; Herrero, C.; Garcıá-Martı, S.; El Sabio, A.X. Analysis of organic acids in wine by capillary electrophoresis with direct UV detection. J. Food Compos. Anal. 2002, 15, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Mihaljevic Žulj, M.; Puhelek, I.; Jagatic Korenika, A.M.; Maslov Bandic, L.; Pavlesic, T.; Jeromel, A. Organic Acid Composition in Croatian Predicate Wines. Agric. Conspec. Sci. 2015, 80, 113–117. [Google Scholar]
- Zotou, A.; Loukou, Z.; Karava, O. Method development for the determination of seven organic acids in wines by reversed-phase high performance liquid chromatography. Chromatographia 2004, 60, 39–44. [Google Scholar] [CrossRef]
- Pereira, V.; Câmara, J.S.; Cacho, J.; Marques, J.C. HPLC-DAD methodology for the quantification of organic acids, furans and polyphenols by direct injection of wine samples. J. Sep. Sci. 2010, 33, 1204–1215. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Pontes, M.; Câmara, J.S.; Marques, J.C. Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure. J. Chromatogr. A 2008, 1189, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Pereira, A.C.; Pérez Trujillo, J.P.; Cacho, J.; Marques, J.C. Amino acids and biogenic amines evolution during the Estufagem of fortified wines. J. Chem. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Yang, Y.; Peng, Q.; Han, Y. Biogenic amines in wine: A review. Int. J. Food Sci. Technol. 2015, 50, 1523–1532. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C.G. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273. [Google Scholar] [CrossRef]
- Fiechter, G.; Mayer, H.K. UPLC analysis of free amino acids in wines: Profiling of on-lees aged wines. J. Chromatogr. B 2011, 879, 1361–1366. [Google Scholar] [CrossRef]
- Herbert, P.; Cabrita, M.J.; Ratola, N.; Laureano, O.; Alves, A. Free amino acids and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, sub-region and vintage. J. Food Eng. 2005, 66, 315–322. [Google Scholar] [CrossRef]
- Perestrelo, R.; Bordiga, M.; Locatelli, M.; Silva, C.; Câmara, J.S. Polyphenols, biogenic amines and amino acids patterns in Verdelho wines according to vintage. Microchem. J.
- Nalazek-Rudnicka, K.; Wasik, A. Development and validation of an LC–MS/MS method for the determination of biogenic amines in wines and beers. Monatsh. Chem. 2017, 148, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Konakovsky, V.; Focke, M.; Hoffmann-Sommergruber, K.; Schmid, R.; Scheiner, O.; Moser, P.; Jarisch, R.; Hemmer, W. Levels of histamine and other biogenic amines in high-quality red wines. Food Addit. Contam. Part A 2011, 28, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Ladero, V.; Calles-Enriquez, M.; Fernandez, M.; Alvarez, M. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Arribas, M.V.; Smi, A.Y.; Du Toit, M. Biogenic amines and the winemaking process. In Managing Wine Quality; Woodhead Publishing: London, UK, 2010; pp. 494–522. [Google Scholar]
- Leitão, M.C.; Marques, A.P.; San Romão, M.V. A survey of biogenic amines in commercial Portuguese wines. Food Control 2005, 16, 199–204. [Google Scholar] [CrossRef]
- Miranda, A.; Pereira, V.; Leça, J.M.; Marques, J.C. Analytical methodologies for the determination of biogenic amines in wines: An overview of the recent trends. J. Anal. Bioanal. Sep. Tech. 2017, 2, 52–57. [Google Scholar]
- Esposito, F.; Montuori, P.; Schettino, M.; Velotto, S.; Stasi, T.; Romano, R.; Cirillo, T. Level of biogenic amines in red and white wines, dietary exposure, and histamine-mediated symptoms upon wine ingestion. Molecules 2019, 24, 3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Płotka-Wasylka, J.; Rutkowska, M.; Cieślik, B.; Tyburcy, A.; Namieśnik, J. Determination of selected metals in fruit wines by spectroscopic techniques. J. Anal. Methods Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariba, B. Metals in wine—Impact on wine quality and health outcomes. Biol. Trace Elem. Res. 2011, 144, 143–156. [Google Scholar] [CrossRef]
- Dalipi, R.; Borgese, L.; Zacco, A.; Tsuji, K.; Sangiorgi, E.; Piro, R.; Bontempi, E.; Depero, L.E. Determination of trace elements in Italian wines by means of total reflection X-ray fluorescence spectroscopy. Int. J. Environ. Anal. Chem. 2015, 95, 1208–1218. [Google Scholar] [CrossRef]
- Seeger, T.S.; Rosa, F.C.; Bizzi, C.A.; Dressler, V.L.; Flores, E.M.M.; Duarte, F.A. Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry. Spectrochim. Acta-Part B At. Spectrosc. 2015, 105, 136–140. [Google Scholar] [CrossRef]
- Bocková, J.; Tian, Y.; Yin, H.; Delepine-Gilon, N.; Chen, Y.; Veis, P.; Yu, J. Determination of metal elements in wine using laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 2017, 71, 1750–1759. [Google Scholar] [CrossRef]
- Blesic, M.; Drmac, M.; Batinic, K.; Spaho, N.; Smajic Murtic, M.; Zele, M. Levels of selected metals in wines from different Herzegovinian viticultural localities. Croat. J. Food Sci. Technol. 2017, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pérez Trujillo, J.P.; Conde, J.E.; Pérez Pont, M.L.; Câmara, J.; Marques, J.C. Content in metallic ions of wines from the Madeira and Azores archipelagos. Food Chem. 2011, 124, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Pohl, P. What do metals tell us about wine? TrAC-Trends Anal. Chem. 2007, 26, 941–949. [Google Scholar] [CrossRef]
Chemical Families | Odor Descriptions 1 | Origin | OTs (µg/L) 2 |
---|---|---|---|
Terpenes | |||
α-Terpineol | Anise, floral, fruit, mint | Synthesized from geranyl diphosphate (GPP) | 250 |
Linalool | Citrus, floral, fruit, green | 25 | |
Citronellol | Citrus, floral, fresh, green, rose | 100 | |
C13 norisoprenoids | |||
β-Damascenone | Floral, fruit, honey, tobacco | Chemical, photochemical, and enzymatic oxidation of carotenoids | 0.05 |
β-Ionone | Floral, violet | 0.7 | |
Geranyl acetone | Floral, fruit, green, waxy, wood | 60 | |
C6 Compounds | |||
1-Hexanol | Green, herbaceous | Alcohol-dehydrogenase reduction; yeast activity | 8000 |
(E)-2-hexenol | Fresh, green, grass, leaf | Enzymatic oxidation of unsaturated fatty acids by lipoxygenase | 400 |
(E)-3-hexenol | Fresh, green, grass, leaf | 400 | |
(Z)-3-hexenol | Fresh, green, grass, leaf | 400 | |
Alcohols | |||
3-Methyl-1-butanol | Alcohol, burnt, cheesy, fruit | Formed during fermentation by deamination and decarboxylation reactions from leucine | 30,000 |
2-Phenylethanol | Floral, honey, pollen, rose | Formed during fermentation by deamination and decarboxylation reactions from phenylalanine | 14,000 |
Esters | |||
Isoamyl acetate | Banana, fresh, fruit, sweet | Esterification of 3-methyl-1-butanol (derived from leucine) by yeast | 30 |
Ethyl hexanoate | Anise, caramel, fruit, wine | Formed by yeast and/or malolactic bacteria during the alcoholic or malolactic fermentations | 14 |
Ethyl octanoate | Fruit, must, soap, sweet, waxy | 580 | |
Ethyl decanoate | Fruit, pleasant, soap, waxy | 200 | |
Ethyl lactate | Acidic, ethereal, fruit, sweet | 154,636 | |
Diethyl succinate | Floral, fruit, potato, sweat | 200,000 | |
Fatty acids | |||
Acetic acid | Vinegar-like character, sour | Formed by yeast during alcoholic fermentation | 200,000 |
Hexanoic acid | Cheese, rancid | Formed by anabolic pathways in yeast; β-oxidation of higher fatty acids | 420 |
Octanoic acid | Cheese, fatty acid harsh, rancid | 10,000 | |
Decanoic acid | Fatty, unpleasant | 1000 | |
Carbonyl compounds | |||
Acetaldehyde | Ripe apple | Formed by yeast during alcoholic fermentation | 100,000 |
Benzaldehyde | Almond, cherry | Strecker degradation | 990 |
Phenylacetaldehyde | Cooked potato, floral, honey | Strecker degradation | 25 |
Furanic compounds | |||
2-Furfural | Bitter, burnt, caramel, winey | Deterioration of flavor and aroma during storage; thermal degradation | 14,100 |
HMF | Bready, cardboard, caramel | 10,000 | |
5-Methylfurfural | Bitter almond, sweet | 20,000 | |
Lactones | |||
γ-Hexalactone | Apricot, peach | Produced by cyclization of the corresponding hydroxycarboxylic acids | 1600 |
γ-Octalactone | Caramel, coconut, cream, nutty | 400 | |
Trans-oak lactone | Caramel, coconut, nutty, wood | 67 | |
Cis-oak lactone | Caramel, coconut, nutty, toast | 790 | |
Sotolon | Caramel, curry, nutty, spicy | Thermal degradation of Maillard intermediates; aldol condensation between α-keto butyric acid | 9 |
Volatile phenols | |||
4-Ethyl phenol | Phenolic, leather | Formed by Brettanomyces Dekkera yeasts | 440 |
4-Ethyl guaiacol | Phenolic, spicy, pharmaceutical | Formed by Brettanomyces Dekkera yeasts | 33 |
Guaiacol | Phenolic, smoke, sweet | Bacterial (or thermic) transformation of the vanillin in guaiacol | 9.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perestrelo, R.; Silva, C.; Gonçalves, C.; Castillo, M.; Câmara, J.S. An Approach of the Madeira Wine Chemistry. Beverages 2020, 6, 12. https://doi.org/10.3390/beverages6010012
Perestrelo R, Silva C, Gonçalves C, Castillo M, Câmara JS. An Approach of the Madeira Wine Chemistry. Beverages. 2020; 6(1):12. https://doi.org/10.3390/beverages6010012
Chicago/Turabian StylePerestrelo, Rosa, Catarina Silva, Carolina Gonçalves, Mariangie Castillo, and José S. Câmara. 2020. "An Approach of the Madeira Wine Chemistry" Beverages 6, no. 1: 12. https://doi.org/10.3390/beverages6010012
APA StylePerestrelo, R., Silva, C., Gonçalves, C., Castillo, M., & Câmara, J. S. (2020). An Approach of the Madeira Wine Chemistry. Beverages, 6(1), 12. https://doi.org/10.3390/beverages6010012