Volatile Profiles of Sparkling Wines Produced by the Traditional Method from a Semi-Arid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Chemical Reagents
2.2. Grape Samples and Obtention of the Musts and Base Wines
2.3. Sparkling Wine Elaboration
2.4. Classical Enological Parameters and Antioxidant Activity in Vitro
2.5. 1D-GC/qMS Instrumentation
2.6. “Mix of Internal Standards” and Conditions for the Extraction of Volatile Compounds
2.7. Tentative Identification of Volatile Compounds
2.8. Statistical Analysis
3. Results
3.1. Classical Enological Parameters and Antioxidant Activity
3.2. Volatile Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Padilha, C.V.S.; Biasoto, A.C.T.; Corrêa, L.C.; Lima, M.S.; Pereira, G.E. Phenolic compounds profile and antioxidant activity of commercial tropical red wines (Vitis vinifera L.) from São Francisco Valley, Brazil. J. Food Biochem. 2016, 41, 1–9. [Google Scholar] [CrossRef]
- Lima, M.S.; Silani, I.S.V.; Toaldo, I.M.; Correa, L.C.; Biasoto, A.C.T.; Pereira, G.E.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem. 2014, 161, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.E.; Padilha, C.; Marques, A.T.B.; Canuto, K.M.; Mendes, A.; Souza, J.F. Le poids des consommateurs sur l’evolution des vins: L’exemple de la Vallee Du Sao Francisco, Bresil. In Vin et Civilisation lês étapes de l’humanisation; Perard, J., Perrot, M., Eds.; Centre Georges Chevrier: Dijon, France, 2016; pp. 301–310. ISBN 978-2-918173-19-9. [Google Scholar]
- Tonietto, J.; Pereira, G.E. A concept for the viticulture of “tropical wines”. In Proceedings of the IXTH International Terroir Congress, Dijon and Reims, France, 25–29 June 2012; pp. 34–37. [Google Scholar]
- Camargo, U.A.; Pereira, G.E.; Guerra, C.C. Wine grape cultivars adaptation and selection for tropical wines. Acta Hortic. 2011, 919, 121–129. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D.; Donéche, B.; Lonvaud, A. Handbook of Enology. The Chemistry of Wine and Stabilization and Treatments, 2nd ed.; Wiley & Sons: Bordeuax, France, 2006; Volume 2, p. 451. ISBN 978-0-470-01037-2. [Google Scholar]
- Herrero, P.; Sáenz-Navajas, P.; Culleré, L.; Ferreira, V.; Chatin, A.; Chaperon, V.; Litoux-Desrues, F.; Escudero, A. Chemosensory characterization of Chardonnay and Pinot Noir base wines of Champagne. Two very different varieties for a common product. Food Chem. 2016, 207, 239–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Pulgati, F.H.; Zini, C.A. Main differences between volatiles of sparkling and base wines accessed through comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detection and chemometric tools. Food Chem. 2014, 164, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Torrens, J.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Assessment of Volatile and Sensory Profiles between Base and Sparkling Wines. J. Agric. Food Chem. 2010, 58, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; et al. Regional features of northern Italian sparkling wines, identified using solid-phase micro-extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Food Chem. 2016, 208, 68–80. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef]
- Caliari, V.; Burin, V.M.; Rosier, J.P.; Bordignon-Luiz, M.T. Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Res. Int. 2014, 62, 965–973. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef]
- Caliari, V.; Panceri, C.P.; Rosier, J.P.; Bourdignon-Luiz, M.T. Effect of the Traditional, Charmat and Asti method production on the volatile composition of Moscato Giallo sparkling wines. LWT Food Sci. Technol. 2015, 61, 393–400. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Vines and Musts; OIV: Paris, France, 2016; Volume 2, 504p, ISBN 979-10-91799-47-8. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Glories, Y. La couleur des vins rouges. 2ème partie mesure, origine et interpretation. Journal International des Sciences de la vigne et du vin 1984, 18, 253–271. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kim, Y.K.; Guo, Q.; Packer, L. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 2002, 172, 149–156. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J. Chromatogr. A 2012, 1226, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, S.J.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics—Parte B; Elsevier: Amsterdam, The Netherlands, 1997; p. 713. ISBN 9780080887036. [Google Scholar]
- Von Muhlen, C.; Zini, C.A.; Caramão, E.B.; Marriott, P.J. Comparative study of Eucalyptus dunnii volatile oil composition using retention indices and comprehensive two-dimensional gas chromatography coupled to time-of-flight and quadrupole mass spectrometry. J. Chromatogr. A 2008, 1200, 34–42. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.J.; Muñoz-Redondo, J.M.; Cuevas, F.J.; Marrufo-Curtido, A.; León, J.M.; Ramírez, P.; Moreno-Rojas, J.M. The influence of pre-fermentative maceration and ageing factors on ester profile and marker determination of Pedro Ximenez sparkling wines. Food Chem. 2017, 230, 697–704. [Google Scholar] [CrossRef]
- Wang, J.; Huo, S.; Zhang, Y.; Liu, Y.; Fan, W. Impact of various maceration techniques on the phenolic and volatile composition of Chenin Blanc wines. Int. J. Food Sci. Technol. 2016, 51, 2360–2366. [Google Scholar] [CrossRef]
- Chin, S.T.; Eyresb, G.T.; Marriotta, P.J. Cumulative solid phase microextraction sampling for gas chromatography-olfactometry of Shiraz wine. J. Chromatogr. A 2012, 1255, 221–227. [Google Scholar] [CrossRef]
- Gurbuz, O.; Rouseff, J.M.; Rouseff, R.L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography—Olfactometry and gas chromatography—Mass spectrometry. J. Agric. Food Chem. 2006, 54, 3990–3996. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Gunata, Z. Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chem. 2006, 94, 319–326. [Google Scholar] [CrossRef]
- Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C. Characterization of Odor-Active Volatiles in Champa (Campomanesia lineatifolia R. P.). J. Agric. Food Chem. 2006, 54, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Ledauphin, J.; Saint-Clair, J.F.; Lablanquie, O.; Guichard, H.; Founier, N.; Guichard, E.; Barillier, D. Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separations coupled with gas chromatography-mass spectrometry. J. Agric. Food Chem. 2004, 52, 5124–5134. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, M.; Wu, Y.; Osajima, Y. Aroma compounds from aqueous solution of Haze (Rhus succedanea) honey determined by adsorptive column chromatography. J. Agric. Food Chem. 1996, 44, 3913–3918. [Google Scholar] [CrossRef]
- Wada, K.; Shibamoto, T. Isolation and identification of volatile compounds from a wine using solid phase extraction, gas chromatography, and gas chromatography/mass spectrometry. J. Agric. Food Chem. 1997, 45, 4362–4366. [Google Scholar] [CrossRef]
- Botelho, G.; Caldeira, I.; Mendes-Faia, A.; Clímaco, M.C. Evaluation of two quantitative gas chromatography-olfactometry methods for clonal red wines differentiation. Flavour Fragance J. 2007, 22, 414–420. [Google Scholar] [CrossRef]
- Gauvin, A.; Lecomte, H.; Smadja, J. Comparative investigations of the essential oils of two scented geranium (Pelargonium spp.) cultivars grown on Reunion Island. Flavour Fragance J. 2004, 19, 455–460. [Google Scholar] [CrossRef]
- Santos, A.P.C.; Vanderlinde, R.; Machado, B.A.S.; Mamede, M.E.O. Improving production of aromatic compounds by indigenous yeasts in Chenin Blanc grape must. Afr. J. Agric. Res. 2016, 11, 2433–2442. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Troncoso, A.M.; Peña-Neira, A.; Morales, M.L. Volatile profile characterisation of Chilean sparkling wines produced by traditional and Charmat methods via sequential stir bar sorptive extraction. Food Chem. 2016, 207, 261–271. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Sparacio, A.; Giglio, D.M.L.; Verzera, A. Effects of cluster thinning on wine quality of Syrah cultivar (Vitis vinifera L.). Eur. Food Res. Technol. 2016, 242, 1719–1726. [Google Scholar] [CrossRef]
- Ferreira, A.C.S.; Rodrigues, P.; Hogg, T.; De Pinho, P.G. Influence of some technological parameters on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in Port Wines. J. Agric. Food Chem. 2003, 51, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Capone, D.L.; Wilkinson, K.L.; Jeffery, D.W. Chemical and sensory profiles of rosé wines from Australia. Food Chem. 2016, 196, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T. Gas chromatographic analysis of volatile fatty acids in wines. Agric. Biol. Chem. 1985, 49, 2211–2212. [Google Scholar] [CrossRef]
- Kinzurik, M.I.; Herbst-Johnstone, M.; Gardner, R.C.; Fedrizzi, B. Evolution of Volatile Sulfur Compounds during Wine Fermentation. J. Agric. Food Chem. 2015, 36, 8017–8024. [Google Scholar] [CrossRef] [PubMed]
- Noguerol-Pato, R.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Quantitative determination and characterisation of the main odourants of Mencia monovarietal red wines. Food Chem. 2009, 117, 473–484. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, Q.; Yan, G.; Duan, C. Using headspace solid phase micro-extraction for analysis of aromatic compounds during alcoholic fermentation of red wine. Food Chem. 2011, 125, 743–749. [Google Scholar] [CrossRef]
Assessments * | Traditional Sparkling Wines | |||
---|---|---|---|---|
CB | SY | CB+SY-W | CB+SY-R | |
Density | 0.993 ± 0.01 b | 0.992 ± 0.01 b | 0.995 ± 0.01 a | 0.994 ± 0.01 a |
Residual sugar (g L−1) | 2.60 ± 0.08 a | 2.67 ± 0.15 a | 2.63 ± 0.06 a | 2.66 ± 0.03 a |
Alcohol content (%v/v) | 12.35 ± 0.37 b | 13.20 ± 0.30 a | 12.09 ± 0.20 b | 12.03 ± 0.17 b |
Dry extract (g L−1) | 21.79 ± 0.40 b | 22.05 ± 0.35 b | 24.55 ± 0.35 a | 24.95 ± 0.45 a |
pH | 3.42 ± 0.02 c | 3.58 ± 0.02 b | 3.53 ± 0.03 b | 3.66 ± 0.01 a |
Total acidity (g L−1) | 9.68 ± 0.17 a | 8.18 ± 0.07 b | 8.33 ± 0.14 b | 8.25 ± 0.15 b |
Volatile acidity (g L−1) | 0.46 ± 0.03 a | 0.48 ± 0.04 a | 0.49 ± 0.04 a | 0.48 ± 0.02 a |
A420 | 0.046 ± 0.01 b | 0.057 ± 0.01 b | 0.045 ± 0.00 b | 0.117 ± 0.01 a |
TP (mg L−1) | 123.32 ± 2.55 b,c | 134.79 ± 1.93 b | 110.94 ± 1.42 c | 190.22 ± 4.03 a |
DPPH (mMTrolox L−1) | 0.462 ± 0.22 c | 0.547 ± 0.12 b | 0.454 ± 0.20 c | 0.703 ± 0.19 a |
ABTS (mMTrolox L−1) | 0.533 ± 0.31 b | 0.942 ± 0.11 a | 0.619 ± 0.19 b | 0.899 ± 0.41 a |
Aromatic Compounds | a CAS | b LTPRI-EXP | c LTPRI-LIT | Aromatic Descriptors |
---|---|---|---|---|
Alcohols | ||||
3-Methyl-1-butanol | 123-51-3 | 1216 | 1217 [26] | Solvent [13] |
3-Methyl-1-pentanol | 589-35-5 | 1328 | 1331 [26] | Vinous, herbaceous, cocoa [13] |
Hexanol-1 | 111-27-3 | 1354 | 1356 [27] | Vegetative, grass cut [14] |
3-Ethoxypropan-1-ol | 111-35-3 | 1372 | 1371 [20] | Fruity [13] |
(Z)-3-Hexen-1-ol | 928-96-1 | 1383 | 1383 [28] | Green, bitter, greasy [13] |
Octan-2-ol | 5978-70-1 | 1422 | 1416 [29] | - |
2,3-Butanediol | 513-85-9 | 1539 | 1545 [26] | Fruity [13] |
Butane-1,3-diol | 107-88-0 | 1577 | 1576 [30] | - |
Decan-1-ol | 112-30-1 | 1763 | 1778 [20] | Sweet, fatty [13] |
2-Phenylethanol | 60-12-8 | 1903 | 1900 [20] | Flower, honey [14] |
Dodecan-1-ol | 112-53-8 | 1968 | 1977 [20] | Unpleasant, floral [9] |
Esters | ||||
Ethyl butanoate | 105-54-4 | 1057 | 1044 [28] | Strawberry, apple [13] |
Ethyl hexanoate | 123-66-0 | 1232 | 1236 [20] | Fruity, green apple, floral [9] |
Ethyl octanoate | 106-32-1 | 1436 | 1429 [20] | Fruity, pineapple [9] |
Ethyl decanoate | 110-38-3 | 1638 | 1638 [20] | Oily / fruity (grape) [9] |
Diethyl succinate | 123-25-1 | 1678 | 1686 [20] | Fruity [13] |
Ethyl 9-decenoate | 67233-91-4 | 1690 | 1689 [29] | Roses [13] |
Diethyl pentanedioate | 1119-40-0 | 1780 | 1780 [20] | - |
2-Phenethyl acetate | 103-45-7 | 1808 | 1821 [20] | Flowery [13] |
Diethyl malate | 626-11-9 | 2040 | 2041 [27] | Peach, cut grass [13] |
Monoethyl succinate | 3878-55-5 | 2383 | 2395 [31] | - |
Isoamyl acetate | 123-92-2 | 1123 | 1125 [26] | Fruity (banana) [14] |
Hexyl acetate | 142-92-7 | 1271 | 1279 [26] | Apple, cherry, pear, floral [13] |
Cis-3-Hexen-1-ol acetate | 3681-71-8 | 1316 | 1319 [26] | - |
Acids | ||||
Butanoic acid | 107-92-6 | 1633 | 1637 [28] | Cheese [9] |
Hexanoic acid | 142-62-1 | 1849 | 1855 [20] | Fatty [9] |
Octanoic Acid | 124-07-2 | 2066 | 2060 [27] | Cheese [14] |
n-Decanoic acid | 334-48-5 | 2276 | 2269 [20] | Fatty, rancid [13] |
Dodecanoic acid | 143-07-7 | 2488 | 2485 [30] | Rancid [14] |
Others | ||||
3-(Methylthio)-1-propanol (sulfurated) | 505-10-2 | 1711 | 1715 [32] | Cooked vegetable [13] |
Benzaldehyde (Aldehyde) | 96-48-0 | 1526 | 1513 [29] | Sweet, buttery [9] |
Phenol (Phenol) | 108-95-2 | 2004 | 2002 [20] | Medicinal [9] |
Carvone (Terpene) | 2244-16-8 | 1717 | 1718 [28] | Herbaceous, bread, spicy, floral [33] |
Aromatic Compounds | Traditional Sparkling Wines * | |||
---|---|---|---|---|
Chenin Blanc | Syrah | CB+SY-W | CB+SY-R | |
Alcohols | ||||
3-Methyl-1-butanol | 12.87 ± 2.57 a | 8.590 ± 1.94 a | 7.146 ± 4.01 a | 7.524 ± 2.99 a |
3-Methyl-1-pentanol | 0.084 ± 0.02 a,b | 0.072 ± 0.01 b | 0.081 ± 0.01 a,b | 0.114 ± 0.01 a |
Hexan-1-ol | 0.256 ± 0.18 a,b | 0.166 ± 0.08 b | 0.246 ± 0.11 a,b | 0.550 ± 0.11 a |
3-Ethoxypropan-1-ol | 0.047 ± 0.01 a | 0.018 ± 0.01 b | 0.032 ± 0.02 a,b | 0.027 ± 0.01 b |
(Z)-3-Hexen-1-ol | 0.046 ± 0.01 a | 0.135 ± 0.09 a | 0.105 ± 0.02 a | 0.076 ± 0.01 a |
Octan-2-ol | 0.187 ± 0.05 a | 0.183 ± 0.02 a | 0.228 ± 0.01 a | 0.187 ± 0.02 a |
Butane-2,3-diol | 1.380 ± 0.90 a | 0.738 ± 0.18 a | 0.762 ± 0.53 a | 0.809 ± 0.41 a |
Butane-1,3-diol | 0.442 ± 0.25 a | 0.406 ± 0.03 a | 0.472 ± 0.11 a | 0.396 ± 0.17 a |
Decan-1-ol | 0.022 ± 0.01 b | 0.035 ± 0.01 a,b | 0.048 ± 0.01 a | 0.024 ± 0.01 b |
2-Phenylethanol | 8.354 ± 2.56 a | 6.094 ± 1.13 a | 4.289 ± 3.10 a | 4.567 ± 1.64 a |
Dodecan-1-ol | 0.073 ± 0.05 a | 0.055 ± 0.03 a | 0.014 ± 0.01 a | 0.021 ± 0.01 a |
Esters | ||||
Ethyl butanoate | 0.139 ± 0.02 a | 0.094 ± 0.03 a | 0.121 ± 0.04 a | 0.106 ± 0.03 a |
Ethyl hexanoate | 0.406 ± 0.05 a | 0.789 ± 0.15 a | 0.660 ± 0.22 a | 0.669 ± 0.29 a |
Ethyl octanoate | 1.501 ± 0.15 a,b | 1.966 ± 0.08 a | 1.338 ± 0.21 b | 1.346 ± 0.31 b |
Ethyl decanoate | 0.315 ± 0.05 a | 0.059 ± 0.01 c | 0.102 ± 0.02 b,c | 0.156 ± 0.02 b |
Diethyl succinate | 2.906 ± 0.90 a | 0.582 ± 0.24 b | 1.754 ± 0.72 a,b | 1.219 ± 0.16 b |
Ethyl 9-decenoate | 0.051 ± 0.01 a | 0.042 ± 0.01 a,b | 0.025 ± 0.01 b | 0.049 ± 0.01 a |
Diethyl pentanedioate | 0.062 ± 0.02 a | 0.011 ± 0.00 b | 0.032 ± 0.01 b | 0.024 ± 0.01 b |
2-Phenethyl acetate | 1.935 ± 0.57 a | 0.308 ± 0.11 b | 1.0736 ± 0.44 a,b | 1.036 ± 0.16 a,b |
Diethyl malate | 0.584 ± 0.17 a | 0.043 ± 0.02 b | 0.189 ± 0.09 b | 0.112 ± 0.03 b |
Monoethyl succinate | 0.052 ± 0.02 b | 0.391 ± 0.23 a,b | 0.781 ± 0.50 a | 0.024 ± 0.01 b |
Isoamyl acetate | 0.089 ± 0.06 b | 0.684 ± 0.15 a | 0.339 ± 0.23 a,b | 0.259 ± 0.11 b |
Hexyl acetate | 0.015 ± 0.01 b | 0.119 ± 0.04 a | 0.036 ± 0.02 b | 0.052 ± 0.03 a,b |
Cis-3-Hexen-1-ol acetate | 0.015 ± 0.01 b | 0.034 ± 0.01 a | 0.018 ± 0.01 b | 0.016 ± 0.01 b |
Acids | ||||
Butanoic acid | 0.075 ± 0.07 c | 0.107 ± 0.02 a | 0.092 ± 0.10 b | 0.085±0.04 b,c |
Hexanoic acid | 3.394 ± 0.25 a | 3.300 ± 0.11 a | 3.067 ± 0.70 a | 2.890 ± 0.45 a |
Octanoic Acid | 6.231 ± 3.22 b | 7.450 ± 2.23 a | 6.854 ± 0.40 a,b | 6.934 ± 0.51 a,b |
n-Decanoic acid | 0.826 ± 0.59 a,b | 0.386 ± 0.06 b | 0.496 ± 0.06 b | 1.314 ± 0.14 a |
Dodecanoic acid | 0.086 ± 0.11 a | 0.025 ± 0.01 a | 0.021 ± 0.01 a | 0.025 ± 0.01 a |
Others | ||||
3-(Methylthio)-1-propanol (sulphur) | 0.014 ± 0.01 a | 0.009 ± 0.01 a | 0.008 ± 0.01 a | 0.031 ± 0.01 a |
Benzaldehyde (Aldehyde) | 0.066 ± 0.02 b | 0.070 ± 0.01 a | 0.063 ± 0.02 a,b | 0.063 ± 0.05 a,b |
Phenol (Phenol) | 0.051 ±0.01 b | 0.067 ± 0.01 a | 0.051 ± 0.01 a b | 0.056 ± 0.02 a,b |
Carvone (Terpene) | 0.082 ± 0.02 a | 0.015 ± 0.01 b | 0.092 ± 0.03 a | 0.029 ± 0.01 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Souza Nascimento, A.M.; De Souza, J.F.; Dos Santos Lima, M.; Pereira, G.E. Volatile Profiles of Sparkling Wines Produced by the Traditional Method from a Semi-Arid Region. Beverages 2018, 4, 103. https://doi.org/10.3390/beverages4040103
De Souza Nascimento AM, De Souza JF, Dos Santos Lima M, Pereira GE. Volatile Profiles of Sparkling Wines Produced by the Traditional Method from a Semi-Arid Region. Beverages. 2018; 4(4):103. https://doi.org/10.3390/beverages4040103
Chicago/Turabian StyleDe Souza Nascimento, Antonio Mendes, Joyce Fagundes De Souza, Marcos Dos Santos Lima, and Giuliano Elias Pereira. 2018. "Volatile Profiles of Sparkling Wines Produced by the Traditional Method from a Semi-Arid Region" Beverages 4, no. 4: 103. https://doi.org/10.3390/beverages4040103